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A Buckling and Postbuckling Analysis of Rods Under End Torque and
Compressive Load

Wen Yi Lin1 and Kuo Mo Hsiao2

Abstract: The buckling and postbuckling behavior of
spatial rods under different types of end torque and
compressive axial force is investigated using finite ele-
ment method. All coupling among bending, twisting,
and stretching deformations for beam element is con-
sidered by consistent second-order linearization of the
fully geometrically nonlinear beam theory. However,
the third order term of the twist rate is also considered.
An incremental-iterative method based on the Newton-
Raphson method combined with constant arc length of
incremental displacement vector is employed for the so-
lution of nonlinear equilibrium equations. The zero value
of the tangent stiffness matrix determinant of the struc-
ture is used as the criterion of the buckling state. Numer-
ical examples are presented to investigate the effect of as-
pect ratio of the rectangular cross section and compres-
sive force on the buckling torque and postbuckling be-
havior of spatial rods under different types of end torque.

keyword: Torsion, Buckling, Postbuckling, Beam, Ge-
ometrical nonlinearity.

1 Introduction

A rod under the action of torque may exhibit a buck-
ling behavior [Brush and Almroth (1975)]. The nature
of a torque depends on the mechanism that generates the
torque. Different ways for generating configuration de-
pendent torque were proposed in the literature [Ziegler
(1977); Argyris, Dunne, and Scharpf (1978); Iura and
Atluri (1988); Teh and Clarke (1997); Hsiao, Yang and
Lin (1998)]. The buckling analysis of spatial rods under
end torques was first studied by Greenhill (1883), and
followed by [Ziegler (1952); Beck (1955); Yang and Kuo
(1991); Goto, Li, and Kasugal (1996)]. Except [Goto,
Li, and Kasugal (1996)], all of these researches are lin-
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ear buckling analysis. A limitation of the linear buck-
ling analysis has been the omission of any consideration
of the effect of prebuckling deflections of the beam. In
many cases, however, the effect of the prebuckling de-
flections must be taken into account if the buckling load
is to be determined with accuracy [Brush and Almroth
(1975)]. Moreover, the linear buckling analysis gives
no information about the shape of the secondary path.
Sometimes the behavior of a structure can be understood
only if the shape of the secondary path is known. In
[Goto, Li, and Kasugal (1996)], the prebuckling torsional
deformation was considered for the buckling analysis of
spatial rods under end torsional moment. The rods con-
sidered are clamped at one end and are free to translate
along the axis of the rod and rotate about the axis of the
rod at another end. Numerical results for rods with rect-
angular cross section were given in [Goto, Li, and Ka-
sugal (1996)]. It was observed that except the rod with
square cross section, the discrepancy between the buck-
ling moments corresponding to the linear buckling anal-
ysis and the nonlinear buckling analysis was remarked.
However, the axial deformation due to twist, which is
proportional to the square of the twist rate, was not con-
sidered in [Goto, Li, and Kasugal (1996)]. Timoshenko
(1956) mentioned that owing to this axial deformation,
there is an additional resistance of the shaft to torsion
proportional to the cube of the twist rate. In the case of a
very narrow rectangular cross section and comparatively
large twist rate, the additional resistance corresponding
to the cube of the twist rate may contribute an important
portion of the total torque [Timoshenko (1956); Gregory
(1960); Hsiao and Lin (2000)]. Moreover, due to the ro-
tational boundary conditions used in [Goto, Li, and Ka-
sugal (1996)], the ways of generating end moment are
rendered irrelevant. When the rods are clamped at one
end and free at another end, the buckling and postbuck-
ling behavior of rods under different types of end torque
may be different. However, little information in the liter-
ature is available, especially when the axial compressive
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load is also considered.

The objective of the present paper is to investigate the
buckling and postbuckling behavior of rods under differ-
ent types of end torque and the axial force using finite
element method. Many different finite formulations and
numerical procedures for the buckling and postbuckling
analysis of three-dimensional beams have been proposed
[Argyris, Dunne, and Scharpf (1978); Attard (1986);
Simo and Vu-Quoc (1986); Crisfield (1990); Izzuddin
and Smith (1996); Teh and Clarke (1998); Hsiao, and
Lin (2000); Atluri, Iura and Vasudevan (2001); Ijima K.,
Obiya H., Iguchi S., and Goto S. (2003)]. In general, the
zero value of the tangent stiffness matrix determinant of
the structure is used as the criterion of the buckling state.
However, not all the tangent stiffness matrices given in
the literature can be used in detecting buckling state of
rods under different types of end torque and the axial
force. Hsiao and Lin (2000) presented a consistent co-
rotational total Lagrangian finite element formulation for
the geometrical nonlinear analysis of three-dimensional
elastic Euler beam. All coupling among bending, twist-
ing, and stretching deformations for beam element was
considered by consistent second-order linearization of
the fully geometrically nonlinear beam theory. However,
the third order term of the twist rate of the beam axis is
also considered in the element nodal forces. The method
is proven very effective for geometrical nonlinear analy-
sis of three-dimensional elastic Euler beam by numerical
examples studied by [Hsiao and Lin (2000)]. Thus, the
formulation of beam element proposed in [Hsiao and Lin
(2000)] is employed in this study.

An incremental-iterative method based on the Newton-
Raphson method combined with constant arc length of
incremental displacement vector is employed for the so-
lution of nonlinear equilibrium equations. The zero value
of the tangent stiffness matrix determinant of the struc-
ture is used as the criterion of the buckling state. Numer-
ical examples are presented to investigate the effect of as-
pect ratio of the rectangular cross section and compres-
sive force on the buckling torque and postbuckling be-
havior of spatial rods under different types of end torque.

2 Finite element formulation

In the following only a brief description of the beam el-
ement is given. The more detailed description may be
obtained from [Hsiao (1992); Hsiao and Lin (2000)].

2.1 Basic assumptions

The following assumptions are made in derivation of the
beam element behavior.

1. The beam is doubly symmetric, uniform and slen-
der, and the Euler-Bernoulli hypothesis is valid.

2. The unit extension and the twist rate of the centroid
axis of the beam element are uniform.

3. The cross section of the beam element does not de-
form in its own plane and strains within this cross
section can be neglected.

A beam of monosymmetric or unsymmetric sections, ex-
cept that of Z-section, subjected to pure torque generates
not only twisting but also bending in two principal planes
[Gregory (1960)]. Thus only the beam of doubly sym-
metric sections is considered here.

2.2 Coordinate systems

In this paper, a co-rotational total Lagrangian formula-
tion is adopted. In order to describe the system, we define
four sets of right handed rectangular Cartesian coordinate
systems:

1. A fixed global set of coordinates, X G
i (i = 1, 2, 3)

(see Fig. 1); the nodal coordinates, displacements,
and rotations, and the stiffness matrix of the system
are defined in this coordinates.

2. Element cross section coordinates, xS
i (i = 1, 2, 3)

(see Fig. 1); a set of element cross section coor-
dinates is associated with each cross section of the
beam element. The origin of this coordinate system
is rigidly tied to the centroid of the cross section.
The xS

1 axes are chosen to coincide with the normal
of the unwarpped cross section and the xS

2 and xS
3

axes are chosen to be the principal directions of the
cross section.

3. Element coordinates; xi (i = 1, 2, 3) (see Fig. 1),
a set of element coordinates is associated with each
element, which is constructed at the current config-
uration of the beam element. The origin of this co-
ordinate system is located at node 1. The x1 axis
is chosen to pass through two end nodes of the ele-
ment; the x2 and x3 axes are chosen to be the princi-
pal directions of the cross section at the undeformed
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Figure 1 : Coordinate systems

state. The deformations, internal nodal forces and
stiffness matrix of the elements are defined in terms
of these coordinates.

4. Load base coordinates, X P
i (i = 1, 2, 3); a set of

load base coordinates is associated with each con-
figuration dependent moment. The origin of this
coordinate system is chosen to be the node where
the configuration dependent moment is applied. The
mechanism for generating configuration dependent
moment is described in these coordinates.

2.3 Rotation vector

For convenience of the later discussion, the term ’rotation
vector’ is used to represent a finite rotation. Figure 2
shows that a vector b, which as a result of the application
of a rotation vector φa is transported to the new position
b. The relation between b and b may be expressed as
[Goldstein (1980)]

b = cosφb+(1−cos φ)(a ·b)a+ sinφ(a×b) (1)

where φ is the angle of rotation about the axis of rotation,
and a is the unit vector along the axis of rotation.

 

Figure 2 : Rotation vector.

2.4 Kinematics of beam element

The deformations of the beam element are described in
the current element coordinate system. Let Q (Fig. 1) be
an arbitrary point in the beam element, and P be the point
corresponding to Q on the shear center axis. The position
vector of point Q in the undeformed and deformed con-
figurations may be expressed as

r0 = xe1 +ye2 + ze3, (2)

r = xc(x)e1 +v(x)e2 +w(x)e3

+θ1,xω(y, z)eS
1 +yeS

2 + zeS
3

, (3)

where xc(x), v(x),and w(x) are the x1, x2 and x3 coordi-
nates of point P, respectively, in the deformed configura-
tion, θ1,x is the twist rate of the shear center axis, ω(y, z)
is the Saint Venant warping function for a prismatic beam
of the same cross section, and ei and eS

i (i = 1, 2, 3) de-
note the unit vectors associated with the x i and xS

i axes,
respectively. Note that ei and eS

i are coincident in the un-
deformed state. Here, the triad eS

i in the deformed state
is assumed to be achieved by the successive application
of the following two rotation vectors to the triad e i:

θθθn = θn{0, θ2
/
(θ2

2+θ2
3)

1/2, θ3
/
(θ2

2+θ2
3)

1/2}= θnn (4)

θθθt = θ1{(1−θ2
2 −θ2

3)
1/2, θ3, −θ2} = θ1t (5)



262 Copyright c© 2003 Tech Science Press CMES, vol.4, no.2, pp.259-271, 2003

where

θ2 = −dw(x)
ds

= −dw(x)
dx

dx
ds

= − w′

1+εc
,

θ3 =
dv(x)

ds
=

dv(x)
dx

dx
ds

=
v′

1+εc
(6)

εc =
∂s
∂x

−1 (7)

in which n is the unit vector perpendicular to the vectors
e1 and eS

1, and t is the tangent unit vector of the deformed
shear center axis of the beam element. θ1is the rotation
about vector t · θn is the angle measured from x1 axis to
vector t, εc is the unit extension of the shear center axis
and s is the arc length of the deformed shear center axis
measured from node 1 to point P.

Using Eqs 1-5, the relation between the vectors e i and
eS

i (i = 1, 2, 3) in the element coordinate system may be
obtained as [Hsiao (1992)]

eS
i = Rei (8)

where R is the so-called rotation matrix. The rotation
matrix is determined byθi (i = 1, 2, 3). Thus, θi are called
rotation parameters in this study.

The relationship among xc(x), v(x), w(x), and s may be
given as

xc(x) = u1 +
∫ x

0
[(1+εc)2 −v2

,x −w2
,x]

1/2dx (9)

where u1 is the displacement of node 1 in the x1 direction.
Note that due to the definition of the element coordinate
system, the value of u1 is equal to zero.

Here, the lateral deflections of the shear center axis, v(x)
and w(x) are assumed to be the cubic Hermitian polyno-
mials of x, and the rotation about the shear center axis
θ1(x) (Eq. 5) is assumed to be the linear polynomials of
x. v(x), w(x) and θ1(x) may be expressed by

v(x) = Nt
bub, w(x) = Nt

cuc, θ1 (x) = Nt
dud (10)

ub =
{

v1,v′1,v2,v′2
}

, uc =
{

w1,−w′
1,w2,−w′

2

}
,

ud = {θ11,θ12} (11)

where Ni (i = b,c,d) are shape functions, v j and w j ( j =
1, 2) are nodal values of v and w at nodes j, respectively,
v′j and w′

j ( j = 1, 2) are nodal values of v,x and w,xat
nodes j, respectively, and θ1 j ( j = 1, 2) ( j = 1, 2) are
nodal values of θ1 at nodes j, respectively.

The axial displacements of the shear center axis may be
determined from the lateral deflections and the unit ex-
tension of the shear center axis using Eq. 9.

Ifx, yand z in Eq. 2 are regarded as the Lagrangian co-
ordinates, the Green strain ε11,ε12 and ε13are given by
[Chung (1988)]

ε11 =
1
2
(rt

,xr,x−1), ε12 =
1
2

rt
,xr,y, ε13 =

1
2

rt
,xr,z. (12)

2.5 Nodal parameters and forces

The element employed here has two nodes with six de-
grees of freedom per node. Two sets of element nodal pa-
rameters termed ’explicit nodal parameters’ and ’implicit
nodal parameters’ are employed. The explicit nodal pa-
rameters of the element are used for the assembly of the
system equations from the element equations. They are
chosen to be ui j (u1 j = u j, u2 j = v j, u3 j = wj) and φi j, the
xi (i = 1, 2, 3) components of the translation vectors u j

and the xi components of the rotation vectors φ j at node
j ( j = 1, 2), respectively. Here, the values of φ j are reset
to zero at current configuration. The generalized nodal
forces corresponding to δui j and δφi j are fi j, and mi j, the
forces in the xi directions and the conventional moments
about the xi axes, respectively.

The implicit nodal parameters of the element
are used to determine the deformation of the
beam element. They are chosen to be ui j, and

θ∗
i j

(
θ∗

1 j = θ1 j, θ∗
2 j = −w′

j, θ∗
3 j = v′j

)
, at node j. The

generalized nodal forces corresponding to δui j and δθ∗
i j

are fi j and mθ
i j, the forces in the xi directions, and the

generalized moments, respectively. Note that mθ
i j are not

conventional moments, because δθ∗
i j are not infinitesimal

rotations about the xi axes at deformed state.

The relations between the variation of the implicit and
explicit nodal parameters may be expressed as [Hsiao
(1992]]
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δqθ=




δu1

δθθθ∗
1

δu2

δθθθ∗
1




=




I 0 0 0
Tb1 Ta1 −Tb1 0
0 0 I 0

Tb2 0 −Tb2 Ta2


=




δu1

δφφφ1

δu2

δφφφ2




=Tθφδq

(13)

Tb j =


 0 0 0
−θ2 j/L 0 0
−θ3 j/L 0 0


 ,

Ta j =


 1 θ3 j/2 −θ2 j/2
−θ3 j 1+εc 0
θ2 j 0 1+εc


 , ( j = 1,2) (14)

where δu j = {δu j,δv j,δwj}, δθθθ∗
j = {δθ1 j,−δw′

j,δv′j},
and δφφφ j = {δφ1 j,δφ2 j,δφ3 j} ( j = 1, 2); I and 0 are the
identity and zero matrices of order 3×3.

The global nodal parameters for the structural system
corresponding to the element local nodes j ( j = 1, 2)
should be consistent with the element explicit nodal pa-
rameters. Thus, they are chosen to be the X G

i components
of the translation vectors and the X G

i components of the
rotation vectors at nodes j. Here, the values of nodal ro-
tation vectors are reset to zero at current configuration.
The corresponding generalized nodal forces are forces in
the XG

i directions and conventional moments about the
XG

i axes, respectively.

2.6 Element nodal force vector

The implicit element nodal forces are obtained from the
virtual work principle in the current element coordinates.
For convenience, the implicit nodal parameters are di-
vided into four generalized nodal displacement vectors
ui (i = a, b, c, d), where

ua = {u1,u2} (15)

and ub, uc, and ud are defined in Eq. 11.

The generalized force vectors corresponding to δu i, the
variation of ui (i = a, b, c, d), are

fa = { f11, f12}, fb = { f21,mθ
31, f22,mθ

32}
fc = { f31,mθ

21, f32,mθ
22}, fd = {mθ

11,mθ
12}. (16)

For linear elastic material, the virtual work principle re-
quires that

δut
afa +δut

bfb +δut
cfc +δut

d fd

=
∫

V
(Eε11δε11 +4Gε12δε12 +4Gε13δε13)dV (17)

where V is the volume of the undeformed beam, E is
Young’s modulus, G is the shear modulus, and δε 1 j ( j =
1, 2, 3) are the variation of ε1 j in Eq. 12 with respect to
the implicit nodal parameter.

From Eqs. 12 and 17, retaining all the terms up to the sec-
ond order of rotation parameters and their spatial deriva-
tives, and retaining the third order terms of the twist rate,
we may obtain

fa =
[

AELεc(1+
3
2

εc)+
1
2

EIp

∫
θ2

1,xdx

+
1
2

EIy

∫
w2

,xxdx+
1
2

EIz

∫
v2
,xxdx

]
Ga (18)

fb = EIz(1+εc)
∫

N′′
bv,xxdx+E(Iz − Iy)

∫
N′′

bθ1w,xxdx

+ f12Gb +
1
2

GJ
∫

(N′′
bθ1,xw,x −N′

bθ1,xw,xx)dx (19)

fc = EIy(1+εc)
∫

N′′
cw,xxdx+E(Iz − Iy)

∫
N′′

cθ1v,xxdx

+ f12Gc +
1
2

GJ
∫

(N′
cθ1,xv,xx −N′′

cθ1,xv,x)dx (20)

fd = [GJ +EIpεc]
∫

N′
dθ1,xdx+E(Iz − Iy)

∫
Ndv,xxw,xxdx

+
1
2

GJ
∫

N′
d(w,xv,xx −v,xw,xx)dx+

1
2

EKI

∫
N′

dθ3
1,xdx

(21)

where

Ga =
1
L
{−1,1} , Gb =

∫
N′

bv,xdx, Gc =
∫

N′
cw,xdx

Iy =
∫

z2dA, Iz =
∫

y2dA, KI =
∫

(y2 + z2)2dA,

Ip = Iy + Iz, J =
∫

[(−z+ω,y)2 +(y+ω,z)2]dA, (22)
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in which the range of integration for the integral
∫

( )dx
in Eqs. 18-22 is from 0 to L, A is the cross section area,
and N j ( j = b,c,d) are given in Eq. 10. The underlined
term in Eq. 21 is the third order term of θ1,x

Let f = {f1,m1, f2,m2}, fθ = {f1,mθ
1, f2,mθ

2}, where
f j = { f1 j, f2 j, f3 j}, m j = {m1 j,m2 j,m3 j}, and mθ

j =
{mθ

1 j,mθ
2 j,mθ

3 j} ( j = 1, 2), denote the internal nodal force
vectors corresponding to the variation of the explicit and
implicit nodal parameters, δq and δqθ, respectively. Note
that only the terms up to the second order of nodal pa-
rameters and the third order term of θ1,x are retained in
fθ. Thus, using the contragradient law [Dawe (1984)] and
Eq. 13, the corresponding f may be given by

f = fθ +(Tt
θφ − I12)f1

θ (23)

where f1
θ is the first order terms of nodal parameters of fθ,

and I12 is the identity matrix of order 12×12.

2.7 Element tangent stiffness matrices

The explicit element tangent stiffness matrix may be ob-
tained by differentiating the element nodal force vector f
in Eq. 23 with respect to explicit nodal parameters. Us-
ing Eqs. 13 and 23, we obtain

k =
∂f
∂q

=
∂f

∂qθ

∂qθ

∂q
= [kθ +(Tt

θφ − I12)k0
θ +H]Tθφ (24)

where kθ = ∂fθ/∂qθ is the implicit element tangent stiff-
ness matrix, k0

θ is the zeroth order terms of nodal param-
eters of kθ, and H is a unsymmetrical matrix and is given
by

H =




0 hb1 0 hb2

ht
b1 ha1 −ht

b1 0
0 −hb1 0 −hb2

ht
b2 0 −ht

b2 ha2


 (25)

hb j =


 0 −mθ1

2 j

L −mθ1
2 j

L
0 0 0
0 0 0


 , ha j =


 0 mθ1

3 j −mθ1
2 j

0 0 1
2mθ1

1 j

0 −1
2 mθ1

1 j 0


 ,

( j = 1,2) (26)

where 0 and is zero matrix of order 3×3, mθ1
i j (i = 1, 2,

3, j = 1, 2) are the first order terms of mθ
i j.

Using the direct stiffness method, the implicit tangent
stiffness matrix kθ may be assembled by the submatri-
ces

ki j =
∂fi

∂u j
(27)

where fi (i = a, b, c, d) are defined in Eqs. 18-21 and ui

(i = a, b, c, d) are defined in Eqs. 11 and 15. Note that
ki j are symmetric matrices. The explicit form of ki j may
be expressed as

kaa = AEL(1+3εc)GaGt
a,

kab = Ga(AEGt
b +EIz

∫
N′′t

bv,xxdx)

kac = Ga(AEGt
c +EIy

∫
N′′t

cw,xxdx),

kad = EIpGa

∫
N′t

dθ1,xdx

kbb = EIz(1+εc)
∫

N′′
bN′′t

bdx+ f12

∫
N′

bN′t
bdx

kbc = E(Iz − Iy)
∫

N′′
bN′′t

cθ1dx

+
1
2

GJ
∫

(N′′
bN′t

c −N′
bN′′t

c)θ1,xdx

kbd = E(Iz − Iy)
∫

N′′
bNt

dw,xxdx

+
1
2

GJ
∫

(N′′
bN′t

dw,x −N′
bN′t

dw,xx)dx

kcc = EIy(1+εc)
∫

N′′
cN′′t

cdx+ f12

∫
N′

cN′t
cdx

kcd = E(Iz − Iy)
∫

N′′
cNt

dv,xxdx

+
1
2

GJ
∫

(N′
cN′t

dv,xx −N′′
cN′t

dv,x)dx

kdd = [GJ +EIpεc]
∫

N′
dN′t

ddx+
3
2

EKI

∫
N′

dN′t
dθ2

1,xdx,

(28)

where the underlined term is the second order term of
θ1,x.

2.8 Load stiffness matrix

Different ways for generating configuration dependent
moment were proposed in the literature [Ziegler (1977);
Argyris, Dunne, and Scharpf (1978); Iura and Atluri
(1988); Teh and Clarke (1997); Hsiao, Yang and Lin
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(1998)]. Here, the ways for generating conservative mo-
ment proposed in [Hsiao, Yang and Lin (1998)] are em-
ployed. For completeness, a brief description of the ways
for generating conservative moment is given here. In this
study, a set of load base coordinates X P

i (i = 1, 2, 3) as-
sociated with each configuration dependent moment is
constructed at the current configuration to describe the
mechanism for generating configuration dependent mo-
ment. The way for generating configuration dependent
moment may be described as follows.

P

A

R

O P

(b)

QT2

(a)

QT1

P
P

P

R

(c)

ST

P/2
P/2

P

R

P/2
P/2

R

PX3

PX2

3
PX

XP
2

P
3X

PX2

3
X P

1
X P

X P
2

Figure 3 : Mechanism for generating configuration de-
pendent moment.

Consider a sphere of radius R which centroid is rigidly
connected with the structure at node O as shown in Fig.
3. Two strings wound around a great circle of the sphere
are acted upon by forces of magnitude P. Thus, the
strings are always tangent to the sphere. The great circle
and the forces are on the same plane at the undeformed
configuration of the structure. The origin of the load base
coordinate system is chosen to be located at the node O.
The XP

1 axis is chosen to coincide with the normal of the
plane of the great circle, and the X P

2 and XP
3 axes lie in

the plane of the great circle.

Three special cases shown in Fig. 3 are considered here.
Following [Ziegler (1977)], they are referred to as qua-
sitangential (QT) moments of the first and second type,
and semitangential (ST) moment. The load stiffness ma-

trices corresponding to QT and ST moment may given
by [Hsiao, Yang and Lin (1998)]

kQT 1
p = M


 0 0 0

0 0 0
0 −1 0


 , kQT 2

p = M


 0 0 0

0 0 1
0 0 0


 ,

kST
p =

M
2


 0 0 0

0 0 1
0 −1 0


 . (29)

where M = 2RP is the magnitude of the moment.

2.9 Criterion of the buckling state

Here, the zero value of the tangent stiffness matrix de-
terminant is used as the criterion of the buckling state.
The tangent stiffness matrix of the structure is assembled
from the element stiffness matrix and load stiffness ma-
trix at the current equilibrium configuration. Let KT (λ)
denote the tangent stiffness matrix of the structure at the
equilibrium configuration corresponding to the loading
parameter λ. The criterion of the buckling state may be
expressed as

D(λ) = det |KT (λ)| = 0. (30)

Let λnb denote the minimum loading parameter satisfy-
ing Eq. 30. λnb is called buckling loading parameter
here.

3 Numerical algorithm

An incremental-iterative method based on the Newton-
Raphson method combined with constant arc length of
incremental displacement vector [Hsiao (1992); Crisfield
(1981)] is employed for the solution of nonlinear equi-
librium equations. For a given displacement increment
or corrector, the method described in [Hsiao and Tsay
(1991)] is employed to determine the current element
cross section coordinates, element coordinates and ele-
ment deformation nodal parameters for each element. A
bisection method of the arc length is employed here to
find the buckling load. In order to initiate the secondary
path, at the bifurcation point a perturbation displacement
proportional to the first buckling mode is added [Matsui
and Matsuoka (1976)].
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Figure 4 : Rod subjected to end torque and axial force.

4 Numerical studies

The Young’s modulus E = 2 × 107 N/cm2 and shear
modulus G = 7.9×106 N/cm2 are used here.

In order to verify the present method, the first example
considered is the example given in [Goto, Li, and Kasu-
gal (1996)] as shown in Fig. 4. The geometry properties
are: L = 720 cm, and a = 1 cm. The classical linear buck-
ling torque for pure torsion is Tcr = 2.861πE

L

√
IyIz [Goto,

Li, and Kasugal (1996)]. The classical linear buckling

force for pure compressive axial force is Pcr = 4π2EIy
L2

[Timoshenko and Gere (1963)].

The results of the present study are obtained by using
160 elements and shown in Table 1 and Fig. 5. A plot of
nondimensional buckling torque Tnb/Tcr versus log(b/a)
for various values of P/Pcr is shown in Fig. 5. The
present results given in Fig. 5 and those reported by
[Goto, Li, and Kasugal (1996)] (for b/a≤ 10, not shown
here) are nearly identical.

Table 1 : Buckling moment for example 1
Tnb/Tcr

b
a\ P

Pcr
0.0 0.4 0.6 0.8 0.9

1.0 0.9998 0.7223 0.5666 0.3819 0.2629
1.2 0.9320 0.6119 0.5203 0.4397 0.3947
1.6 0.6370 0.5124 0.4737 0.4392 0.4224
2.0 0.5177 0.4525 0.4284 0.4069 0.3967
5.0 0.2441 0.2284 0.2218 0.2156 0.2126
10.0 0.1290 0.1218 0.1187 0.1157 0.1143
20.0 0.0913 0.0843 0.0812 0.0783 0.0770

The load-end axial displacement curves in the secondary
equilibrium paths for different cases are shown in Figs.
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Figure 5 : Buckling torque versus aspect ratio of cross
section for the first example

6-8. As can be seen from Fig. 6, the agreement between
the present results and those given in [Goto, Li, and Ka-
sugal (1996)] is very good. Numerical experiment has
shown that when b/a ≤ 10, the effect of the third order
term of the twist rate is negligible for the buckling anal-
ysis.

The second example considered is a cantilever rod sub-
jected to end torque T as shown in Fig. 9. The QT2
torque is considered. The geometry properties are: L =
400 cm, a = 1 cm, and b = 20 cm. The classical lin-
ear buckling torque for pure torsion is quoted in [Yang
and Kuo (1991)] as Tcr = πE

2L

√
IyIz = 2.618× 104 kN ·

cm. The classical linear buckling force for pure axial

compressive force is Pcr = π2EIy
4L2 [Timoshenko and Gere

(1963)].

In order to investigate the effect of third order term of
the twist rate on the buckling torque of three-dimensional
rods, the following cases are considered:

1. TR = 1 – All the terms in Eq. 21, and Eq. 28 are
considered.

2. TR = 2 – Except the term EIpεc
∫

N′
dθ1,sds and

1
2EKI

∫
N′

dθ3
1,sds in Eq. 21, all the terms in Eq. 21,

and the corresponding terms in Eq. 28 are consid-
ered.

3. TR = 3 – Except the term 1
2 EKI

∫
N′

dθ3
1,sds in Eq. 21

all the terms in Eq. 21 and the corresponding terms
in Eq. 28 are considered.
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Figure 6 : Load-end axial displacement for the first ex-
ample
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Figure 7 : Load-end axial displacement for the first ex-
ample

It is observed that the only nonzero deformations are uni-
form twist rate θ1,s and uniform unit extension of the
centroid axis εc for this example. From Eq. 18, and
using the approximation 1 + 3

2 εc ≈ 1, one may obtain

εc = − Ip
2A θ2

1,s − P
AE . As can be seen that εc is a second

order term of twist rate. Thus, EIpεc
∫

N′
dθ1,sds in Eq. 21

may be regarded as a third order term of θ1,s.

It is seen that the twist moment-twist rate relation is lin-

ear for TR = 2, and nonlinear twist moment-twist rate
relations are used for TR = 1, 3. However, the third order
term for TR = 3 is incomplete. Thus the results corre-
sponding to TR = 3 may not be reliable for the buckling
torque of three-dimensional rods with very narrow rect-
angular cross section.
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Figure 8 : Load-end axial displacement for the first ex-
ample
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Figure 9 : Cantilever rod subjected to end torque and
axial force.

The buckling torques for different cases are given in Tab.
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Table 2 : Buckling moment for example 2

P/Pcr
Number of Tnb(103kN · cm)
elements TR = 1 TR = 2 TR = 3

0 80 3.518 3.142 2.642
120 3.535 3.155 2.650
160 3.541 3.160 2.652
200 3.543 3.162 2.653

0.9 80 3.337 2.971 2.517
120 3.351 2.982 2.524
160 3.356 2.986 2.527
200 3.359 2.988 2.528

2. As can be seen, the discrepancy among the buckling
moments corresponding to TR = 1-3 is not negligible,
and the discrepancy between the present buckling mo-
ments and the classical linear buckling moments are re-
marked. From this example, it shows clearly that the
third order term of the twist rate in the element nodal
forces and the corresponding term in the element stiff-
ness matrix are not negligible for the buckling torque
of three dimensional rods with very narrow rectangular
cross section. As can be seen that a large number of el-
ements are required for the convergence of the buckling
moment. The large aspect ratio of the cross section and
the assumption of uniform twist rate may be one of the
reasons for this slow convergence.

The third example is a cantilever rod subjected to end
torque T as shown in Fig. 9. The quasitangential and
semitangential torques are considered. The geometry
properties are identical with those of the first example.
The classical linear buckling torque for pure torsion is
quoted in [Yang and Kuo (1991)] as Tcr = πE

2L

√
IyIz for

QT and Tcr = πE
L

√
IyIz for ST.

The classical linear buckling force for pure compressive

axial force is Pcr = π2EIy
4L2 [Timoshenko and Gere (1963)].

The results of the present study are obtained by using 160
elements. The nondimensional buckling torques Tnb

/
Tcr

for different cases are given in Tables 3-5 and Fig. 10-
12. Figures 10-12 are plots of nondimensional buck-
ling torque Tnb

/
Tcr versus log (b

/
a) for different types

of torque. It can be seen that the values of Tnb
/

Tcr are
much influenced by the aspect ratio b

/
a and decrease

with the increase of the compressive axial force. For the
case of QT2 torque the value of Tnb

/
Tcr increases and

then decreases with the increase of b
/

a, and Tnb
/

Tcr ≥ 1

when b
/

a ≤ 1.6. However, for the case of ST torque
the value of Tnb

/
Tcr monotonically decreases with the in-

crease of b
/

a. It is interesting to note that the buckling
torques for the rod with large aspect ratio (say b

/
a ≥ 5)

are much smaller than the linear buckling torques for var-
ious types of torques. The load-deflection curves in the
secondary equilibrium paths for the case of b

/
a = 1 and

20 are shown in Figs. 13-15 and 16-18, respectively.

Table 3 : Buckling moment for example 3 (QT1)
Tnb/Tcr(QT1)

b
a\ P

Pcr
0.0 0.4 0.6 0.8 0.9

1.0 1.0000 0.6808 0.4923 0.2727 0.1453
1.2 0.8502 0.5739 0.4367 0.2831 0.1893
1.6 0.6253 0.4483 0.3568 0.2473 0.1733
2.0 0.5017 0.3722 0.3016 0.2138 0.1520
5.0 0.2106 0.1646 0.1370 0.1002 0.0727
10.0 0.1075 0.0849 0.0710 0.0523 0.0380
20.0 0.0545 0.0432 0.0361 0.0226 0.0194

Table 4 : Buckling moment for example 3 (QT2)
Tnb/Tcr(QT2)

b
a\ P

Pcr
0.0 0.4 0.6 0.8 0.9

1.0 1.0000 0.6808 0.4923 0.2727 0.1453
1.2 1.0633 0.8948 0.7810 0.6139 0.4749
1.6 1.0039 0.9420 0.9092 0.8743 0.8558
2.0 0.8979 0.8598 0.8400 0.8192 0.8082
5.0 0.4450 0.4336 0.4274 0.4206 0.4169
10.0 0.2356 0.2302 0.2272 0.2239 0.2221
20.0 0.1253 0.1225 0.1210 0.1194 0.1185

Table 5 : Buckling moment for example 3 (ST)
Tnb/Tcr(ST)

b
a\ P

Pcr
0.0 0.4 0.6 0.8 0.9

1.0 1.0000 0.7745 0.6324 0.4472 0.3162
1.2 0.8502 0.6483 0.5282 0.3759 0.2682
1.6 0.6253 0.4862 0.4014 0.2906 0.2096
2.0 0.5017 0.3951 0.3285 0.2997 0.1738
5.0 0.2105 0.1690 0.1420 0.1050 0.0768
10.0 0.1074 0.0866 0.0729 0.0540 0.0396
20.0 0.0559 0.0446 0.0374 0.0275 0.0201

5 Conclusions

The buckling and postbuckling behavior of spatial rods
under different types of end torque and compressive axial
force is investigated using finite element method.
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Figure 10 : Buckling torque (QT1) versus aspect ratio of
cross section for cantilever rod.
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Figure 11 : Buckling torque (QT2) versus aspect ratio of
cross section for cantilever rod.
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Figure 12 : Buckling torque (ST) versus aspect ratio of
cross section for cantilever rod.

 

 

 

 

 

 

 

 

 

 

 

Figure 13 : Load-tip displacement for cantilever rod
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Figure 14 : Load-tip displacement for cantilever rod
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Figure 16 : Load-tip displacement for cantilever rod
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Figure 17 : Load-tip displacement for cantilever rod
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Figure 18 : Load-tip displacement for cantilever rod

The consistent co-rotational finite element formulation
for three-dimensional Euler beam presented by Hsiao
and Lin (2000) is employed here. All coupling among
bending, twisting, and stretching deformations for beam
element is considered by consistent second-order lin-
earization of the fully geometrically nonlinear beam the-
ory. However, the third order term of the twist rate is
retained in the element nodal forces. From the numeri-
cal examples studied, it is found that the third order term
of the twist rate in the element nodal forces and the cor-
responding term in the element stiffness matrix are not
negligible for the buckling torque of three-dimensional
beams with very narrow rectangular cross section. The
buckling torques and postbuckling behaviors for a rod
subjected to different types of torques are in general dif-
ferent. The buckling torques decrease with the increase
of the compressive axial force. For the case of pure
torsion, the buckling torques for the beam with square
cross section exactly coincide with the linear buckling
torques for various types of torques. However, the buck-
ling torques for the rod with large aspect ratio is much
smaller than the linear buckling torques for various types
of torques.
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