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Element Coordinates and the Utility in Large Displacement Analysis of a Space
Frame

K. Ijima1, H. Obiya1, S. Iguchi2 and S. Goto2

Abstract: Defining element coordinates in space
frame, element end deformations become statically clear
from the energy principle. Therefore, the deformations
can be expressed by nodal displacement without any ap-
proximation. The paper indicates that the exact expres-
sions of the deformations and the geometrical stiffness
strictly based on the equations makes large displacement
analysis of space frame possible with robustness on the
computation.
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1 Introduction

Many researches related to geometrically nonlinear anal-
ysis of a space frame have been already published.
Though the authors do not grasp all of the researches,
it is obvious that FEM plays an important role in the re-
search. Before recognizing the wide usability of FEM,
there had been some research [representatively, Oran
(1973)], which applied the elemental theory a beam to
the geometrically nonlinear analysis. One of the authors
also published a similar theory, but more precise in terms
of finite rotation [Goto (1983)]. Along growing of pop-
ularity of FEM, however, it became a common sense
to use displacement functions and Lagarange’s formula-
tion including its strain field in the analysis. Bathe and
Bolourchi (1979) seems to be the beginning.

In FEM, however, it is quite difficult to obtain the dis-
placement function in which finite rotation is strictly con-
sidered. This is because the function has to express to-
tal deformation in the element. On the other hand, if
the deformations expressed by nodal displacements are
restricted at the element ends, the end deformations are
obtained by introducing the element coordinates without
any approximation. The element coordinates are not only
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used for transforming physical quantities in the local into
the quantities in the universal coordinates or its reverse
transformation, but defining end forces which are inde-
pendent each other in the element coordinates. Since
the element end deformations are the counterparts of
the forces, the deformations become geometrically clear.
The concept of the end deformations and the end forces
is common with the method of slope deflection in ele-
mental statics. Kassimali; Abbasnia (1991) which de-
veloped Oran (1973) used the member orientation matrix
and the joint orientation matrix. Those matrices are the
same concept as the element coordinates and the element
end coordinates in the paper. However, the paper has sev-
eral differences from Kassimali; Abbasnia (1991). The
end rotations regarding bending and torsion of the ele-
ment should be axial vectors in the consistent/exact com-
patibility and the convergence criterion should not use
the increment displacement but the unbalanced forces at
nodes.

The paper follows the basic concept shown in Goto
(1983). Iguchi; Goto; Ijima; Obiya (2003) have already
certified the theory by the experiment of folding an arch
by torsion. The paper particularly details the element co-
ordinates, the element end deformations based on the en-
ergy principle, and deriving the deformations of a beam
element in space with geometric strictness.

2 Concept of the Theory

2.1 Equilibrium equation

The total potential energy of a structure that consists of
finite elements is,

Π = ∑
e

Ve−W (1)

where W is the potential of the nodal force, U, and Ve is
the strain energy in the element, e.
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From energy principles,

∂Π
∂u

= ∑
e

∂Ve

∂u
−U = 0 (2)

where u is the nodal displacement.

FEM directly solves Eq. 2 from Ve through the dis-
placement functions expressed by the nodal displace-
ment. However, it is quite difficult to obtain the func-
tions by exactly treating finite rotation with geometric
strictness. On the other hand, though the method of slope
deflection is the same displacement method as FEM, the
method treats deformation of the element as behavior of a
simple beam. If the element has such support condition,
the total potential energy can be defined in the element
and the support condition. We call the system the ele-
ment coordinates.

Πe = Ve −We (3)

where We is the work of the element end forces, Se. When
the element is a beam, the total number of the element
end forces is twelve. The twelve forces must be naturally
equilibrium. The reaction forces in the support condition
of the simple beam are six in the twelve forces. In Eq.
3, the work of the reaction forces vanishes in rigid body
displacement. The remainders of the six forces give the
beam deformation as the external forces in the element
coordinate. Hence Se consists of the end forces. The end
forces are conservative and independent each other.

In the element coordinates, the energy principle gives,

∂Πe

∂se
=

∂Ve

∂se
−Se = 0 (4)

where se is the element end deformations. Since the de-
formations and the element end forces are counterparts
each other, the deformations become geometrically clear
and are restricted at the element ends. For example, when
one of the end forces is a moment, the counterpart is a
rotation as an axial vector given at the element end. The
work of the moment is a scalar product between the mo-
ment vector and the rotation vector.

In applying Eq. 4 to each element, the element end de-
formation keeps continuity by defining the element end
coordinates. The end coordinates rotate with following
the rotation of the node connected to the element end.
Hence all of the element ends fixed to the node identi-
cally rotate.

From Eq. 4, the differential of the strain energy in the
element, e, in Eq. 2 becomes,

∂Ve

∂u
=

∂sT
e

∂u
∂Ve

∂se
=

∂sT
e

∂u
Se (5)

The differential of the element end deformation functions
as deriving the all of the element end forces from the end
forces independent each other as well as transforming the
element end forces into the components in the universal
coordinates.

Substituting Eq. 5 into Eq. 2, the equilibrium equation at
the nodes in the structure is,

U−∑
e

∂sT
e

∂u
Se = 0 (6)

The method solves Eq. 6. Since the element end de-
formations are geometrically clear, the accuracy of the
method depends on the element end forces derived from
Eq. 4. Namely, more exact expression of Eq. 4 results in
equilibrium solutions more identical to real phenomena.

Eq. 6 is a general expression without restricting its appli-
cation to beam element. For example, if Eq. 6 is applied
to a plate element, the element end forces are defined
by statically determinative support conditions. When the
shape function in FEM is not expressed by the nodal dis-
placement but the element end deformation, the element
stiffness equation is easily obtained as the relation be-
tween the end forces and the end deformations.

If FEM is defined as using shape functions and mak-
ing the average residual zero, the demerit is short of ge-
ometric strictness due to shape functions expressed by
nodal displacement. However, if the shape functions are
expressed by the element end deformation, the various
functions already developed in FEM are available for get-
ting element stiffness equations.

2.2 Tangent stiffness equation

In order to solve Eq. 6, the method needs the tangent
stiffness equation as well as FEM.

From the equilibrium of Eq. 6, the infinitesimal incre-
ment of the nodal force is,

δU = ∑
e

∂sT
e

∂u
δSe +∑

e
δ
(

∂sT
e

∂u

)
Se (7)

The first term expresses the increment of the element end
forces, and the second term is direction changes of the
end forces.
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The infinitesimal increment of the end forces is obtained
from the tangent equation of the element end force equa-
tion. Since this section conceptually explains the theory,
a concrete equation of the element end force of beam is
shown in Section 5. The tangent equation of the equation
is defined as,

δSe = keδse (8)

The infinitesimal increment of the element end deforma-
tion is,

δse
∂se

∂uT δu (9)

Since the element end forces are constant in the second
term in Eq. 7, the term becomes,

δ
(

∂sT
e

∂u

)
Se =

∂
∂u

(
sT

e Se
) ∂

∂uT δu (10)

Substituting Eq. 8, 9 and 10 into Eq. 7, the tangent stiff-
ness equation is,

δU = ∑
e

{
∂sT

e

∂u
ke

∂se

∂uT +
∂

∂u

(
sT

e Se
) ∂

∂uT

}
δu

= (KO +KG)δu (11)

where

KO ≡ ∂sT
e

∂u
ke

se

∂uT (12)

KG ≡ ∂
∂u

(
sT

e Se
) ∂

∂uT (13)

Eq. 12 is due to the element stiffness itself, and Eq. 13 is
the geometric stiffness due to changing the directions of
the end forces.

3 Element End Deformation of a Beam

The element end deformation of beam can be exactly ob-
tained by simple knowledge of finite rotation.

A beam element in space has twelve degrees of freedom
and the six equations of equilibrium. Six forces in the
twelve forces at both ends are independent each other.
Therefore, there are various combinations of the element
end forces selected from the twelve forces.

A set of the element end forces shown in Fig. 1 has the
support condition similar to a simple beam. The element

coordinates is rational in terms of reducing geometrically
nonlinear effect in the element and in terms of equality
between both ends. For example, a cantilever can be also
selected as one of statically determinate element coordi-
nates. However, it is clear that the end deformation de-
fined in the cantilever is larger than a simple beam. Be-
sides, since it is impossible to express completely non-
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Figure 1 : Element coordinates and element end coordi-
nates

linear phenomena in the element coordinates, correspon-
dence of the fixed or free end in the cantilever coordinates
to the node affects equilibrium solution of a structure.

On the other hand, both ends of the simple beam have
equal conditions.

From the counterparts of the element end forces in Fig. 1,
a set of the element end deformations becomes the elon-
gation, ∆l, and the components of the rotation vectors at
both ends i and j, θx,θiy,θiz,θ jy,θ jz. The two end coor-
dinates shown in Fig. 2 move and rotate along the nodal
displacement. When the element coordinates rotates and
agrees with one side of the end coordinates, the given ro-
tation is the end deformation regarding torsion and bend-
ing. Analytically, however, finding the element coordi-
nates from both end coordinates after nodal displacement
derives the end deformation.

Expressing the nodal rotations, ∆x i,∆x j, by its angle and
its direction,

∆xi = θp
i ep

i , (14)

∆x j = θp
j e

p
j (15)
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Figure 2 : Element end forces

When the unit vectors parallel to the axes in both end
coordinates are ap

i1,ap
i2,ap

i3 at the end, i, and ap
j1,ap

j2,ap
j3

at the end, j, these axes after the finite rotation of the
node becomes the following vectors. As an example, the
first axis ap

i1, changes into ai1.

ai1 = epT

i ap
i1(1−cosθp

i )ep
i +cosθp

i ap
i1

+ sinθp
i ep

i ×ap
i1 (16)

The previous end coordinates in Eq. 16 include the pre-
vious deformation. Kassimali; Abbasnia (1991) obtained
the end coordinates from the finite rotation of the ele-
ment coordinates before the nodal displacement. This
means computing the increment deformation of the el-
ement and adding it to the previous deformation gives
the total deformation. Even if the increment rotation is
very small, however, the sum makes accumulative er-
ror. Hence, considering the finite rotation in the element
deformation, the total end rotation has to be computed
[Iguchi, S; Goto, S; Ijima, K; Obiya, H (1997)].

The procedure to obtain the element coordinates from
both end coordinates is the following. By the first ro-
tation, each first axis in both coordinates is made to coin-
cide with the line which connects both ends. The second
rotation fits the second axes at both ends each other. The
coordinates after the two rotations is the element coordi-
nates. The rotation vector composed by the two rotations
gives the element end deformation.

When the first rotation vectors at both ends are θ i1ei1,
θ j1e j1, the angles and the directions are obtained by the

following equations.

cosθi1 = aT
i1c1 (17)

ei1 sinθi1 = ai1 ×c1 (18)

where c1 is the unit vector parallel to the line that con-
nects both ends.

The locus of the first axis during the rotation makes a
plane, and ei1 is orthogonal to c1.

The unit vectors of the second axis and the third one after
the first rotation at the end i are,

bi2 = ai2 − cT
1 ai2

1+cT
1 ai1

(c1 +ai1) (19)

bi3 = ai3 − cT
1 ai3

1+cT
1 ai1

(c1 +ai1) (20)

The vectors at the end, j, are obtained by changing the
suffix, i, to j in Eq. 17 to 20.

After the first rotation, the open angle, θi j, between the
second axes at both ends is,

cosθi j = bT
i2b j2 (21)

c1 sinθi j = bi2 ×b j2 (22)

When the angles of the second rotation are

θi2 and θ j2, θi2c1 and θ j2c1 are the second rotation vec-
tors, where θi2−θ j2 = θi j. The angles are described later
in detail.

There are some methods to obtain the vector composed
by the first rotation vector and the second one. Using
Hamilton’s quaternion, the composition becomes simple.

When the vector, a, changes to b by the rotation, θer,
using the quaternion,

b =
(

cos
θ
2
, er sin

θ
2

)
⊗ (0,a)⊗

(
cos

θ
2
, −er sin

θ
2

)

(23)

Multiplication by the operator ⊗ is usual between a
scalar and a vector or between two scalars. The product
between two vectors complies with the following defini-
tion. When e1, e2 and e3 are the unit vectors parallel to
the axes in the orthogonal coordinates,

e1 ⊗e1 = e2 ⊗e2 = e3 ⊗e3 = −1
e1 ⊗e2 = −e2 ⊗e1 = e3

e2 ⊗e3 = −e3 ⊗e2 = e1

e3 ⊗e1 = −e1 ⊗e3 = e2




(24)
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Complying with Eq. 24, Eq. 23 becomes a similar equa-
tion to Eq. 16.

When θiceic and θ jce jc are the rotation vector composed
by the two rotation, the rotation vector, θ iceic, is reverse
to the composition of the first rotation, θ i1ei1, and the
second, θi2c1. Hence, using the quaternion,(

cos
θic

2
,eic sin

θic

2

)

=
(

cos
θi1

2
,−ei1 sin

θi1

2

)
⊗

(
cos

θi2

2
,−c1 sin

θi2

2

)
(25)

Applying Eq. 24 to Eq. 25,

cos
θic

2
= cos

θi1

2
cos

θi2

2
(26)

eic sin
θic

2
= sin

θi1

2
cos

θi2

2
ei1

−cos
θi1

2
sin

θi2

2
c1 + sin

θi1

2
sin

θi2

2
ei1 ×c1 (27)

The composed rotation vector at the end j is also ob-
tained in the same way.

In Eq. 26 and 27, the angles of the second rotation are un-
known. If the angles are half of the open angle between
the second axes at both ends after the first rotation, the
angles are,

θi2 =
θi j

2
, θ j2 = −θi j

2
(28)

However, Eq. 28 does not equalize the first components
of the composed vectors at both ends. In order to keep
the equality, the second rotation must fulfill the following
equation.

(θiceic +θ jce jc)
T c1 = 0 (29)

Though Eq. 29 is strict, the equation does not explicitly
give the second rotation angle. Hence, a kind of iteration
is needed to solve Eq. 29. As a result of computational
comparison between Eq. 28 and 29, the solution using
Eq. 28 has enough accuracy.

After determining the angle of the second rotation, the
directions of the second axis, c2, and the third axis, c3, in
the element coordinates are,

c2 = bi2 cos
θi2

2
+bi3 sin

θi2

2
(30)

c3 = −bi2 sin
θi2

2
+bi3 cos

θi2

2
(31)

From the rotation vectors at both ends and the element
coordinates, the components of the rotations are,

θx = (θ jce jc −θiceic)
T c1 (32)

θiy = θiceT
icc2 (33)

θiz = θiceT
icc3 (34)

θ jy = θ jceT
jcc2 (35)

θ jz = θ jceT
jcc3 (36)

In this manner, restricting the element deformations at
the ends, the deformations are expressed with geometri-
cal strictness and without any approximation.

After the nodal displacement is given, the procedure up
to getting the unbalanced forces is the following. Com-
puting the elongation from the distance between both
ends and the element end deformation by Eqs. 32 to 36,
then computing the element end forces by using the equa-
tions in Section 5, then the end forces and the external
forces are summed up by Eq. 6. The resultants are the
unbalanced forces.

4 Geometric Stiffness Matrix of a Beam

The geometric stiffness is due to changing the directions
of element end forces by the infinitesimal nodal displace-
ment from equilibrium. Therefore, the equilibrium posi-
tion is a reference and the geometric stiffness is,

KG = ∑
e

∂
∂δu

(δWe)
∂

∂δuT
(37)

where δu =
{

δuT
i δxT

i δuT
j δxT

j

}
is the infinitesimal dis-

placement, δui and δu j are the translations at both ends,
and δxi and δx j are the rotations.

δWe is the work of the constant end forces in the present
equilibrium, as follows,

δWe = Nδl +Mxδθx +Miyδθiy +Mizδθiz

+M jyδθjy +M jzδθjz (38)

where δl,δθx,δθiy,δθiz,δθjy,δθjz are the infinitesimal in-
crements of the element end deformations.

Expressing the increments by the second order of the in-
finitesimal displacement, the geometrical stiffness is ob-
tained from Eq. 37. When c1, c2 and c3 are the directions
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of the element coordinate axes, the deformations in the
second order are expressed by,

δl = cT
1 δu ji +

1
2l

{
δuT

jiδu ji −
(
cT

1 δu ji
)2

}
(39)

δθx = cT
1 δx ji +

1
2

cT
2 δx jicT

2 δu ji +
1
2

cT
3 δx jicT

3 δu ji (40)

δθiy = cT
2 δxi +cT

3 δu ji−cT
1 δu jicT

3 δu ji

+
1
4

cT
1 δxi

(
cT

3 δxi −3cT
2 δu ji

)

+
1
4

cT
1 δx j

(
cT

3 δxi −cT
2 δu ji

)
(41)

δθiz = cT
3 δxi −cT

2 δu ji +cT
1 δu jicT

2 δu ji

−1
4

cT
1 δxi

(
cT

2 δxi +3cT
3 δu ji

)

−1
4

cT
1 δx j

(
cT

2 δxi +cT
3 δu ji

)
(42)

δθjy = cT
2 δx j +cT

3 δu ji −cT
1 δu jicT

3 δu ji

+
1
4

cT
1 δx j

(
cT

3 δx j −3cT
2 δu ji

)

+
1
4

cT
1 δxi

(
cT

3 δx j −cT
2 δu ji

)
(43)

δθjz = cT
3 δx j −cT

2 δu ji +cT
1 δu jicT

2 δu ji

−1
4

cT
1 δx j

(
cT

2 δx j +3cT
3 δu ji

)

−1
4

cT
1 δxi

(
cT

2 δx j +cT
3 δu ji

)
(44)

where l is the distance between both ends and,

δu ji = δu j −δui, (45)

δu ji = δu ji/l (46)

δx ji = δx j −δxi (47)

From the differential in Eq. 37, the geometric stiffness
becomes,




δUi

δXi

δU j

δX j




=




k11 k12 −k11 k14

k22 −kT
12 k24

k11 −k14

sym. k44







δui

δxi

δu j

δx j



(48)

where

k11 =
N
l

(
I−c1cT

1

)− Miy +M jy

l2

(
c1cT

3 +c3cT
1

)

+
Miz +M jz

l2

(
c1cT

2 +c2cT
1

)
(49)

k12 =
Mx

2l

(
I−c1cT

1

)
+

3Miy +M jy

4l
c2cT

1

+
3Miz +M jz

4l
c3cT

1 (50)

k14 = −Mx

2l

(
I−c1cT

1

)
+

Miy +3M jy

4l
c2cT

1

+
Miz +3M jz

4l
c3cT

1 (51)

k22 =
Miy

4

(
c1cT

3 +c3cT
1

)− Miz

4

(
c1cT

2 +c2cT
1

)
(52)

K24 =
Miy

4
c3cT

1 +
Miz

4
c1cT

3 − Miz

4
c2cT

1 − M jz

4
c1cT

2 (53)

k44 =
M jy

4

(
c1cT

3 +c3cT
1

)− M jz

4

(
c1cT

2 +c2cT
1

)
(54)

where I is the unit matrix of 3x3.

5 Element End Force Equation

Since the element end deformations in the method do not
include any approximation, difference between the anal-
ysis and a real phenomenon results from the accuracy of
the relation between the end deformations and the end
forces in the element.

Effects of a non-stress shape of an element appear in the
element end force equations. It is unnecessary to mod-
ify the element end deformations and the geometric stiff-
ness in response to the non-stress shape of the element.
Similarly, if considering inelastic characteristic of the el-
ement and geometric strictness in the element, these are
also condensed into the end force equations.

In the computational example, assuming that the ele-
ments are straight in non-stress, the following relation
well known as the beam-column theory is used,

N =
EA
lo

∆l (55)

Mx =
GJ
l0

θx (56)
{

Mim

M jm

}
=

EIm

l0

[
am bm

bm am

]{
θim

θ jm

}
(57)

where m is y or z, l0 is the non-stress length of the ele-
ment. Using the beam-column theory, the element end
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force, N, becomes equivalent to the axial force. When
the axial force is tension, N > 0,

am =
ω2

m coshωm −ωm sinhωm

ωm sinhωm +2(1−coshωm)
(58a)

bm
ωm sinhωm −ω2

m

ωm sinhωm +2(1−coshωm)
(58b)

where ωm =
√|N|/(EIm). When the axial force is com-

pression, N < 0,

am =
ω2

m cosωm −ωm sinωm

ωm sinωm −2(1−cos ωm)
(59a)

bm =
ωm sinωm −ω2

m

ωm sinωm −2(1−cos ωm)
(59b)

When the axial force is near zero, instead of Eq. 58 or
59, the following series of λ m = Nl2

0/(EIm) is used,

am = 4+
2
15

λm − 11
6300

λ2
m +

1
27000

λ3
m (60a)

bm = 2− 1
30

λ +
13

12600
λ2

m − 11
378000

λ3
m (60b)

In the equations, the element is elastic and the geometric
nonlinearity in the element is neglected.

When obtaining the tangent stiffness matrix related to the
element stiffness, Eq. 12, though Eq. 57 includes the ax-
ial force, the stiffness matrix, ke, consists of the element
end force equations, 55, 56 and 57. This is because the
elongation and the rotational components are indepen-
dent each other in the assumed model of the element.

The differential of the element end deformations in Eq. 6
or Eq. 12 is obtained by using the first order in Eqs. 39
to 44.




Ui

Xi

U j

X j




=




−c1 0 − c3
l − c3

l
c2
l

c2
l

0 −c1 c2 0 c3 0
c1 0 c3

l
c3
l − c2

l − c2
l

0 c1 0 c2 0 c3







N
Mx

Miy

M jy

Miz

M jz




(61)

Furthermore, Eq. 61 is the same as the equation that is
derived from transforming the element end forces, which
include the reaction forces in the element coordinates,
into the components in the universal coordinates.

6 Computational Example

Rotating an end around the tangent axis in a ring with a
slit, the ring is folded into the double circles by 2π radi-
ans of rotation. As a computational example, the folding
process of the ring was simulated by the method.
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Figure 3 : Polygonal ring composed by 72 elements

Fig. 3 shows the ring used for the computation. The
Young’s modulus of the element is 205800 MPa. The
straight elements of 72 compose the ring. Hence the ring
is a regular polygon as a primary shape. The computa-
tion uses also the rings composed by 18 elements and 36
elements.

Both ends of the ring at the slit rotate with the same angle
in the opposite direction each other around the tangent
axis at the slit.

The rigid lines attached to the nodes of the are normal to
the plane in the primary form, and rotate along with the
nodes.

Fig 4 shows the folding process. The angles in the figure
are the total angle given both ends. When completing the
double circles, the rigid lines fit in each other. If treating
the increment rotation in the element as a polar vector
without using finite rotation, the rigid lines do not fit like
Fig. 4.

Fig. 5 shows the convergent process of the maximum
unbalanced forces in the nodes of the ring composed by
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Figure 4 : Folding process of the polygonal ring with slit
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Figure 5 : Covergent process of the maximum unbalanced force in the ring of 18 elements
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18 elements. In the cases of the rings of 18 and 36 ele-
ments, even if using the increment rotation of 20 degrees
given both ends, the folding process can be completed.
The ring of 72 elements needs to reduce the increment
rotation to 10 degrees.

The buckling analysis may verify the accuracy of the
tangent stiffness matrix [Hsiao; Lin, (2003)]. However,
since the matrix in the method includes the six element
end forces, it is difficult to obtain a theoretical solution
that can verify all of the coefficients in the matrix. There-
fore, though not sufficiently prove Eq. 48 to be strict, the
convergent process of the maximum unbalanced forces is
shown in Fig.5. The unbalanced forces converge in less
than the allowable value given by considering the signif-
icant figure in the computation.
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Figure 6 : Reaction torque at an end

Fig. 6 is the relation between the rotation angle and the
reaction torque at an end and Figs. 7 and 8 are the end
forces of the middle element in the ring. When complet-
ing folding the ring, the reaction torque, the axial force
and the end moments, Mx and Mz, become nearly zero
regardless of the number of dividing the ring. In the the-
oretical solution, the forces must be zero. Hence even if
using small number of elements composing the ring, the
solution has sufficient accuracy.

The effect of dividing appears only in the end moment,
Mz, on the way of folding. Since presuming the end mo-
ment, Mz, to be very small, a ring model of 100 elements
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Figure 7 : Axial force of the middle element

is enough to simulate the folding.

7 Conclusion

The element coordinates were defined from the energy
principle, and the end deformations in the coordinates
became geometrically clear. Consequently, the end de-
formation can be exactly expressed by treating finite ro-
tation with geometric strictness, and the geometric stiff-
ness is derived from expansion of the end deformations
by nodal displacement.

In a computational example, even if using the simple
expression based on the beam-column theory and using
small number of elements, the equilibrium solution has
sufficient accuracy.
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