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A Conservative Timelntegration Scheme'elfor Dynamics of Elasto-damaged Thin
Shells

L. Briseghellal, C. Majoranat and P. Pavan®

Abstract: Some aspects of the application of a conser-
vative time integration scheme to the non-linear dynam-
icsof elasto-damaged thin shellsare presented. Themain
characteristic of the scheme is to be conservative, in the
sense that it allows the time-discrete system to preserve
the basic laws of continuum, namely the balance of the
linear and angular momenta as well as the fulfilment of
the second law of thermodynamic. Here the method is
applied to thin shellsunder large displacements and rota-
tions. The constitutive model adopted is built coupling
the linear elastic model of De Saint Venant-Kirchhoff
with a scalar damage function depending on the maxi-
mum value of a suitable strain measure attained through
the deformation history.

keyword: shells, large deformations, non-linear dy-
namics, time integration algorithms

1 Introduction

The present paper deals with the application of the
energy-momentum method to the non-linear dynamics
of thin shells, made of materials with internal dissi-
pation. The approach follows the method already ap-
plied to the elasto-damaged continuum dynamics in fi-
nite strains [Briseghella, Mgjorana and Pavan (1998);
Briseghella, Magjorana, Pavan (2000)]. The energy-
momentum method is a time integration algorithm that
has been formulated with respect to the rigid body [Simo
and Wong (1991)], the continuum [Simo and Tarnow
(1992)], the shells[Simo, Rifai and Fox (1992)] and rods
[Simo, Tarnow, and Dablare (1995)] dynamics.

The agorithm is an implicit scheme, defined as conser-
vative because it ensures the fulfilment of the basic laws
of continuum, i.e. the balance laws of linear and angular
momentum and the balance of energy of the system. The
conservation of the energy of the system leads to define
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the method as unconditionally stable. This means, for
example, that for an elastic body subjected only toinitial
conditions (assigned configuration and velocity fields)
and in absence of external loading the total energy of
the system, discretised in time, represents a constant of
the motion, that is what happens in the continuum sys-
tem. This property is not preserved by other types of
integration schemes such those belonging to the New-
mark’sfamily if appliedto non linear dynamicsof elastic
systems because the latter can ensure only the balance of
the linear and angular momentum. Hence, this time in-
tegration scheme has been applied in particular to long
term dynamics of elastic systems ensuring a similar de-
scription of the motion in contrast with solutionsarising
from other types of schemes.

The conservative character of the scheme if applied to a
system with internal dissipation must be intended as the
fulfilment of the Clausius-Duheminequality intimeinits
discrete form. On the other side, for elastic systems the
latter inequality leads simply to the equivalence between
the rate of the stored energy function of the material and
the internal power, i.e. the rate of work made by the in-
ternal forces.

Theimplementation here presented is strictly related to a
quite standard approach as far as the parameterisation of
the shell is concerned [Brank, Briseghella, Tonello and
Damjanic (1998); Brank, Mamouri and |brahimbegovi
(2003)]. The present approach is closed to these works
especially as regards:

¢ the kinematics of the shell and in particular the de-
scription of the finite rotationsand their updating in
the discrete time system;

e the definition of the elastic constitutive model
adopted as basis for the definition of the elasto-
damage congtitutive model;

¢ the general approach in the definition of the weak
form, its discretisation and linearisation method.
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On the contrary, the method is modified as regards the
choice of the constitutivemodel. Thisfact has some con-
sequencesin terms of:

e definition of the internal forces and dissipation;

e method for the evaluation of the conservative algo-
rithmic forms of the | atter;

e specific aspects in the application of the Newton
method adopted for the linearisation of the weak
form.

The constitutive model adopted is chosen only to have
an internal dissipation and it is not assumed to de-
scribe any real material behaviour. Hence the simplic-
ity of the model has been favoured. The elasto-damage
model is obtained starting from the definition of the De
Saint Venant-Kirchhoff elastic model coupling the re-
lated stored energy function with a scalar damage func-
tion. The resulting constitutive model is similar to those
proposed for the description of elastomeric materials,
where the fraction of damage depends on the maximum
value attained by an equivaent strain measure in the
strain history of the material [Simo (1987)].

The space discretisation is made by using isoparamet-
ric four noded elements, in order to preserve the con-
servative character of the algorithm. Possible shear lock-
ing problems, arising in case of thin shells, are avoided
through the adoption of the ‘assumed natural strain’
(ANS) approach [Dvorkin and Bathe (1984); Baar and
Kintzel (2003)]. The weak form of the balance of
momentum is linearised by using the Newton-Raphson
method leading to a second order scheme. Some details
on the calculation of the internal forces term of the weak
form are given, together with the procedure adopted in
order to get the algorithmic forms of stress and dissipa
tion that lead to the conservative character of the time
integration scheme.

Finally, the examples here reported show the properties
of the time integration scheme adopted in terms of fulfil-
ment of the balance laws of the linear and angular mo-
mentum, as well as of the discrete form of the Clausius-
Duhem inequality, emphasizing the convergence proper-
ties.

2 Kinematics of shell

The reference configuration of the shell is defined by the
Q C R3. Themotion isthe set of configurations given by
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¢ (Q,t) : R®x [0,T] — R3where[0,T] isthetimeinterval
of interest.

A pointinthereference configuration of the shell isgiven
by:

X (€4,8%,8) =X (€1,8%) +&T (1)
where X is a point belonging to the mid surface of the
shell. The unit vector T is normal to the mid surface at
the point X.

Figure 1 : Reference system of co-ordinate of the mid
plane of the shell.

The adopted system of co-ordinates &2, &2, € is defined
with &2, &2 lying on the mid surfaceand &, along T. The
variable & assumes the values § € [—h/2,+h/2] where
h is the thickness of the shell. The points of the current,
or deformed, configuration of the shell are defined by
X (£,8%,8) = x (8, &) + &t )
witht the unit vector. The unit vectors T andt are called
the inextensible directors of the shell. A simple repre-
sentation of the co-ordinate system in the reference con-
figuration is shown in Figure 1. The displacements of a
generic point of the shell U and of a point belonging to
itsmid surface u are defined as

U=X-X, u=x—X ®)
Adopting a lagrangian description [Suetake, lura and
Atluri (2001)] of the shell kinematics, the strains are de-

scribed in terms of the Green-Lagrange tensor, defined
by

E=>(60;—Gi-G)G®G  (i=123 (4

NI
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Theterms G; and g; are the covariant components, while
G' are the contravariant components (dual basis of Gj)
of the metric in the material and, respectively, the spatial
reference systems. The covariant basisin the undeformed
configuration is defined as

Gq =0X/0E", G3=0X/0¢

(@=1,2) ©®)

whilein the current reference systems one has

Qo = OX/0E%, g3 =0X/0E (a0=12) (6)
According to the assumption made with the choice of
the parameterisation represented by eq. (1) if the thick-
ness h of the shell is small the components of the Green-
Lagrange strain tensor are such that one obtains
With the assumption of a thin shell the terms of the sec-
ond order in & can be neglected, while with relations (4),
(5) and (6) at hands one abtains

E —EQ = % [0X /8% - (t—T)+0u/og®-t] (8

ELS = = [9X/0E% o/ 9EP

+0X /9% - 0u/9E™ +du, OE® - Au /EP |

NI

(9)

Y — % [ox j0ge ot~ T)/0g"
+0X /0EP.a(t—T) /08

+0u/0E% - 9t /9EP +ou/agP - ot /g (10)

Moreover the component E33 vanishes. Further assump-
tions are introduced in order to simplify the formulation
of the shell structure. Covariant and contravariant com-
ponentsin the reference configuration, are approximated
by their values in the mid plane of the shell Mg
Ai=Gilg_y A'=G o (=123 (11)
Thismakesit possibleto integrate the stress components
through the thickness of the shell obtaining stress re-
sultants. All the details about the indicated procedure

275

can be found in [Brank, Briseghella, Tonello and Dam-
janic (1998)]. The strain components can be identified as
membrane, transverse shear and bending components

0) (0 017
€= [Eil)v Eéz)v 2E£2)} (12)
0 ~017
y= [2E£3), Eés)} (13)
D £ H=@]7

The inextensible directors of the shell mid-surfacein the
reference and current configurations are related through
an orthogonal tensor, element of the not-commutative
space of rotations SO(3):

t=RT, ReS0(3)={R:RT=R ' detR=1}
(15)

Every orthogonal tensor represents a finite rotation

around a vector s (the axis of rotation). A skew-
symmetric tensor S
Ses(3)={S S =-5} (16)

can be associated to the vector s (which is called axial
of S). The set so(3) is the space of infinitesimal rotations.
The skew-symmetric tensor Sisdefined by the properties
Ss=0and Sb =sx b, fulfilled for any vector b. Theten-
sors S give the rotation tensor R through the exponential

map

R=exp[§ =1+ (sin|s||/lIs|)S
2l @ (17)
+[(@—cos|isl) /IIsI?] s
The main characteristic of the representation of R tensor
through the exponential map (called also Rodrigues’ for-
mula) isto result free from any singularity. Thisispartic-
ularly important if the system to be described undergoes
large rotations (which is the case here considered). The
velocity of a point of the shell mid plane (derivative with
respect to time of x) will beindicated by x and the angu-
lar velocity of the director t will result @ =t x t.
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3 Constitutive mode

The choice of the constitutivemodel is here motivated in
order to obtain a material with internal dissipation. The
definition of an elasto-damage model such as the one
here presented has the advantage to lead to simple ex-
pressions of the internal forces as well as of the terms
arising from the linearisation of the weak form. The
elasto-damage constitutivemodel is defined startingfrom
the elastic De Saint Venant-Kirchhoff constitutivemodel.
The stored energy function is coupled in multiplicative
way with ascalar damage function defining the Helmoltz
free-energy function.

3.1 Elastic constitutive model

For the dastic De Saint Venant-Kirchhoff constitutive
model the relation between the second Piola-Kirchhoff
stress tensor and the Green-Lagrange strain tensor is
given by

S=H:E = Atr [E]| +2uE (18)
where A and [ are the Lamé's elatic constants. In terms
of components one has

HiK — \GiigK +u(Giijl _|_GiIij> (19)
Following the standard procedurein the case of thinshell,
the stress component along the normal direction to the

mid plane of the shell itself is assumed to be zero and a
reduced material tensor can be deduced from eg. (19)

33kl
Cijkl _ Hijkl _

(ij # 33,k + 33) (20)

3333
According to the approximation assumed for the com-
ponents of the metric, the terms of the reduced four rank
tensor (20) are constant through the thicknessof the shell,
thus the membrane, transverse shear and bending resul-

tant stresses are defined as
n=n"A;®Ap (21)

q=n"CAT+n¥TRA; (22)

m=m"®A, ®Ap (23)
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where the scalar components are given by
+h/2
ni — / CUMEO g | ]33, ki #33
—h/2

(24)

+hf2
P — [ CIEY (8)? e

“h/2

(25)

On the basisof the simplificationsassumed the stored en-
ergy function associated to the constitutive relation (18)
results as the sum of three terms relating respectively
to the membrane, transverse shear and bending com-
ponents of the strain, which are not coupled. Adopt-
ing a matrix notation, the vector of the stress resultants
rT =[nT,q",m"]can be deduced from
ow(r)

=5 (26)

where the stored energy function is a quadratic form of
thestrainvector '™ = [e7,y" k']

1 ch 0 o
W(r):irT 0o ci o |T (27)
o o0 cm

More details about the terms of the above matrix are
given in appendix.

3.2 Elasto-damage constitutive model

Starting from the elastic model defined in the previous
section, in particular with the stored energy function (27)
at hand, the Helmoltz free energy functionisdefined as:

W =g(E)W() (28)
where g is a not-growing damage function and W is the
stored energy function of an undamaged material. The g
function can be defined, for example, by
9(=) =b+a(1-b) (1-e ) /= (29)
where the constants a, b can assume the values
a€]0,+o0) and b e [0,1] respectively. For anull value
of = thegfunctionisequal to unit (undamaged material).
For increasing values of = the g function is decreasing to
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the limit value of b if = — c. Hence the parameter b is
related to the maximum damage, while a affects the rate
of the damage growing with =. In the formulation here
assumed the variable = represents an equivalent strain
measure, based on the value of the stored energy func-
tion W of the material supposed undamaged. The equiv-
alent strain is defined as the maximum value attained in
the strain history of the material:

== max /2W (I (1)) (30)
Te(—oo ]

The Clausius-Duhem inequality

—W4r'Tr=Dix >0 (31)

on the basis of the free energy function assumed leads to
the expressions of the generalised stress resultants (com-
ponents of the vector r)

n=g(Z)C"%, q=9g(3)C%, m=g(=)C"k (32

and of the internal dissipation

D = WM dg(E)

.
= d= [M (33)

- > 0.
e

The internal dissipation results not negative because of
the assumption of a not growing damage function g. It
is possible to define a damage surface by means of the
equation

(34)

the surface ¢ gives the admissible values of the variables
I and = that must satisfy the following inequality

(35)

The previous inequality represents the damage criterion
that can be re-assumed by the set of relations

{ 9(3) <0
g(=) =0

The set of relations (36) means that the growing of dam-
age occurs for a loading path starting from the damage
surface.

for @=0and [9g/ar]"F >0

36
otherwise (36)
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4 Balance equations
The following relation gives the total linear momentum
of the system:

:/po (x+&f)dQ 37)
Q

where pg isthe density in the reference configuration and
the symbol @ is used to indicate an element of the phase
space represented by the pairs (x, t). Integration through
the thickness of the shell enablesoneto rewrite the equa
tion (37) as

= /deo
Mo

where the vector p is the linear momentum of the mid
surface of the shell resulting from:

(38)

P = pohX (39)

With a similar procedure the total angular momentum of
the shell

I(®®) = [ polx+50) x (x+&i)do (40)
isobtained in the alternative form
1(®0) :/(xxp+txn)dMo (41)

Mo

The vector Ttiscalled director momentum. A comparison
of the previous equations gives

h3.
Finally the kinetic and internal energy of the system are
given by
h3
2/ (pohx x+po—t t) dMg (43)
Vi = [ 9(2)W(F)dMo (*4)
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The basic laws of the continuum for a pure initial value
problem, i.e. if the absence of external loading is sup-
posed, are the conservation of the total linear momentum
L and the total angular momentum J of the system

L (@) /dt =

In additionthe balance of energy must fulfil the following
inequality

0 dJ(d)/dt= (45)

d[K( )—i-th

)] /dt =

If the presence of a conservative loading is admitted the
related term of potential must beincluded in the previous
inequality

d
gL

Dint >0 (46)

K (@) + Vint (®) + Vest (®)] = Dine >0 (47)
The weak form of the balance of momentum of the shell

can be written as

Gayn (@, P, 3P) = Gine (P, 50)

+ Gaar (®,5P) — Gog (48)

(6®)

in which the terms relating to the inertial forces, to the
internal forces and to the external loading are given re-
spectively by

Gine (. 50) :/(p-6u+ﬁ-6t)dMo (49)
Mo

Ggat (P, 0P) :/(n:6£+q:6y+m:6k) dMgp (50)
Mo

Gec (50) = —Veq (50) (51)

Equation (48) is completed by the initial conditionsim-
posed on ®:

(X7t)‘t:0 = (XvT) (p7 (52)

1[0 = (Po. Th)
The admissible variation of the elements of the phase
space is obtained as directional derivative of @». The
variations ot are tangent to the mid plane of the shell.
Because of the inextensible character of t, its variation
satisfies the properties &t - t = 0, resulting tangent to the
unit sphere defined by t itself.
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The substitutionin the weak form of particular test func-
tionsmakesit possibleto obtain the basic laws of balance
represented by (45), (46) and (47). It is expected that a
finite element formulation arising from the discretisation
in time and space of the weak form let the balance laws
to be fulfilled. This is what results from the procedure
explained partialy in the next sections.

5 Timeintegration scheme

In the present section some details about the application
of the time integration scheme are presented. The total
time interval of interest isdivided in sub-intervals:

[07 T] = UrI\llzo [tnvtn+l] (53)
Let the configuration (displacement and velocity fields)
of the system at time t, is known. The problem of the
integration in time is the evaluation of the unknown con-
figuration of the system at time t,, ;1. The value of dis-
placements and velocities in a generic intermediate time
step of the interval [ty, th.1] iS given as linear combina
tion of thevaluesat thetimeinstantst, andt, 1. Themid
time configuration can be written as

(o =3 (%0 (D (54)
(BT, 30 = 5 (070, + (0.0 (55)

Defining the amplitude of the generic time step At =

thi1 — th, the components of (3.3) are given asfollows
X
Pnr1je = App—F7— n+l (56)
ther —t
T 12 = oo (57)

With the equations (56) to (59) at hand, the weak form
of the balance can be discretised in time and evaluated in
the mid configuration of the time step

At f [Ou- (Pnt1—Pn) + 0t - (Thy1 — )] dMg

(58)
—|—Gs[31 (¢n+1/2, 6¢’) Gext (6¢’) 0
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The previous relation is obtained by using the following
expressionsof therate of p and Ttin the mid configuration

Pn+1—Pn

Pni1j2 = AT (59)
. Thi1—Th
Thy12 = HT (60)

The evaluation of the static term related to the internal
force is of crucial importance to obtain the conservative
character of the time integration scheme. The variation
of the Green-Lagrange strain tensor is evaluated in the
mid configuration giving:

Gaat (Pn, Pni1,0P) = [ (N:3€n;1/20:OYnr1/2
Mo (62)
—|—m:6Kn+1/2) dMg

The components of generalised stressesn, ¢, m are eval-
uated by means of a particular algorithmic form that is
explained in what follows. To ensure the properties of
conservation of the time integration scheme the gener-
alised form of stressis computed by means of a particu-
lar agorithmic form. Thismakes it possibleto fulfil the
Clausius-Duhem inequality. It can be shown that assum-
ing a linear elastic constitutive model the conservative
algorithmic generalised components of stress are given

by:

o e SO CA

(62)

(63)

o Lo (), (<8)

o 1 apys 1 €y
f? =500 (83) ..+ (53, (64
In case of non-linear elastic or dissipative constitutive
models the algorithmic forms of the stress components
are obtained as follows. The mean value theorem is ap-
plied to the variation of the Helmoltz free-energy func-
tion (30) in the generic time step:

(65)

oW’
] : [rn+1 - rn-s—l]

Wi —Wh= [a—r

n+B
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The comparison of the previous equation with the dis-
crete (in time) form of the Clausius-Duhem inequality
enables one to define the algorithmic forms of the gener-
alised components of stress and dissi pation:

ow
[nqu m]T = |:g—:| (66)
or n+B
- 1] ag]’
ADlnr.,‘tn+1 - _5 [Wa_?] nep : [rn+1 - rn+1] (67)

The method can be modified in order to ensure a
guadratic convergence of the scheme with At. This pro-
cedure is based on the property of the function

1

5 (qJn+B - qJn-s—l—[}) (68)
that enables to apply the mean value theorem as
1[ /0w o !
Yo («a—r)w+ (a—r>n+l_J
SUNE ) VS (69)

This procedure leads to the alternative algorithmic forms

ow
— 70
or ) n+1—[3] ( )

T
)
n+l—B

Notethat egns. (70), (71) and (72), (73) are equivalent as
regardsthe properties of conservation in terms of energy.
The scalar parameter 3 defines in practice the conserva
tive configuration and is deduced as solution of the fol-
lowing non linear equation (with reference to eg. (71)):

(300G,
2 or n+B or n+1-B

Pn1—Tnya] =0 (72)

T 1

S TPA T,
2garn+B 9

n,q,m]

i 1 0g
ADM == (W—) +<w
i 2 or /g

USSRl ¥R (71)

h(B) = q"n-s—l— Wh —

The evaluation of the solution of eq. (74) is performed
at each time step at the Gauss point level. If the Hel-
moltz free-energy function isregular and if convexity is
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ensured, the solution can be obtained by means of the ap-
plication of the Newton scheme. The procedure requires
the derivation of the function h, hence the definition of
the second order derivative of the Helmoltz free-energy
function with respect to the strain:

2 )] i 257
+2g,(§) [av\(;ﬁr)]T [av\(;ﬁr)] (73)
and the second order derivative of the damage function
g:
280 (¢-4) 0] [0
+gé [a\’\éﬁr)r [av\(;ﬁr)] (74)

where the terms g’ and g”represent the derivative of the
function g with respect to the equivaent strain =. The
lack of convexity requires sometimes the adoption of an
alternative method for the solution of the equation in-
stead of the Newton method. All the previous relations
make it possible to write the semi-discrete form of the
balance

Pnt1—Pn O
0 Thy1 — Ty

+ Mf rT (Bm_l/zéq)) dMg
0

A [ o0T dMo
Mo

(75)

The symbol r T in the second term of the previous equa-
tion represents the conservative algorithmic form of gen-
eralised stress, given by the relation (66) or (70). The
evaluation of its componentsis made taking into account
the values of the generalised stresses at timet, and t,, 1.
Thelatter are very simpleto befound by virtue of the par-
ticular definition of the Helmoltz free-energy function,
resultingin:

ne=9g(Z) Ce; (t =tn,thr1) (76)
G =9(Z) ChW (t=tntns1) (77)
mi=4dg (Et) CmKt (t = tn,tn+1) (78)
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Finally thematrix By, 1/, isthe strain operator that allows
one to aobtain the variation of the strain components on
the basis of the variation of configuration 3T = [3u, &t].
The matrix B can be split pointing out membrane, trans-
verse and bending components

By =BY, 1,00 (80)

The configuration of the strain operator is simply given
by alinear interpolation of the same operators evaluated
a thetimet, and tp 1.
g0 _1rg0 g0 8
n+1/2_§[ n+ n+1} (82)
More details about the terms of the strain operator B are
given in appendix. Note how the semi-discrete weak
form (75) is depending only on the unknown configura-
tion®, 1 at the current time.

6 Spacediscretisation

The basic aspect of the discretisation in space is here
explained. In what follows the indexes relating to time
are omitted for simplicity. Isoparametric four noded el-
ements are adopted. The positionsin the reference con-
figuration and in the current configuration of a point be-
longing to the mid plane of a generic element are given

by

4
X (&H&%) |, = I;N' (E4,€9) X, (83)

4
x(&4,8%) |o = I;N' (8".8%)x (84)

where N' (£1,€2) are the usual bi-linear shape functions
with (£1,&2) € [-1,+1] x [-1,+1]. Inasimilar way, the
fieldsof thedirector of the shell and of the displacements,
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as wells as of the linear and angular momentum is given
by the formulas:

4
— 3N (g%,82
Q I; (&8

(85)

4
o= N' (g5 &)t 86
) o I; (&.&%) (86)
In order to avoid a possible ‘locking’ given by the thin
thickness of the shell elements the ANS method is here
adopted. The field of transverse shear strainsis assumed
as varying linearly from the opposite edges of a generic
element. In the mid point of every edge the shear strain
componentsis given by

_ 1
2EY = 2( ~2) 260 (1) 26 (8)
=0 _ 1 1 0B

2By = 5( &) 285" + 5 > (1+82) 265 (88)

The points of the mid surface x with L = A B,C,D are

given by the following expressions
T 1 210

X" = EX (EM ,EM) + EX (EN,EN) (89)

being (L,M,N) € {(A/1,2),(B,2,3),(C,3,4),(D,1,4)}.

Finally, the interpolations of the necessary terms of the

discretisation in space of the semi-discrete weak form,
are given by:

4 4
dulg = ¥ N'8u;, dt|lg =S N'at (90)
° Izl ° I;
au 2 oN! ot 2 aN'
Z aEa | ) aEa Z aEa (91)
66u 4 oN! 00t 4 oN!
Z Wé () OEO‘ Z Wétl (92)

Withthe previousrelationsat hand, the full discrete weak
form of the balance of momentum can be obtained by the
(75).
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7 Linearisation aspects

The full discrete form of the weak form of the balance
of momentum consists of a system of equations which
has nodal displacements and rotations (evaluated at the
current time t, ;1) as unknown terms. The solution of
the system is found by means of the application of the
Newton-Raphson method. Hence the directional deriva-
tive

D Gin <¢n7¢n7¢§1+17 6¢> Aq)gj-l = _Ggi)n (93)

must be evaluated in order to improve the trial solution
until a specified norm results below the specified toler-
ance. The derivative leads to three terms usually known
asinertial, material and geometric indicated by Dp, Dy
and Dg respectively.

20,
(At)ozAtrH-l

1
Bt + A—t(m+1—m)-A(6t)] dQe,

Aun+1-6u

Nelem
DpGuin - A®ni1 = U /[

(94)
Nelem
DeGain- A®n1 = | J / - [D(5E)-A®y.1] dQe
el
Nelem
- U /r.{%[D(BH+1)-A¢n+1] 5P
e=1 Qe
+ Bpi12D (3P) -AD,1}dQe  (95)
Nelem
DmGin-A®ny1= | /(Bn+1/25¢‘)
e=1 Qe
(DI‘ 'Aq)rH_l) dQe (96)

Onthe basisof the Helmoltz free-energy function defined
in section 3 the derivative of the internal forces in the
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previous term gives the following expression

Dr = % [Bog (Zn+po) + (1= Bo) 9 (Zns+1-po)]

- CBpy1A®p 1

1 1g 9Cnep) [awm]T [aw<r>]
2 Zn+Bo or n+Bo or n+B

1 JJE=EEE

‘Bni1A®ni1+ > (1—Po) w
OW(F)]T [OW(F)]

. — Bri1A®p. 1
|: ar n+l—Bo ar n+l—Bo " "

(97)

where the coefficient By is the value ensuring the con-
servative character of the algorithmic internal stresses, as
previously explained.
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300
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Figure 2 : Initial configuration of the arch and loading
history.

8 Examples

The following examples show the main properties of the
algorithmin terms of fulfilment of the balance laws, both
asregard momentaand energy of the system. Attentionis
also focused on the convergence property of the scheme,
resulting of the second order by a consistent linearisation
of the vector of internal forces.
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Figure 3 : Deformation sequence of the arch.
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Figure4: Time history of energies (normalised values).
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8.1 Dynamicsof an arch

The thin arch represented in Figure 2 is subjected to an
impulse by means of the application of an initial loading.
The arch ishinged along the lines indicated asn— n and
m— m respectively. The elasto-damage model presented
in section 3 isassumed. The density isset to be 1x10 5.
The constants of Lamé are A = 28.6 e u= 7.2, while the
parameters of the damage functionarea=1e b= 0.3.
The thickness of the arch is set to be 2 while the other
dimensionsare indicated in Figure 2.

Under the effects of theinitial loading the arch oscillates
as depicted in the Figure 3 for the first oscillation. The
time history of thekinetic, internal and dissipated energy
isreported in the chart of Figure 4 together with the total
energy, again for the first oscillation of the system. The
total energy is here intended as the sum of the energy of
the system, i.e. kinetic and free energy, plus the dissi-
pated energy. The total energy increasesin thefirst steps
of the motion by virtue of the work of the external forces
applied. After the external forces disappear, the total en-
ergy of the system is constant, while the amount of dis-
sipated energy increases together with the amount of the
deformation of the structure. The conservative configura-
tions of the internal forces and dissipation have been cal-
culated by means of equations(70) and (71). The param-
eter 3 that defines this configuration is usually closed to
0.2 or 0.8. Thisfact is helpful in the application of the
Newton method adopted for the evaluation of the solu-
tions of equation h(B) = 0. The existence of a double
solution is due to the symmetry of the function h. The
use of the expressions (66) and (67) instead of (70) and
(72) will give a unique solution.

8.2 Dynamicsof aring

The free ring described in Figure 5 is subjected to four
nodal forceswithatriangularimpulse. Theforcesare ap-
pliedin the four pointsindicated as A 1,A2,A3,A4. Again
an elasto-damage constitutive model is adopted. The
Young's modulus is set to be 2.0x107 and the Poisson
ratio is 0.45. A density of 0.05 is assumed. The scalar
damage function is defined setting the constants a as 20
andbas0.3.

The motion of the ring after the initial |oading disappears
is characterised by the conservation of the total momen-
tum as well as of the conservation of the angular mo-
mentum. Thetime history of the latter is described in the

283

Nodal loads
AlaAZ [09_F9 _F]
A33A4 [F7 F? F]

0.15 0.25 !
Figure5: Time history of loading on the ring structure.
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Figure 6 : Angular momentum time history.
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chart of the Figure 6 for the three components relating to
the co-ordinate system X,y,z. The behaviour of energy is
similar to that obtained in the previous example. Here,
however, the strains attained by the structure are quite
small and the consequent dissipated energy is shown in
the chart of Figure 7, sinceitsvalue islargely lower than
the amounts of kinetic and internal energies. Anyway,
the presence of a non-linearity in the constitutive model
enforces to adopt the conservative algorithmic form (70)
and (71) in order to preserve exactly the respect of the
balance of the energies of the system. The behaviour of
the kinetic and internal energy and their sum with the
dissipated part isfinally shown in Figure 8.

0.0036

I e T e
00024 - - - - e T
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,,,,,,,,,,,,,,,,,,,,,,,,

0.0012 + - -

00006 1 -~ fi- ~ ~i - - - - P

0

0 025 05 075 1 126 15 175 2 225 25

Figure 7 : Time history of dissipated energy.

0 025 05 0.75 1 1.25 1.5 175 2 225 25

Figure 8 : Kinetic, free and total energy time history.

The properties of convergence can be evaluated in Table
1. Here the euclidean norm of the residuals is reported
for some time steps. The use of a consistent linearisation
of the weak form leads to a second order convergence.
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Table 1: Residual euclidean norm for different time steps

n step 3 step 19 step 29 step 50
iter
1 | 2.66E+00 | 1.46E+00 | 3.36E+00 | 2.09E+00
2 | 6.04E-01 | 4.97E-01 | 6.61E-01 | 4.82E-01
3 | 455E-03 | 2.64E-03 | 4.50E-03 | 1.37E-03
4 | 6.30E-08 | 1.71E-08 | 5.24E-08 | 3.88E-09
5 | 6.84E-12 | 1.57E-13 | 6.59E-13 | 2.57E-13

9 Conclusions

Some aspects of the implementation of the energy-
momentum method in the non-linear dynamics of thin
shells have been presented. A simple scalar elasto-
damage constitutive model has been assumed, making
it possible to evaluate the conservative characteristics of
the time integration algorithm if applied to system with
internal dissipation. The stability of the time integration
scheme arising from the particular choice of algorithmic
forms of the stresses and internal dissipation must be in-
tended as the fulfilment of the discrete form in time of
the Clausius-Duhem inequality. Although the constitu-
tive model here adopted is not related to the behaviour of
an actual material it can be modified in suitable way in
order to describe the dynamics of real structures made of
materials with internal dissipation and undergoing large
deformations.
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Appendix

The terms of thematrix of the stored energy function (27)
are given by

End _

Eh
12(1—\)2)C

1—-v2

c= C Ci=xGhC C"=

where the matrix C and C are given respectively by

— A12
o= . 2

All
symm.
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and
AllAll VAZZAll 4 (l _ V) A12Al2
6 — AZZ AZZ
Ssymm.
All AlZ
AZZ AlZ

1-vAlLAL2 | 14V AI2 712
SUALLALZ | LV A2

Here h is the thickness of the shell. The coefficients E,
G, v, are the Young's modulus, the shear modulus and
the Poisson’sratio. Finally X represents the shear factor.
The expressions of the strain operators used in (79), (80)
and (81) are given by
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