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A Boundary Element Method for Acoustic Scattering from Non-axisymmetric and
Axisymmetric Elastic Shells

J. P. Agnantiaris1 and D. Polyzos1,2

Abstract: A Boundary Element Method (BEM), for
the three-dimensional solution of both non-axisymmetric
and axisymmetric coupled acoustic-elastic problems in
the frequency domain, is presented. The present BEM
makes use of the Burton and Miller integral equation for
infinite acoustic spaces, while elastic structures are dealt
with the standard boundary integral equation of elastody-
namics. The axisymmetric formulation involves the use
of the fast Fourier transform algorithm. Highly accurate
numerical algorithms are used for the evaluation of sin-
gular integrals, while nearly singular integrals are treated,
also with high accuracy, through the use of practical nu-
merical techniques, for both the axisymmetric and non-
axisymmetric cases. Two representative numerical ex-
amples are solved, that demonstrate the accuracy of the
present BEM, while interesting observations are reported
about its convergence properties, when arbitrarily shaped
shell scatterers are under consideration.

keyword: 3-D acoustic scattering, Fluid-shell structure
interaction, boundary elements, axisymmetry.

1 Introduction

The scattering of sound waves by elastic shell structures
immersed in liquid is a problem of great significance for
many engineering applications belonging in the area of
underwater acoustics. Several analytical, semi-analytical
and numerical methodologies are available in the litera-
ture for the treatment of such a scattering problem. An-
alytical or semi-analytical methods have the disadvan-
tage of solving an underwater acoustics scattering prob-
lem only under various limitations in shape, size and
composition of the target. On the other hand, numeri-
cal methods, such as the finite element method (FEM),
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the boundary element method (BEM), and the hybrid
finite-boundary element method (FEM/BEM) can solve
with no significant restrictions very complicated scatter-
ing problems. However, it should be mentioned that de-
spite their limitations, analytical methods appear to have
the advantage of providing solutions or approximations
quickly and with low computational cost, over computa-
tional ones, for many practical applications [Gaunaurd
and Werby (1990)]. Also, for simple shapes, analyti-
cal methods provide valuable accurate solutions, with the
aid of which the accuracy and the efficiency of numeri-
cal methods are assessed. Similarly, the semi-analytical
method of T-matrix approach [Waterman (1969); Toboc-
man (1985)] has, to date, solved difficult multi-scattering
problems for which solutions by a computational method
would be prohibitive.

The BEM is a well-known and powerful numerical tool
for solving frequency domain acoustic radiation and
scattering problems [Rego Silva (1994); Ciskowski and
Brebbia (eds) (1991)]. Because of utilizing the standard
Helmholtz integral equation, the BEM is ideally suited
to treat such exterior problems, since it takes automati-
cally into account the far-field radiation conditions reduc-
ing thus the dimensionality of the problem by one [Sey-
bert, Wu, Wu (1988)]. This means that three-dimensional
(3-D) scattering problems are accurately solved by dis-
cretizing only the two-dimensional (2-D) surface of the
scatterer and not the interior plus the infinitely extended
exterior acoustic domain as the FEM does. In the case,
where the problem is characterized by an axisymmet-
ric geometry, the BEM reduces further the dimension-
ality of the problem, requiring just a discretization along
the meridional line of the body. On the other hand, the
FEM is ideal for handling problems dealing with the dy-
namic behavior of very complicated elastic shell struc-
tures. Thus, in the literature, the most popular method for
treating coupled acoustic-structural radiation and scatter-
ing problems is that of the hybrid FEM/BEM (FEM for
the structure, BEM for the acoustic domain), where the
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advantages of the two methods are appropriately com-
bined. Here one can mention the representative works
of Schenk and Benthien (1989), Everstine and Hender-
son (1990), Zeng and Zhao (1994) and Veksler, Lavie,
Dubus (2000), Lie, Yu, Zhao (2001), Gaul, Fischer and
Nackenhorst (2002). However, in the recent publications
of Burnett and Holford (1998) and Chen and Liu (1999)
some drawbacks of the two methods have been success-
fully circumvented and only the FEM in the first and
the BEM in the later work have been efficiently used for
the solution of fluid-shell structure interaction scattering
problems. This fact indicates that as computers become
faster and numerical algorithms more optimized, individ-
ual numerical methods overcome their drawbacks and are
continually improved in efficiency.

In the context of the BEM, the main difficulty in the ap-
plication of the method to acoustic radiation and scat-
tering problems is the well-known ”ficticious eigenfre-
quency difficulty” where the exterior boundary integral
solution becomes non-unique at some eigenfrequencies
associated with interior boundary value problems. Sev-
eral methodologies for eliminating this problem have
been proposed, to date, in the literature. Among them,
the most widely used are those of the coupled Hel-
mohltz integral equation formulation (CHIEF), proposed
by Schenck (1968), and the combined integral equation
method proposed by Burton and Miller (1971), known
in the literature as the Burton and Miller formulation
(BMF).

The CHIEF utilizes the standard Helmholtz integral
equation (SHIE) and circumvents the eigenfrequency dif-
ficulty by considering additional collocation points in the
interior domain. The main problem with this methodol-
ogy is the selection of the interior points. More precisely,
it has been proven [Seybert and Rengarajan (1987)]
that the CHIEF provides eigenfrequency free SHIE only
when at least one of the interior collocation points does
not lie on a nodal surface (eigenmode corresponding to
an eigenfrequency of the related interior problem). This
requirement, in conjunction with the fact that the nodal
surfaces are not known ”a priori”, increases the compu-
tational cost of the CHIEF, since several internal points
should be considered, in order to have the high probabil-
ity of taking at least one point beyond the nodal surfaces.

Burton and Miller have proven that the linear combina-
tion of the SHIE and its normal derivative (DHIE) pro-
vides unique solutions, for all frequencies and regard-

less of the type of boundary conditions, if the coupling
complex coefficient has non-zero imaginary part. On
the other hand, Krishnasamy, Rizzo and Liu (1994) have
shown that for exterior acoustic problems, the degener-
acy, which happens when the SHIE or the DHIE are ap-
plied to the two surfaces of a very thin scatterer, can be
removed by employing the BMF. These two important
characteristics of the combined Helmholtz integral equa-
tion make the BMF to be mathematically the most desir-
able approach for treating acoustic scattering and radia-
tion problems. From a computational point of view how-
ever, the BMF has the disadvantage of requiring the treat-
ment of hyper-singular integrals coming from the DHIE.
Although several analytical semi-analytical and numer-
ical techniques dealing with the accurate evaluation of
hyper-singular integrals are available in the literature
[Tanaka, Sladek, Sladek (1994)], the numerical complex-
ity on treating this kind of integrals remains, since the
DHIE exists only at surface field points where the density
functions of the corresponding hyper-singular integrals
are Holder continuously differentiable (C (1)-continuity
difficulty) [Colton, Kress (1983)]. For a BEM code, this
means that in the discretization process, only boundary
elements, which guarantee the just mentioned continu-
ity requirement, should be chosen. One such choice is
the use of Overhauser elements [Tanaka, Sladek, Sladek
(1994); Sladek, Sladek (1999)], but these elements need
more than one degree of freedom per node, leading thus
to large systems of equations to be solved. Of course
there is always the alternative of using constant elements,
which also fulfil the C(1)-continuity requirement, but at
the cost of lower spatial and field interpolation.

To avoid the C1 continuity difficulty, Cunefare, Koop-
man and Brod (1989) and Miller, Thomas, Moyer, Huang
and Uberall (1991) proposed the use of the so-called
”off-boundary approach” where the collocation points
are placed on an internal surface usually being geo-
metrically similar to the real boundary of the scatter-
ing or radiation problem. Although this methodology
avoids the treatment of any kind of singular integrals, ap-
pears the disadvantage of requiring a parametric study
for the optimum selection of the internal collocation
points. Rego Silva (1994) circumvents the problem by
using full-discontinuous, eight-node, quadratic elements
in which the collocation points are placed inside the el-
ement, where the density function of the hyper-singular
integral is infinitely smooth. However, the use of fully-
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discontinuous elements increases drastically the compu-
tational cost of the boundary element solution. A good
alternative idea to that of using discontinuous elements
is the modified Burton and Miller algorithm (MBMA)
proposed by Ingber and Hickox (1992). According to
this methodology 9-noded quadratic continuous elements
are used, and the final BEM algebraic system of equa-
tions is obtained by collocating the SHIE at the inter-
element nodes and the integral equation, imposed by the
BMF, at the interior ninth node. Another technique is that
proposed by Wilde, Aliabadi and Power (1996), where
the C1-continuity difficulty is circumvented by employ-
ing a new interpolation scheme based on the nodal val-
ues of all elements containing the collocation point. The
main problem with this methodology is the introduction
of restrictions on the BEM mesh as well as on the loca-
tion of the collocation points where the BMF is applied.
Finally, several researchers avoid the problem by em-
ploying regularization techniques [Chien, Rajiah, Atluri
(1990); Chen, Liu (1999); Liu (2000)] on both SHIE and
DHIE, before discretization, relaxing thus the smooth-
ness requirements for DHIE.

In the BEM treatment of an acoustic wave scatter-
ing problem by an elastic shell structure, the dynamic
behaviour of the elastic medium is simulated through
the standard elastodynamic integral equation [Manolis,
Beskos (1988)] (SEIE). In that case another difficulty
to be dealt with is appeared. This difficulty concerns
the numerical evaluation of the nearly singular integrals
appearing in the SEIE when thin elastic structures are
considered and a field point is very closed to the sur-
face on which the integration is performed. Many meth-
ods have also been proposed for the accurate and ef-
ficient evaluation of those integrals. The most known
are those which utilize techniques like transformation to
line integrals after regularization [Liu (1998); Mukher-
jee, Chati, Shi (2000)], element subdivision [Lachat,
Watson (1976)], co-ordinate mappings [Telles (1987);
Huang, Cruse (1993), Yang (2000); Sladek, Sladek,
Tanaka (2000)] and Taylor expansions around the sin-
gularity [Huber, Rieger, Haas, Rucker (1997), Ma and
Kamiya (2002)].

The present work addresses a direct frequency do-
main BEM for solving 3-D axisymmetric and non-
axisymmetric, coupled acoustic-structural scattering
problems, where the scatterers are shell-like structures.
The SEIE is used for the elastic structure, while the BMF

is employed for the exterior acoustic domain, in order the
ficticious eigenfrequency difficulty to be avoided. For the
case of non-axisymmetric scatterers the C1-continuity
difficulty is circumvented by means of the MBMA. Thus,
9-noded isoparametric, conforming elements are used for
the discretization of the acoustic-elastic interface and 8-
noded elements for the rest of the boundary surface of
the shell structure. For axisymmetric geometries an ac-
curate and efficient boundary element/Fast Fourier trans-
form (FFT) methodology, which combines effectively
the works of Tsinopoulos, Kattis, Polyzos and Beskos
(1999) and Tsinopoulos, Agnantiaris, Polyzos (1999), is
proposed. According to this methodology, the bound-
ary quantities of the problem are expanded in complex
Fourier series, with respect to the circumferencial direc-
tion. Due to this expansion, each boundary integral in-
volved in the SEIE and the BMF is reduced to a line
integral along the surface generator of the body and an
integral over the angle of revolution. The first integral
is evaluated through Gauss quadrature, by employing
a 2-D boundary element methodology. The integration
over the circumferential direction is performed simulta-
neously for all the Fourier coefficients through the FFT.
The proposed here axisymmetric technique does not suf-
fer from the C1-continuity difficulty and thus the surface
generator of the scatterer can be discretized into 3-noded
conforming quadratic line elements.

Highly accurate numerical algorithms, proposed by
Guiggiani and co-workers [Guiggiani (1992), Guiggiani,
Krishnasamy, Rudolphi and Rizzo (1992)] for the direct
evaluation of the strongly singular and hypersingular in-
tegrals are employed here for both the axisymmetric and
non-axisymmetric cases. Nearly singular integrals are
evaluated numerically, with increased accuracy (0.01%),
through a practical integration technique, depending on
the parameter Dek/le with Dek being the minimum dis-
tance between the field point and the boundary element in
which the integration is performed, and l e the biggest ele-
ment side. More precisely, for Dek/le < 0.2 the integrals
are expressed in a local polar co-ordinate system (R,θ)
and the integration is performed through Gauss quadra-
ture with 4 and K integration points in angular and radial
direction, respectively. For Dek/le > 2 the integrals are
evaluated with the aid of standard Gauss quadrature uti-
lizing Λ×Λ integration points. Both K and Λ are func-
tions of Dek/le and are automatically determined via sim-
ple relations proposed here.
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Finally, two representative numerical examples concern-
ing the scattering of a plane wave by a spherical and a
cylindrical with hemispherical end-cups shell are pre-
sented. The aim of these two numerical examples is
twofold: first to demonstrate the high accuracy of the
proposed here direct frequency domain BEM and second
to illustrate some very interesting remarks concerning the
convergence of the BEM at resonances occurring in the
intermediate frequency range.

2 Formulation of the problem

2.1 Boundary integral equations

When dealing with sound-shell structure interaction
problems, a hybrid state is considered, which involves
coupling between the motion of an elastic shell and the
corresponding domain where acoustic waves are prop-
agating. More specifically, when a linearly elastic,
isotropic and homogeneous body of volume V e is sub-
merged into an infinite acoustic domain (see Fig.1), then,
by assuming harmonic time dependence of the displace-
ment and pressure fields, the governing equation describ-
ing the motion of the elastic body, is the well known
Navier-Cauchy equation [Manolis and Beskos (1988)],
while the one valid for the wave propagation in the
acoustic domain is the Helmholtz equation [Rego Silva
(1994)].

The complete boundary value problem, demands the
implication of appropriate boundary conditions defined
over the elastic boundary Se and the interface s between
the two media i.e.

t(x) = 0 x ∈ Se

u(x) ·ne(x) = − 1
ρ0ω2 · ∂ p(x)

∂nα (x)
t (x) ·nα (x) = p (x)

}
x ∈ s

(1)

where ne, nα are the unit normal vectors at the surface
point x, defined by the elastic and acoustic domain, re-
spectively, ρ0 is the density of the acoustic medium and
ω is the angular frequency of oscillation. The vectors u
and t stand for the displacement and traction vectors on
the elastic side, while the scalar functions pand ∂p/∂n a

refer to the acoustic pressure and its normal gradient on
the acoustic side, respectively.

The starting point for the solution of any structural-
acoustic problem via the BEM, is to reformulate it in

 
 

Figure 1 : Elastic shell illuminated by a plane acoustic
wave

terms of the appropriate system of integral equations. To
this end, the integral equation valid for the elastic domain
is the SEIE

c1 (x) ·u (x) (2)

=
∫

Se+s
[u∗ (x,y) · t(y)− t∗ (x,y) ·u(y)]dS(y) ,

where x represents the field point at which the displace-
ment field u is evaluated and y the boundary source
points at which the density functions are defined. The
tensors u∗(x,y) and t∗(x,y) are the fundamental displace-
ment and traction of the Navier-Cauchy elastodynamic
equation [Manolis and Beskos (1988)]. The correspond-
ing integral equation valid for the acoustic domain is the
SHIE, which is written as

c2 (x) · p (x) (3)

=
∫

s

[
G(x,y)

∂ p (y)
∂ny

− ∂G(x,y)
∂ny

p (y)
]

dS(y)+ pi(x),

with G(x,y) being the fundamental solution of the
Helmholtz equation [Rego Silva (1994)], ∂G(x,y)

∂ny
is its

normal derivative, with respect to point y, and pi(x) is
the incident pressure. The scalars c1(x) and c2(x) appear-
ing in (2) and (3) are the well known jump coefficients,
which obtain the values c1(x)=1, c2(x)=0 for x∈ Ve,
c1(x)=0, c2(x)=1 for exterior to the scatterer points and
c1(x)=1/2 for x∈ Se∪s, c2(x)=1/2 for x∈ s, for a smooth
boundary.

It is well known from the literature, that equation (3),
when it is applied for the modelling of exterior problems
fails to provide a unique solution at certain frequencies,
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which are called fictitious eigenfrequencies. To circum-
vent this difficulty, the present work employs the BMF
[Burton and Miller (1971)], which is a linear combina-
tion of equation (3) and its normal derivative, with re-
spect to the field point x. This equation is written as

c (x)
[

p (x)+ε
∂ p(x)
∂nx

]
∫

s

[{
G(x,y)+ε

∂G(x,y)
∂nx

}
∂ p(y)
∂ny

−
{

∂G(x,y)
∂ny

+ε
∂2G(x,y)
∂nx ∂ny

}]
p (y)dS(y)

+
[

pi (x)+ε
∂pi (x)

∂nx

]
(4)

where the coupling coefficient ε takes the value i/k,
where i =

√−1 and k is the acoustic wavenumber.

2.1.1 Boundary integral equations for axisymmertric
scatterers

In case when the coulped acoustic-structural scattering
problem is characterised by an axisymmetric geometry
with respect to the X3 axis, of a rectangular coordinate
system (X1,X2,X3), then the integral equations (2) and (4)
can be reduced to integral equations defined only on the
boundary surface generator line Γ = Γe +γ of the struc-
ture and over the angle of revolution ϕ (see Fig.2) of the
associated cylindrical coordinate system (ρ,ϕ, z).

Here, the line Γe stands for the generator of the elastic
boundary Se and line γ for the elastic/acoustic interface
generator. All the displacement and traction vectors as
well as the fundamental solution tensors in Eq.(2) are ex-
pressed in the cylindrical orthogonal basis, through the
operation of an orthogonal transformation matrix relat-
ing the cylindrical and rectangular components of a vec-
tor. Of course this is not the case for the scalar quanti-
ties in Eq.(4), where the axisymmetric nature of the free
space Green’s function G permits a straightforward ex-
pression of those equations, in terms of the cylindrical
co-ordinates. Next, all the boundary quantities of the two
integral equations, the boundary conditions and the inci-
dent acoustic wave, are expanded into discrete complex
Fourier series with respect to the polar angle ϕ. The se-

 

Figure 2 : Axisymmetric shell and its geometry

ries summation is performed over a number of harmon-
ics, which are enough to express the, in general non-
axisymmetric, incident field over the circumference with
a reasonable accuracy. All the expansion coefficients
are computed through the FFT algorithm [Cooley, Tukey
(1965)]. Inserting all the Fourier expansions into Eqs(2)
and (4) and invoking orthogonality arguments, one ob-
tains the final axisymmetric integral equations for the nth

Fourier boundary coefficient as:

c (X) ·uc
n (X) =

∫
Γe+γ

ρYU(n) (X,Y) · tc
n (Y) dΓY

−
∫

Γe+γ
ρYT(n) (X,Y) ·uc

n (Y) dΓY (5)

c(X)
[

pn (X)+ε
∂ pn(X)

∂nX

]
=

∫
Γe+γ

ρY

{
G(n) (X,Y)+ε

∂G(n) (X,Y)
∂nX

}
∂ pn(Y)

∂nY
dΓY

−
∫

Γe+γ
ρY

{
∂G(n) (X,Y)

∂nY
+

∂2G(n) (X,Y)
∂nX ∂nY

}
pn(Y)dΓY

+
[

pi
n (X)+ε

∂ pi
n(X)

∂nX

]
(6)
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where ρY is the radial co-ordinate of the field point. All
the kernels U(n)(X,Y),T(n)(X,Y),{

G(n)(X,Y)+ε∂G(n)(X,Y)
∂nX

}
and

{
∂G(n)(X,Y)

∂nY
+ε∂G(n)(X,Y)

∂nY

}
in the above equations are written in general form, as in-
tegrals of the transformed fundamental solutions over the
circumferential direction φ like

F (n)(X,Y) =
∫ 2π

0
F∗

c (X,Y,ϕ)einϕdϕ (7)

with X(ρx, zx), Y(ρy, zy) being the source and the field
point, respectively, belonging to the surface generators
on which Eqs.(5) and (6) are defined and ϕ = ϕ y −ϕ x.
The angle φx takes the value 0, because it is assumed that
the surface generator of the axisymmetric body lies on
the X1 −X3 plane. Thus, the angle φy is always the same
with angle φ and corresponds to the angle of revolution
of the field point y. More details about the axisymmet-
ric BEM formulation for acoustic and elastic problems
can be found in the works of Tsinopoulos, Agnantiaris,
Polyzos (1999) and Tsinopoulos, Kattis, Polyzos, Beskos
(1999).

3 BEM formulation

3.1 Non-axisymmetric problems

Numerical solution of equation (2) in conjunction with
equation (4) is possible, when the boundaries Se and
s (Fig. 1) of the problem are discretized into two-
dimensional isoparametric elements with piecewise in-
terpolants for the associated field functions. These in-
terpolants may be constant, linear or quadratic. In the
present work, 9-noded and 8-noded quadratic isopara-
metric elements are used. In case of smooth bound-
aries, the elements are continuous. When the boundaries
present discontinuities, such as corners or edges, or when
there are sudden changes in the boundary conditions be-
tween neighbouring elements, then the field values are in-
terpolated in nodes, which are shifted inside the element
and as a consequence the elements become partially or
fully discontinuous, depending on how many sides of the
element contain nodes, which are shifted inwards [Rego
Silva (1994)].

As it is mentioned in the introduction, the use of the Bur-
ton and Miller integral equation (4), introduces a compu-
tational difficulty known as the C (1)-continuity difficulty,
which appears due to mathematical arguments. Specifi-
cally, equation (4) contains a hyper-singular integral, the

second one in the right-hand side, which exists in the
Hadamard finite part sense [Rego Silva (1994)]. In or-
der this integral to exist, the function p should be Holder
continuously differentiable [Colton, Kress (1983)]. From
a computational point of view, this fact means that in or-
der to interpolate properly the acoustic pressure p over
a smooth boundary, elements that guarantee the conti-
nuity of the first derivative of p should be chosen. One
such choice is the Ovehauser elements [Tanaka, Sladek,
Sladek (1994), Sladek, Sladek (1999)], but these ele-
ments need more than one degree of freedom per node,
leading thus to a large system of equations to be solved.
Another possible choice, but certainly more attractive
than the previous one, is the choice of the fully discon-
tinuous elements, mentioned above, where all the nodes
used for the interpolation of the pressure field are in-
side the element where the continuity of the derivative
is given. However, this choice is still uneconomical
since every element on a smooth surface introduces no
less than 8 degrees of freedom, for a typical 8-noded
quadratic element, leading to large amount of equations,
as compared with the use of continuous elements. Of
course, there is always the alternative of choosing con-
stant elements, which also guarantee the derivative con-
tinuity requirement, but at the cost of low-order spatial
and field interpolation.

A good alternative to all the above mentioned techniques
is the modified Burton and Miller algorithm (MBMA)
first proposed by Ingber and Hickox (1992). According
to this algorithm, also adopted in the present work, 9-
noded quadratic continuous elements are employed and
the SHIE (3) is written at the inter-element nodes, while
equation (4) is written at the interior (9 th) node, in or-
der to generate the final system of equations. In this
way, the derivative continuity requirement for Eq.(4) is
fulfilled and the fictitious eigenfrequency problem is cir-
cumvented efficiently. Of course, this algorithm is not
restricted to the use of only 9-noded quadratic elements
since any element configuration with interior nodes can
be also used.

Thus, in the present work, the interface s between the
acoustic and the elastic spaces is disretized into 9-noded
elements, while any other kind of quadratic continuous
elements, such as 8-noded or triangular 6-noded ones, are
used for the discretization of the internal elastic boundary
Se. The BEM collocation procedure makes use of the
Burton and Miller integral equation (4) for the 9 th node
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of each element, while collocation to all the remaining
nodes is performed by applying the SHIE (3).

Let us now consider a given boundary mesh, which in-
volves Ne+Nα total number of nodes for the elastic space,
including the nodes lying on the elastic boundary Se and
those lying on the interface sand Nα nodes for the acous-
tic space, lying on the acoustic side of the interface s.By
collecting the discrete equations for all the nodes, one ob-
tains two uncoupled systems of equations, one for each
space. For the elastic structure, the system is written as

[Ae] {ue}+[Aeα ] {ueα}− [Beα ] {teα} = [Be] {te} (8)

while, for the acoustic domain is written as

[Cα] {pα}+[Ceα ] {peα}−[Deα ]
{

∂ peα

∂nα

}
=

{
pi +ε

∂ pi

∂nα

}
(9)

In the above systems, the subscripts eand eα denote inte-
gral influences and vector or scalar quantities referring to
the elastic boundary and the interface boundary, respec-
tively. The final coupled system of equations is derived
with the aid of the boundary conditions (1) and is written
as

[
Ae Aeα −B∗

eα
0 D∗

eα Ceα

]


ue

ueα
peα




=
{

Be · te

0

}
+

{
0

pi +ε ∂ pi

∂nα

}
(10)

where

[Beα ] {teα} = [Beα ·nα ] {peα} = [B∗
eα ] {peα} (11)

and

[Deα]
{

∂ peα

∂nα

}
= [Deα]

{−ρ0ω2ueα ·ne} = [D∗
eα ] {ueα}

(12)

The matrix of the final system in Eq.(10) have dimen-
sions (3(Ne+Nα)+Nα)×(3(Ne+Nα)+Nα) and as soon as
the rearrangement of the known and unknown quan-
tities is carried out, the system is solved numerically
via the LU decomposition algorithm [IMSL (1994)]. It
should be noticed here that this matrix is in general ill-
conditioned, so in order to provide a reliable solution

it should be properly scaled. The scaling chosen in the
present work is the one used in the work of Goswami and
Rudolphi (1993). According to that work the submatri-
ces B∗

eα and D∗
eαare multiplied by the factors µ/l and l /µ,

respectively, where µ is the elastic shear modulus and l
is the maximum distance between two nodes on the dis-
cretized boundary.

3.2 Axisymmetric problems

For the numerical solution of the axisymmetric integral
equations, the meridional line of the shell (see Fig. 2), is
discretized into 3-noded quadratic isoparametric bound-
ary elements. Corners or points on the symmetry axis z
where ρ = 0 are treated by partially discontinuous ele-
ments. As it is shown in the work of Tsinopoulos, Ag-
nantiaris, Polyzos (1999), the proposed here axisymmet-
ric boundary element methodology does not suffer from
the C(1)-continuity difficulty. Thus, Eq.(6) is collocated
at all the nodes of the discretized boundary generator, in
contrast with the aforementioned non-axisymmetric for-
mulation, where the Burton and Miller equation is ap-
plied only for the middle node of a continuous 9-noded
quadratic element. The integration over each element is
performed numerically through standard Gauss integra-
tion on local basis. The integration over the circumfer-
encial direction (Eq.(7)) is performed simultaneously for
all the (n) harmonics of the problem, with the use of the
FFT algorithm. Following the same steps as in paragraph
3.1, the final system of equations is the same with the one
of Eq.(10), except that now, this system is valid for each
of the expanding Fourier coefficients (n). As soon as the
system is solved for each harmonic (n), the overall so-
lution of the unknowns is obtained by Fourier synthesis
over all the harmonics.

4 Evaluation of singular integrals

4.1 Weakly and strongly singular integrals

In the present work, the non-singular integrals over each
element are evaluated numerically through the standard
Gauss quadrature on local basis, utilizing a minimum
of 5×5 integration points. When x≡y, the integral
equations (2) and (4) become singular with various or-
ders of singularity. More specifically, integral equation
(2) contains a weakly singular integral (O(1/r)) and a
strongly singular one (O(1/r 2)), with the later existing
in the Cauchy principal value sense, corresponding to
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the u∗(x,y) and t∗(x,y) kernels, respectively. Also, inte-
gral equation (4) contains weakly singular integrals and
a hyper-singular integral (O(1/r 3)), which exists in the
Hadamard’ s finite part sense, corresponding to the sec-
ond derivative of the Green’ s function. In all cases,
the singular integration is carried out directly, in terms
of a local polar co-ordinate system, over the element on
which the singular point belongs. This is accomplished
with the aid of the highly accurate integration algorithms
of Guiggiani (1992) and Guiggiani, Krishnasamy, Rudol-
phi, and Rizzo (1992) by making use of 6 Gauss points
on both the local radial and polar directions.

In the axisymmetric BEM formulation, the singular in-
tegration, for every singular case is carried out in two
steps. First, over a 3-D element created around the sin-
gular point, by also applying the aforementioned highly
accurate integration algorithms and second over the rest
of the circumferential direction, with the use of the
non-periodic FFT algorithm. The singular integration
method for Eqs.(5, 6) is described in detail in the works
of Tsinopoulos, Kattis, Polyzos and Beskos (1999) and
Tsinopoulos, Agnantiaris and Polyzos (1999).

4.2 Nearly-singular integrals

Considering a thin elastic shell, which is submerged into
an infinite acoustic domain, a difficult situation to be
dealt numerically is appeared. This difficulty concerns
the numerical evaluation of the nearly singular integrals
appearing in the SEIE, when a field point x is very close
to the surface at which the integration is performed and
the fundamental kernels of Eq.(2) grow rapidly in the
rates of O(1/r) and O(1/r 2), respectively. The fact that
makes this situation difficult to be treated is that the in-
tegration point does not belong to the same element with
the field point x, so limiting processes like those used by
Guiggiani and co-workers for the singular case, are not
straightforward applicable.

The simplest way to evaluate accurately nearly singu-
lar integrals is to determine the number of integration
points, used in a standard Gauss quadrature, with the aid
of simple relations giving the number Λ of a Λ×Λ total
number of integration points over the element of integra-
tion. Such a relation has been established in the work
of Tsinopoulos, Kattis, Polyzos and Beskos (1999) for
the evaluation of strong nearly-singular integrals, with
required integration accuracy of 0.01%. In the present
work, a new similar formula is proposed for the numeri-

cal evaluation of the integrals with a desired accuracy of
0.001%. This formula is written as

Λ = INT

[
1+2.53 ·

(
Dek

le

)−1.08
]

, (13)

where Dek is the minimum distance between a field point
xk and an element e, le is the biggest element side and
INT denotes the next lower integer. A study made in the
framework of the present paper revealed that the above
written relation proposes the use of 15×15 Gauss in-
tegration points for a Dek/le ratio equal to 0.2, while
for lower ratio values the number Λ grows rapidly lead-
ing to the use of 774×774 Gauss inegration points for
Dek/le=5×10−3. As it is evident, the use of relation (13)
for the accurate evaluation of nearly-singular integrals
is acceptable, in terms of efficiency, only for ratio val-
ues greater than 0.2 and the minimum number of Gauss
points proposed is 5×5. As a consequence this relation
is adopted in the present work, only for Dek/le≥0.2.

It is well known in the BEM community that for al-
most all categories of scattering problems, accuracy rea-
sons impose a discretization rule, according to which, the
maximum element side le, of all the quadratic elements
of the mesh, should satisfy the relation l e ≤ λ/

4, where
λ is the wavelength of the acoustic excitation. Follow-
ing this rule in the present work, the meshes resulted for
the low to mid-frequency range, gave a minimum ratio
Dek/le of 5×10−3. This means that the evaluation of the
nearly singular integrals through the standard Gauss in-
tegration and the relation (13) becomes inefficient and
thus the whole procedure should be replaced by another
one which provides accuracy, as well as efficiency. The
new procedure proposed here is more efficient from the
previous one and it is described in detail in what follows.
The integrals of Eq.(2) are written in the local co-ordinate
system (ξ1, ξ2) of the element eas:

B=
1∫

−1

1∫
−1

u∗
(

xk,ye(ξ1,ξ2)
)
·Nα (ξ1,ξ2)·J(ξ1,ξ2)dξ1 dξ2

(14)

A=
1∫

−1

1∫
−1

t∗
(

xk,ye(ξ1,ξ2)
)
·Nα (ξ1,ξ2) ·J(ξ1,ξ2)dξ1 dξ2
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(15)

where Nα are the quadratic shape functions, ye is an in-
tegration point and J(ξ1,ξ2) is the magnitude of the Ja-
cobian of the transformation between the global and the
local co-ordinate system. The integrals are further ex-
pressed in terms of the local polar co-ordinate system,
with its origin located on the projection point x p, which
is the point that belongs to the element eand is the nearest
one to the field point xk. As it is evident, the amplitude∣∣xp−xk

∣∣defines the minimum distance Dek and the dis-
tance

∣∣ye−xk
∣∣, appearing in Eqs.(14) and (15), is equal

to Dek+R, with Rbeing the radial co-ordinate of the local
polar co-ordinate system. It should be noticed here that
in the present formulation, the minimum distance Dek, as
well as the local co-ordinates

(
ξp

1 ,ξp
2

)
of the projection

point, are calculated accurately and efficiently, through
the use of a quasi-Newton optimization algorithm, avail-
able in the IMSL numerical library [IMSL (1994)]. The
integrals (14) and (15) are written now as:

B =
l

∑
m=1

∫ θm
2

θm
1

∫ Rmax(θ)

0
Bm(R,θ)RdRdθ (16)

A =
l

∑
m=1

∫ θm
2

θm
1

∫ Rmax(θ)

0
Am(R,θ)RdRdθ (17)

where Am, Bm are the integrand quantities of integrals
(15) and (14) expressed in the local polar co-ordinate sys-
tem (R, θ). The integration is performed with the use of
the standard Gauss quadrature and for this purpose the
element is split into l triangles. The integration points
are now defined on each triangle, over the radial R and
the angular θ directions, respectively. As it is obvious
from Eqs.(16, 17), the final value of the integral is the
sum of the integrals over each triangle. In case when the
projection point x p belongs to more than one elements,
then the final value of the integral is composed by sum-
ming the resulted integral values of all the related ele-
ments. This way of computing the nearly singular inte-
grals has the advantage that the nearly singular behaviour
of the kernels is taken into account along the radial polar
co-ordinate only. As a consequence, the integration accu-
racy is depended only on the number of Gauss integration
points over the radial (R) direction. Thus, the integration
in Eqs.(16) and (17) is performed with the aid of a stan-
dard Gauss quadrature involving K×4 integration points,
where K is the number of the radial integration points and

is given by the relation

K = INT

{
61.2+59.5· log

[(
1.−

(
Dek
le

)3.45×10−5)0.617

+4.15×10−3·
(

Dek
le

)−1
+0.124

]}
.

(18)

This relation has been established through an opti-
mization procedure, like that followed in the work of
Tsinopoulos, Kattis, Polyzos and Beskos (1999), in or-
der to evaluate nearly singular integrals with accuracy of
0.01 %. The maximum value of K is 116 for the min-
imum ratio value considered Dek/le =5×10−4 and the
minimum value of K is 8 for the maximum ratio value
of 0.2. Considering the worst case of spliting an element
e into 8 triangles (the projection point is located in the
interior of the element e), the just described procedure
with Eq.(18) proposes a total of 116×4×8=3712 Gauss
points for the evaluation of the nearly singular integral,
which is a considerable improvement over the 774×774
Gauss points that Eq.(13) proposes, for even a greater ra-
tio value (5×10−3).

Similarly to the non-axisymmetric formulation, the nu-
merical integration of nearly-singular integrals along the
surface generator line, referring to Eq.(5), is performed
with respect to the ratio Dek/le, where now le is sim-
ply the length of the line element e. When the ratio is
greater than 0.2, then the standard Gauss quadrature is
performed, utilizing Λ integration points, with Λ given
by the relation (13). The integration over the circumfer-
encial direction is carried out through the FFT algorithm
utilizing FFT points also given by optimized relations as
they are provided in the works of Tsinopoulos, Kattis,
Polyzos and Beskos (1999) and Tsinopoulos, Agnantiaris
and Polyzos (1999). In order to follow the same proce-
dure as in the non-axisymmetric formulation, when the
ratio Dek/le belongs in the interval [5×10−4, 0.2] a 3-D
boundary element abcdis created, with respect to the line
element e of the discretized generator (see Fig. 3).

As described in Tsinopoulos, Agnantiaris and Polyzos
(1999), the integrals of equation (5) are split into two in-
tegrals in the circumferential φ direction. One defined
on the created 3-D element (-φe, φe) and the other over
the remaining integration region (φe, 2π- φe). The an-
gle φe is always an integer multiple of the angle step ∆φ,
resulting by the division of the circumference into M seg-
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Figure 3 : 3-D Element around the nearly singular point

ments, and is calculated automatically, so one can write
that φe = j∆φ. According to eq.(7) the integrals now be-
come

U(n) = U(n)(1) +U(n)(2)

T(n) = T(n)(1) +T(n)(2) (19)

where

{
U(n)(1)

T(n)(1)

}
=

∫ j∆ϕ

− j∆ϕ

{
u∗

c

(
Xk,Y(ξ1),ϕ

)
t∗c

(
Xk,Y(ξ1),ϕ

) }
einϕdϕ (20)

{
U(n)(2)

T(n)(2)

}
=

∫ 2π− j∆ϕ

j∆ϕ

{
u∗

c

(
Xk,Y(ξ1),ϕ

)
t∗c

(
Xk,Y(ξ1),ϕ

) }
einϕdϕ

and Y(ξ1) is an integration point on the line element,
which is a function of its local co-ordinate ξ 1. The polar
angle φ is expressed inside the 3-D element as a function
of a second local co-ordinate ξ2 as follows

ϕ (ξ2) = j∆ϕ · ξ2, ξ2 ∈ [−1, 1] . (21)

Thus, the integrals of eq.(5) are treated as surface inte-
grals over the created 3-D element and their full expres-
sions in the local co-ordinate system ξ 1-ξ2 are the fol-
lowing

B(n)(1) =
∫ 1

−1

∫ 1

−1
ρYe(ξ1)

{
u∗

(
Xk,ye(ξ1,ξ2)

)
·D(ϕ (ξ2))

}
einϕ(ξ2)Nα (ξ1)JϕJξ1

dξ1dξ2 (22)

A(n)(1) =
∫ 1

−1

∫ 1

−1
ρYe(ξ1)

{
t∗

(
Xk,ye(ξ1,ξ2)

)
·D(ϕ (ξ2))

}

einϕ(ξ2)Nα (ξ1)JϕJξ1
dξ1dξ2 (23)

where D is the orthogonal transformation matrix relating
the cylindrical and rectangular components of the funda-
mental solution tensors u∗ and t∗, Nα are the shape func-
tions of the line element and Jφ = j∆φ is the Jacobian of
the transformation in eq.(19). In complete analogy to the
non-axisymmetric formulation, those integrals are trans-
formed into a local polar co-ordinate system, with origin
located on the point X p of the element e, which is the
nearest one to the field point Xk (Fig.5). Following the
latter transformation, the integrals are written as

B(n)(1) =
l

∑
m=1

∫ θm
2

θm
1

∫ Rmax(θ)

0
Bm(R,θ)dRdθ (24)

A(n)(1) =
l

∑
m=1

∫ θm
2

θm
1

∫ Rmax(θ)

0
Am(R,θ)RdRdθ, (25)

where now Bm and Am are the integrands of Eqs.(22)
and (23), expressed in the local polar co-ordinate sys-
tem. The numerical integration of Eqs.(24) and (25)
follows exactly the same steps as the one for the non-
axisymmetric case and is characterized by the same
conclusions, meaning that Eq(18) is again used when
Dek

/
le ∈

[
5×10−4,0.2

]
. The circumferential integrals

U(n)(2) and T(n)(2) are computed through a non-periodic
FFT algorithm simultaneously for all the harmonics n.

5 Numerical examples

Two representative numerical examples concerning the
acoustic wave scattering problems from axisymmetric
elastic shells are solved here, in order to demonstrate the
accuracy of the proposed BE methodology. The results
of the present work are compared with analytically ob-
tained solutions or numerical results taken by other inves-
tigators and useful conclusions about the solution conver-
gence of such problems are provided.

5.1 Acoustic scattering by a spherical elastic shell

An elastic spherical shell made of steel (E=2.07×10 11

Pa, ν=0.3 and ρ=7810. kg/m3) is considered and is sub-
merged into seawater (c=1500. m/sec, ρ0=1026. kg/m3).
The shell is characterised by a thickness to radius ratio
h/α = 0.01 and is exposed to a plane incident acoustic
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wave travelling in the spherical co-ordinate direction (θ,
ϕ) = (0 ˚ , 0 ˚ ), or alternatively, along the axis X3 on the
−x̂3 direction. The back scattering amplitude, or else
the form function, is computed for the range of dimen-
sionless frequencies kα = 0÷8. This problem exhibits
symmetry on both the excitation and the geometry, with
respect to the X1 −X2 and X1 −X3planes. Referring to
the solution of the present scattering problem with the
aid of the 3-D BEM formulation, one quarter of the in-
ternal and interface boundary surfaces is discretized into
90 8-noded and 9-noded (interface) quadratic continuous
elements, respectively, as it is depicted in Fig. 4. This
mesh provides a minimum Dek/le ratio of 0.0573 and
corresponds to 4 elements per wavelength with respect
to the dimensionless frequency kα = 9.

In order to solve the present problem with the aid of the
axisymmetric BEM formulation, the half of the internal
and the interface surface generator lines on the X1−X2 of
the spherical shell are discretized into 10 quadratic ele-
ments resulting to a minimum ratio Dek/le = 0.0636. This
mesh corressponds to 4 elements per wavelength with re-
spect to the dimensionless frequency kα = 10. The inci-
dent plane acoustic wave is now propagating along the
spherical co-ordinate direction (θ, ϕ) = (90 ˚ , 0 ˚ ), or
else, along the axis X1 on the −x̂1 direction. As it is
evident the incident field in the present case is not ax-
isymmetric over the circumferential ϕ direction, so more
than one harmonic (n) are necessary for the solution on
each frequency. The results obtained by using both for-
mulations are compared with those obtained by the 3-D
analytical solution, given in the work of Gaunaurd and
Werby (1990), in figures. 5(a, b). The agreement be-
tween the present BEM and the analytical solution is ex-

Figure 4 : One-quarter discretization of the shell bound-
ary surface

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

ka

D
ek

/l
e
 = 0.0573

h/a = 0.01

 

 Analytical solution

 Present 3D BEM

S
ca

tt
er

in
g
 a

m
p
li

tu
d
e

(a)

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

D
ek

/l
e
 = 0.0636

h/a = 0.01

 

  

ka

S
ca

tt
er

in
g
 a

m
p
li

tu
d
e

 Analytical solution

 Present Axisymmetric BEM

(b)
Figure 5 : Back scattering amplitude frequency response
(a) 3-D BEM (b) Axisymmetric BEM

cellent for the axisymmetric BEM and very good for the
3-D BEM, where a slightly denser mesh would correct
the position of the two points lying on the first two reso-
nance peaks.

5.2 Acoustic scattering by a cylindrical shell with
hemispherical endcaps

The present example concerns the acoustic plane wave
scattering by a cylindrical shell with hemispherical end-
caps. The two hemispherical endcaps of the shell are
characterised by an internal radius b and an external
one a and the relative thickness of the shell is h=(a−
b)/a=0.03125. The relative length l of the shell’s cylin-
drical part is taken as l = L/πa=0.5, where L is the
length of the cylindrical part. In the present numeri-
cal example, the shell is made by aluminium (E=71.32
Gpa, v=0.33, ρ=2790 kg/m3) and is immersed in water
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(c=1470. m/sec, ρ0=1000. kg/m3). The incident plane
acoustic wave impinges in a direction parallel to the axis
of revolution zof the shell and as a result the incident field
is axisymmetric, requiring thus only one harmonic for
its accurate representation. This scattering problem has
been recently attracted the interest of various researchers
[Chen and Liu (1999); Maury, Filippi, Habault (1999);
Veksler, Lavie and Dubus (2000)]. In the work of Vek-
sler, Lavie and Dubus (2000), the problem is solved by
employing the FEM for the motion of the elastic shell,
while the infinite acoustic domain is modelled with aid
of the BEM, based on the Helmholtz boundary integral
equation. Both FEM and BEM are applied in an ax-
isymmetric way and are solved in a coupled manner, with
the BEM system of equations being over-determined by
adding null-field equations, in order to avoid the fictitious
eigenfrequencies difficulty.

This problem is solved here with the aid of the axisym-
metric BEM formulation. The first mesh considered
refers to a discretization of the internal and interface
boundary surface generator lines into a total of 150 El-
ements. This mesh corresponds to 4 elements per wave-
length with respect to a dimensionless frequency kα = 25,
while the minimum Dek/le ratio is 0.497. The resulting
back scattering amplitude frequency response is plotted
in Fig. 6 up to a dimensionless frequency kα = 5. In
the same figure, the solution obtained by the FEM-BEM
approach of Veksler, Lavie and Dubus (2000), under a
4 element per wavelength, with respect to a kα = 40 di-
mensionless frequency, discretization is co-plotted. As it
is obvious, the current BEM solution does not represent
with high accuracy the resonances existing at dimension-
less frequencies kα ≥ 3.

Two additional discretizations are used which correspond
to 4 elements per wavelength, with respect to the fre-
quencies kα = 35 and kα = 40, or alternatively to ratios
Dek/le = 0.696 and Dek/le = 0.796, respectively. The re-
sults are shown at Figs 7(a, b) and 8(a, b).

It is apparent from figures 7 and 8, that convergence
have been already acccomplished with the use of the
discretization, corresponding to the ratio D ek/le=0.696.
For the present example, the so far obtained results in-
dicate that the accurate determination of the resonances
occuring in the intermediate frequency range requires a
boundary discretization which exceeds the usual 4 ele-
ments per wavelength criterion. Specifically, the present
example showed that in order to represent with high ac-
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Figure 6 : Back scattering amplitude frequency response
for cylindrical shell with hemispherical endcaps (150 El-
ements)

curacy the resonance peaks existing up to the dimen-
sionless frequency kα = 5 the discretization must result
to 28 elements per wavelength, with respect to this fre-
quency. Furthermore, it can be seen that the ratio Dek/le
= 0.696, corresponding to this mesh, is outside the region
that special numerical methodologies are used for the ac-
curate and efficient evaluation of the nearly singular in-
tegrals. In other words, this means that for the present
discretization all the integrals, where x	=y, become reg-
ular. The immediate conclusion is that for the present
example, specific efficient algorithms for the evaluation
of the nearly singular integrals are only needed when the
frequency range of interest is small (kα¡ 3) or when the
relative thickness of the scatterer is extremely small (h/α¡
0.01).

In order to compare the rate of convergence of the cur-
rent BEM solution referring to the present non-spherical
scatterer shape to the convergence rate of the solution of a
corresponding spherical one, a second auxiliary problem
is solved. This problem concerns the acoustic scattering
by a spherical shell of the same thickness and material as
those characterising the cylindrical shell with the hemi-
spherical endcaps. The half of both surface generator
lines is discretized similarly to the hemispherical endcaps
generators part, meaning that 4 elements per wavelength
are used, with respect to kα = 25. Also in the present
case more than one harmonic are taken into account in
the analysis. The latter mesh results to a total number
of 50 elements and figures 9(a, b) depict the form func-
tion resulted by the present axisymmetric BEM for the
frequency ranges kα =0÷5 and kα =0÷25, respectively.
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Figure 7 : Back scattering amplitude frequency response
for cylindrical shell with hemispherical endcaps (210 El-
ements) (a) kα =0÷5, (b) kα =0÷25

The agreement between the present results to those ob-
tained by the analytical solution [Gaunaurd and Werby
(1990)] is excellent.

Furthermore, the same spherical shell problem is solved
again by using a denser discretization, which results to
4 element per wavelength, with respect to kα = 40 (80
elements in total), and the results depicted in Figs. 10(a,
b), for the same two frequency ranges as before, verify
that convergence has been achieved.

Further investigation has shown that, for the present
problem of the spherical shell, convergence can be ac-
complished with coarser discretization than that corre-
sponding to kα=25. The difference in the convergence
of the two problems considered in the present paragraph
can be explained as follows:

Comparing the figures 7 and 9 one can see that the back
scattering amplitude of the spherical shell does not ap-
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Figure 8 : Back scattering amplitude frequency response
for cylindrical shell with hemispherical endcaps (240 El-
ements) (a) kα =0÷5, (b) kα =0÷25

pear any significant resonance peaks at the intermediate
frequencies as in the case of the cylindrical shell with the
two hemispherical endcaps. Thus, the correct location of
the intermediate resonances requires a denser discretiza-
tion than that proposed by the standard 4 elements per
wavelength criterion.

6 Conclusions

In the present work, a general-purpose acoustic-elastic
interaction BEM formulation is presented. This for-
mulation is capable of solving acoustic scattering prob-
lems by elastic shells, either being axisymmetric or non-
axisymmetic, with high accuracy. Its main advantage, is
that it makes use of the integral equations, for both the
elastic and acoustic fields, in their direct form, avoiding
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Figure 9 : Back scattering amplitude frequency response
for the spherical shell (50 Elements). (a) kα =0÷5, (b)
kα =0÷25

thus any ”a-priori” regularization. ¿From a computa-
tional point of view, an effort has been made to numer-
ically implement the system of the direct boundary in-
tegral equations in the most possible efficient way. In
the context of this effort, useful observations and con-
clusions, concerning the crucial issue of treating the
nearly singular integrals in the BEM, were presented.
The numerical results clearly demonstrate the accuracy
of the present formulation. Furthermore, it has been ob-
served that for arbitrarily shaped shell scatterers of av-
erage thickness (0.01¡h/α¡ 0.05) the accurate prediction
of the back scattering resonances at the intermediate fre-
quencies through the BEM requires a denser discretiza-
tion than that proposed by the well known 4 elements per
wavelength criterion. The latter observation leads to the
conclusion that efficient treatment of nearly singular in-
tegrals is useful when the frequencies of interest are low
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Figure 10 : Back scattering amplitude frequency re-
sponse for the spherical shell (80 Elements). (a) kα
=0÷5, (b) kα =0÷25

(kα¡ 3), or when the elastic shell is very thin (h/α¡ 0.01).
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