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Analysis of Materials with Strain-Gradient Effects: A Meshless Local
Petrov-Galerkin(MLPG) Approach, with Nodal Displacements only

Z.Tang, S. Shen and S.N. Atluri1

Abstract: A meshless numerical implementation is
reported of the 2-D Fleck-Hutchinson phenomenologi-
cal strain-gradient theory, which fits within the frame-
work of the Toupin-Mindlin theories and deals with first-
order strain gradients and the associated work-conjugate
higher-order stresses. From a mathematical point of
view, the two-dimensional Toupin-Mindlin strain gradi-
ent theory is a generalization of the Poisson-Kirchhoff
plate theories, involving, in addition to the fourth-order
derivatives of the displacements, also a second-order
derivative. In the conventional displacement-based ap-
proaches in FEM, the interpolation of displacement re-
quires C1 –continuity (in order to ensure convergence
of the finite element procedure for 4th order theories),
which inevitably involves very complicated shape func-
tions. These shape functions involve large numbers of
degrees of freedom in every element, including nodal dis-
placements, nodal rotations (i.e. first order gradients of
displacement), and even higher order derivatives. C1-
continuous methods are mostly feasible only for one-
dimensional problems. The standard approach for solv-
ing Bernoulli-Euler beam problems is by employing C 1-
continuous Hermite cubic shape functions, interpolating
both displacements and rotations (i.e., slopes). For two-
dimensional problems, such as involving plate and shell
analysis, C1-continuous methods are very complicated,
and formulations for three-dimensional problems as they
arise from strain gradient theories become more or less
intractable. The high computational cost and large num-
ber of degrees of freedom soon place such formulations
beyond the realm of practicality. Recently some mixed
and hybrid formulations, requiring only C 0-continuity,
have also been developed and applied to strain gradient
plasticity or elasticity problems. But they are even more
problematic. While some of the developed elements
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have been subjected to the Patch test and other bench-
mark problems, a rigorous numerical analysis is missing:
mathematical proofs of consistency and stability have not
been demonstrated, and the rate of convergence has not
been established. The large number of nodal degrees of
freedom is still inevitable in such mixed methods. It is
evident that currently, no efficient finite element methods
are available for strain gradient theory formulations.
In this paper, a truly meshless approach, the Meshless
Local Petrov-Galerkin Method(MLPG), is introduced for
higher-order gradient theories that trace their roots to the
work of Toupin. The degrees of freedom consist of only
nodal displacements, i.e. nodal rotational degrees of free-
dom are not used. A numerical analysis of the method is
presented, covering the usual ground of consistency, sta-
bility and hence, convergence in several examples. All
the results show that, when solving fourth-order elliptic
problems such as those arising in gradient theories of ma-
terial behavior, the MLPG method is superior to primal
or mixed finite element procedures.

keyword: MLPG, Gradient theory, MLS

1 Introduction

The most widely used theories of continuum solid me-
chanics involve non-polar materials that are also sim-
ple in the sense of Noll (1965). Material point rota-
tions are neglected, and the Cauchy stress is assumed
to be a functional of the deformation, only through
its first gradient. This local assumption has, for long,
proved to be adequate when the wavelength of a defor-
mation field is much larger than the dominant micro-
structural length scale of the material. However, when
the two length scales are comparable, this assumption
is questionable. An interest in polar materials has ex-
isted at least since the pioneering work of the Cosser-
ats(1907,1909). The rotational degrees of freedom intro-
duce couple stresses and body couples. Rich theories of
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such continua were worked out in the 1960s(Truesdell
& Toupin 1960, Toupin 1962, Mindlin 1964) The terms
”micropolar” and ”micromorphic” continua were coined
to refer to solids in which the directors attached to ma-
terial points are respectively rigid and deformable (Erin-
gen, 1976). Such theories have applications in electri-
cally polarized media, granular materials and in biolog-
ical tissues, among other areas. Since they introduced a
length scale, ”Cosserat continua” have been proposed as
regularized descriptions of softening materials (Borst &
Sluys, 1991), which otherwise demonstrate deformations
localized onto bands of vanishing width.

The earliest work involving higher-order gradients of de-
formation appears to be that of Cauchy (1851). Such
continua were termed ”materials of grade n” by Trues-
dell and Noll(1965), referring to the order of the high-
est derivative of the deformation. Linear and nonlinear
elasticity were considered, in light of the role played
by the second gradient of displacement, i.e., the strain
gradient, by Truesdell and Toupin (1960), and later by
Toupin (1962). The balance laws included a higher-order
stress—“couple stress” in this case, and hence required
higher-order boundary conditions on the “couple stress”
traction and strain. Assuming a stored energy function,
the couple stress was related, via formal procedures, to
the strain gradient. Shortly after that, Mindlin (1964)
proposed a linear theory that encompassed the theories
of the Cosserats and of Toupin as special cases. The
formalism of Toupin and Mindlin was recently extended
to the deformation and flow theories of plasticity (Fleck
& Hutchinson, 1997), motivated by some experimental
observations of the apparent length scale dependence of
plasticity in metals, when deformations vary at scales of
the order of a micron (Stelmashenko et al, 1993; Fleck
et al. 1994; Stolken et al, 1998). Variants of this strain
gradient plasticity theory have also appeared (Gao et al,
1999; Huang et al, 2000; Chen et al, 2002). These the-
ories have been widely applied to studying length scale-
dependent deformation phenomena in metals. Polar and
higher-order continuum theories have been applied to
layered materials, composites and granular media, in ad-
dition to polycrystalline metals.

The solution of the initial and boundary value problems
posed in terms of the higher-order theories is not straight-
forward: the governing differential equation and bound-
ary conditions are complicated (Toupin, 1962) and ana-
lytic solutions are restricted to the simplest cases. Com-

putational difficulties also arise. While boundary condi-
tions are easier to treat in the variational setting, require-
ments of regularity dictate that, in FEM the displacement
must be a C1 function over the domain. The degrees of
freedom include nodal displacements and displacement
gradients. The situation is partially analogous to clas-
sical Bernoulli-Euler beam and Poisson-Kirchhoff plate
theories in one and two spatial dimensions respectively.

Finite element formulations incorporating C1 displace-
ment fields are therefore a natural first choice for strain
gradient theories. For example, the use of Specht’s tri-
angular element (Specht, 1988) for the special case of
couple stress theory was examined (Xia & Hutchinson,
1996). The element contains displacement derivatives as
extra nodal degrees of freedom(denoted as DOF subse-
quently), and C1-continuity is satisfied only in a weak
averaged sense along each side of the element; therefore,
the element is not a strict C1 element. Furthermore, the
element fails to deliver an accurate pressure distribution
for an incompressible, non-linear solid (Xia & Hutchin-
son, 1996). There is a reliable rectangular C1 element
(Zienkiewicz and Taylor, 1994), but its shape and num-
bers of DOF are obviously strong limitations.

The lack of robust C1-continuous elements then drove
the development of various C0-continuous elements for
couple stress theory in last decades (Herrmann, 1983;
Xia & Hutchinson, 1996; Shu & Fleck, 1998; Shu et
al. 1999, Amanatidou & Aravas, 2002; Engel et al.
2002; Tenek and Aifantis 2002; etc.). Finite element for-
mulations for the Fleck-Hutchinson strain gradient plas-
ticity theory have been developed with plate elements
as a basis, but were generally found to perform poorly
(Xia & Hutchinson, 1996). Mixed and hybrid formu-
lations have also been developed in the same work and
elsewhere: Shu et al(1999) introduced some C0 element
types, where nodal degrees of freedom include nodal
displacements and corresponding gradients, and kine-
matic constraints between displacement gradients are en-
forced via the Lagrange multiplier method. Their lowest-
order triangular element requires 28 unknowns per ele-
ment, and their lowest-order quadrilateral element 38 un-
knowns; Amanatidou and Aravas(2002) proposed mixed
C0-contiunity finite element formulations, where every
element includes around 70 nodal degrees of freedom in
2-D problems. From these numbers it is evident that cur-
rently, no efficient finite element methods are available
for strain gradient theory formulations.
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The importance of the role of a rotation-free approxima-
tion has been realized for a long time, especially when
solving problems involving high order PDE. For exam-
ple, in the thin-plate bending theories, if there is no need
for independent rotation fields, it is consequently pos-
sible to develop methods that do not involve rotational
degrees of freedom. Basically this spirit was well es-
tablished in finite difference formulations (Timoshenko,
1959), but finite element counterparts to this idea seemed
impossible due to the necessity of employing slope de-
grees of freedom in order to satisfy continuity require-
ments. In the last decade, a number of procedures has
been proposed(Babuka and Zlámal 1973; Baker 1977;
Phaal and Calladine 1992a, 1992b; Oñate and Cervera
1993; Oñate and Zarate, 2000), based on a combination
of finite difference, finite element, finite volume and ad
hoc concepts, leading to elements with only displace-
ment degrees of freedom. Typically, these elements are
very simple, i.e. the three-node triangle has dominated,
and they all involve non-locality. By non-locality we
mean that the curvature in an element depends on the dis-
placement field in that element and its neighbors. Conse-
quently, these elements fall outside the classical frame-
work. Furthermore, C1-continuity requirements are sim-
ply ignored (for the most part, elements of this type
are viewed pejoratively: they are frequently described
as non-conforming, incompatible, and variational crimes
(Strang et al, 1973)), but these elements seem to perform
fairly well and have the great advantage of eliminating
altogether the rotational degrees of freedom. In the lin-
ear case, this leads to a saving of computer solution time
and in the non-linear case it additionally amounts to a
substantial reduction in complexity. The reason for this
is that, in the linear case, rotations have a vector space
structure (i.e., R3), whereas in the non-linear case they
have a non-linear group structure. Algorithms to preserve
the group structure are very complicated, especially in
dynamics. Thus, eliminating the rotation field ab initio is
a very attractive proposition.

During the last two decades, the technique of meshless
interpolation of trial & test functions has been attracting a
great attention. Meshless approximations, such as Mov-
ing Least Square(MLS), Reproducing Kernel (RK) and
Partition of Unity Method (PU), possess intrinsic non-
local properties. Unlike a typical finite element method,
these non-local properties of meshfree approximations
confer an arbitrary degree of smoothness on solutions

and have been applied to various problems (Belytschko et
al. 1994, Duarte et al. 1996, Babuska et al. 1997, Wend-
land 1999, Atluri et al. 1998, Atluri et al.1999, Atluri et
al. 2000, Atluri et al. 2001, Gu and Liu 2001, Atluri &
Shen 2002a,b). While an analysis of a class of meshless
methods has appeared recently and provided a possibility
to cope with high order elliptic problem conveniently, the
real connection between them has not been made.

The purpose of the current paper is to report the de-
tails of a numerical approach, the Meshless Local Petrov-
Galerkin (MLPG) method, to the Toupin-Mindlin formu-
lation of strain gradient theories. The Meshless Local
Petrov-Galerkin (MLPG) method was first introduced by
Atluri et. al. in 1998, wherein the weak form of govern-
ing equations are based on local sub-domains, instead of
whole domain in question. Subsequently the test function
domains are also intentionally localized to sub-domains
and, the space for test function may be completely dif-
ferent from that of trial function. MLPG is well-known
as a truly meshfree method, in which two characteristics
are guarantied: one is a non-element interpolation tech-
nique, and the other is a non-element approach for inte-
grating the weak form. Most of the element-free methods
are based on the non-element interpolation techniques,
such as the Shepard interpolation technique (Shepard,
1968) and other approximations mentioned above, which
do not need any elements for constructing the interpola-
tion functions for the unknown variables. However, most
of the meshless methods such as EFG, PKPM, and hp-
clouds method, still require a global background mesh
for numerical integration of the global weak form. Atluri
and Shen in their pioneering work (2002a,b) have de-
picted the framework and application of MLPG method
systematically, and successfully developed some fast and
robust approaches. It should be noted that the MLPG
concept is independent of a meshless interpolation tech-
nique, and it can be combined with any meshless interpo-
lation technique, such as PUM, or PKPM. Furthermore,
it can be shown that almost every other meshless method
proposed in literature could be considered as a special
case of MLPG.

In this paper, the main features of the MLPG are re-
viewed. The application of the MLPG to gradient the-
ory is described in detail. To study the accuracy of the
present method, convergence tests are carried out, and
several 2-D problems of gradient theory have been ana-
lyzed. From these tests, the MLPG method is found to
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give quite accurate results. The remarkable accuracy in
these numerical simulations shows promising character-
istics for solving general problems of materials whose
constitutive laws involve strain-gradients.

2 Review of a linear elastic strain gradient theory

Toupin (1962) and Mindlin (1963, 1964) developed a
theory of linear elasticity whereby the strain energy den-
sity w depends upon both the symmetric strain tensor
εi j ≡ 1

2 (ui, j + u j,i)and the second gradient of displace-
ment, ηi jk ≡ uk,i j. The corresponding compatibility equa-
tions are (Mindlin,1964):

∇∇∇ ×εεε× ∇∇∇ = 0 (1a)

∇∇∇ ×ηηη = 0 (1b)

The strain energy function w is assumed to be a convex
function, with respect to its arguments (ε, η) for each
point x of a solid of volume V . The total energy Wstored
in the solid is determined by the displacement field u(x)
within V

W(u) ≡
∫

V
w(ε(u),η(u);x)dx (1c)

with ε, η being derived from u, as discussed above.

The energy variation of the solid due to an arbitrary vari-
ation of the displacement u is:

δW =
∫

V
(σi jδεi j + τi jkδηi jk)dx (2)

σi j ≡ ∂w
∂εi j

; τi jk ≡ ∂w
∂ηi jk

. (3)

w =
1
2

λεiiε j j +µεi jεi j +a1ηi j jηikk +a2ηiikηk j j

+a3ηiikη j jk +a4ηi jkηi jk +a5ηi jkη jki (4a)

σi j =
∂w
∂εi j

= 2µεi j +λεkkδi j (4b)

τi jk =
∂w

∂ηi jk
= a1(ηippδjk +η jppδik)

+a2(ηkppδi j +
1
2

ηppiδjk +
1
2

ηkk jδik)

+a3(2ηppkδi j)+a4(2ηi jk)+a5(η jki +ηik j) (4c)

Use of the divergence theorem transforms (3) into

δW = −
∫

V
[(σ jk, j − τi jk,i j)δuk]dx

+
∫

S
[(σ jk − τi jk,i)n jδuk + τi jkniδuk, j]ds (5)

where S is the surface bounding the volume V . Stationar-
ity of the energy integral, with respect to the variations of
the displacement field, provides the equilibrium relation

σ jk, j − τi jk,i j = 0 (6)

To identify the required boundary conditions, we note
that is not independent of on the surface S, because, if
is known on S, so are the tangential gradients of at S.
Therefore, six independent displacement boundary con-
ditions are required for a correct formulation of the prob-
lem, e.g. prescribed values for ui, i = 1,2,3 and their
normal derivatives, at S.

In order to identify the independent traction boundary
conditions, We separate the last integral of (5):

τi jkniδuk, j = τi jkniD jδuk + τi jknin jDδuk (7)

by decomposing the gradient into a tangential gradient
D jδuk and a normal gradient n jDδuk, viz.,

δuk, j = D jδuk +n jDδuk, (8a)

where

D j ≡ (δjp −n jnp)∂p; D ≡ np∂p (8b)

and denotes the partial derivative with respect to x p. The
terms in (7) may be resolved, further, in more than one
way. For the first term on the right hand side of (7),
which contains the non-independent variation , we write
(Mindlin, 1964)

τi jkniD jδuk =D j(τi jkniδuk)−niD jτi jkδuk−(D jni)τi jkδuk

(9)

The last two terms in (9) now contain the independent
variation . For the preceding term, we note that , on the
surface S,
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D j(τi jkniδuk) =

(Dlnl)n jniτi jkδuk +nqeqpm∂p(eml jnlniτi jkδuk) (10)

where is the alternating tensor. By Stokes’s theorem, the
integral, over a smooth surface, of the last term in (10)
vanishes. If the surface has an edge C, formed by the
intersection of two portions, S1 and S2, of S, Stokes’s
theorem gives

∫
S

nqeqpm∂p(eml jnlniτi jkδuk)dS =
∮

c
[nim jτi jk]δukds

(11)

where m j = eqpmsmnl and the sm are the components of
the unit vector tangent to C. The bold face brackets [
] in (11) indicate the enclosed quantity is the difference
between the values on S1 and S2.

Now substitute (7), (9), (10) (11) into (5) and obtain the
following final form of the principle of virtual work

δW =
∫

S
[tkδuk]ds+

∫
S
[RkDδuk]ds+

∮
c
[nim jτi jk]δukds,

(12)

where the surface traction on the surface S is

0A

tk = ni(σik − τi jk, j)+nin jτi jk(Dpnp)−D j(niτi jk) (13)

and the double stress traction Rk on S is

Rk = nin jτi jk (14)

To summarize, the displacement field u(x) must satisfy
three equilibrium equations given by the relation (6), and
either the six traction boundary conditions given by (13)
and (14), or the six displacement boundary conditions

ui(x) = u0
i (x), Dui(x) = v0

i (x), i = 1,2,3, (15)

(or a mixture of them). A corollary of the above principle
of virtual work is the stationarity principle

∫
V

(σi jδεi j + τi jkδηi jk)dx = 0 (16)

for any (ε, η) derived kinematically from a displacement
field u(x) and for any (σ,τ) satisfying the equilibrium
condition(5), and the zero traction conditions t k = Rk = 0.
It should be noted that, for convenience, we assume that
the body double force (and also the body force) vanishes
in this paper.

3 Review of Meshless Local Petrov-Galerkin
(MLPG) method

The initial idea of meshless methods may date back to the
smooth particle hydrodynamics (SPH) method for mod-
eling astrophysical phenomena (Gingold and Monaghan,
1977). After Nayroles et al. published their work of Dif-
fuse Element Method in 1992, the research about mesh-
less methods turned to be very active. Since then, several
meshless methods, such as Element Free Galerkin (EFG)
by Belytschko et al. (1994), Reproducing Kernel Particle
Method (RKPM) by Liu et al. (1996), the Partition of
Unity Finite Element Method (PUFEM) by Babuska and
Melenk (1997), hp-cloud method by Duarte and Oden
1996, Natural Element Method (NEM) by Sukumar et
al. (1998) and Meshless Galerkin methods using Radial
Basis Functions (RBF) by Wendland (1999), have also
been reported in literature. The major differences in these
meshless approaches focus on the techniques for interpo-
lating the trial function. Although no mesh is required
in these approximations for the trial and test functions
for the unknowns, shadow elements(background meshes)
are constructed for the integration of the weak-form, or
of the ‘energy’.

The meshless local Petrov-Galerkin (MLPG) method
was first introduced by Atluri & Zhu (1998a, b) and
Atluri et al. (1999) for solving linear and non-linear
boundary value problems. The weak forms of governing
PDE are based on local sub-domains, which may over-
lap each other in order to cover whole question domain.
The spaces for trial and test functions may be different
from each other(Atluri and Shen 2002a,b): the nodal trial
function may correspond to any one of Moving Least
Square(MLS), PU, Shepard function, or RBF types of
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interpolations; and the test function may be totally dif-
ferent, which may correspond to any one of the above or
even a Dirac delta function, the heaviside step function,
the Gaussian weight function of MLS, a special form of
the fundamental solution to the differential equation, or
any other convenient function in the support domain, Ω te

(Fig.1), of the test function.

The Schematics of the MLPG method are shown in Fig.
1, where the support domain of weight function at any
node I is usually taken as a circle in 2-D cases with its
radius rI . The interpolation of trial function at any point
x should involve all the nodes whose support domains
cover this point. Also the node based test domain (also
taken as a circle in 2-D for convenience) with radius rJ

could have a different size from that of shape function. It
should be noted that, in Fig.1 the domain of support of
the test function ΩI

te is synonymous with the node-based
sub-domain.

I 
te Ω 

J 
tr Ω 

x x

I
te

Ω

Γ Ω ∂ =Γ Ι I 
te s

ss 
I 
te L Γ= Ω ∂ Υ 
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I

Γ

s
L

The nodes which influence the interpolation at x

I
te

Ω

 for an internal node s
I
te L=Ω∂ 

Figure 3.1: Schematics of the MLPG method

There are no more background meshes needed for pur-
pose of the integration of the weak form in the MLPG
method, i.e., all pertinent integrals can be easily evalu-
ated over well-shaped sub-domains, and on their bound-
aries. For instance, in 2-D cases, we may define all
the sub-domains that are based on inner nodes (i.e. in-
side the domain) as circular domains without intersec-
tion with global boundaries. Every sub-domain based on
the boundary node is a part of circle. Then integration
of sub-domain based weak form may be simply evalu-
ated on the circles (or part of a circle). Fig 3.2 shows
the intersections between supports of nodal shape func-
tions and some specific inner sub-domain(i.e. test do-
main). Also one may define inner sub-domains that in-

 
 
 
 
 

tr
Jnode I Ω

x2

x1 ΩI
te

Ω ,k I 
tr 

Figure 3.2: The nodal shape function has a different
form in each small region ΩI,k

tr , which is the intersection
of ΩI

te and ΩJ
tr.

tersect global boundaries in more general. There are sev-
eral approaches introduced by Atluri et al.(2002a, b) to
handle those more complicate cases.

4 MLGP Method for Materials with Strain-
Gradient Effects

4.1 Weak forms based on sub-domains

Now we proceed to apply MLPG method to solids in-
volving gradient theories. Re-write the governing equa-
tion (6) in the domain Ω bounded by the boundary Γ as
follows,

σ jk, j − τi jk,i j = 0 , (17)

with boundary conditions :

ui(x) = u0
i (x),Dui(x) = v0

i (x), i = 1,2,3, on ΓΓΓu (18a)

or

ti(x) = t0
i (x),Ri(x) = R0

i (x), i = 1,2,3 on ΓΓΓt (18b)

or a mixture of them, where , are the prescribed displace-
ments and their normal derivatives on boundary, and ,
are the surface traction and the double stress traction.
uk denotes a displacement field satisfying (17) with cor-
responding constitutive relationships. The constitutive
equations and strain-displacement relationship are de-
fined in preceding sections.
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Meshless methods based on global Galerkin formula-
tion usually begin with the global weak form of govern-
ing equation over the entire domain Ω. However in the
present local Petrov-Galerkin formulation, we start from
a weak form over a local sub-domain Ωs, and use the
MLS approximation to develop a truly meshless method,
where the local sub-domain Ωs is located entirely inside
the global domain Ω. The local sub-domian Ω s is conve-
niently taken to be a sphere (in 3-D, or a circle in 2-D)
centered at a point x in domain. A generalized local weak
form of the differential equation (17) and the boundary
conditions (4.2a,b), over a local sub-domain Ω s, can be
written as:

∫
Ωs

(σ jk, j − τi jk,i j)ρkdx−α
∫

Γsu

(uk −u0
k)ρkds

−β
∫

Γ
sDu(vk −v0

k)ρkds = 0 (19)

with local boundary conditions

uk(x) = u0
k(x),Duk(x)≡ vk = v0

k(x),k = 1,2,3, on ΩΩΩs

(20a)

or

tk(x) = t0
k (x),Rk(x) = R0

k(x),k = 1,2,3 on ΩΩΩs (20b)

or mixture of them, where , ρk are trial and test func-
tion, respectively, and vk = Duk = uk,ini,. Γs is a part of
∂Ωs, over which the boundary conditions are specified.
In general, ∂Ωs = Γs ∪Ls, with Γs being a part of the lo-
cal boundary located on the global boundary, and let L s

being the other part of the local boundary over which no
boundary condition is specified, i.e., Γ s = ∂Ωs ∩Γ, (see
Fig. 1). For a sub-domain located entirely inside the
global domain, there is no intersection between ∂Ω s and
Γ, Ls= ∂Ωs. Then Γsu and ΓsDu denote boundary condi-
tions of displacement and normal gradient of displace-
ment, respectively. α , β are two constants in penalty
functions for handling essential boundary conditions. As
long as the sub-domains cover whole question domains,
the weak forms based on local sub-domains are equiva-
lent with weak form defined on whole domain(Atluri and
Shen, 2002a, b).

From equations in the preceding sections, it is straight-

forward to obtain following weak form,

∫
∂Ωs

tkρkds+
∫

∂Ωs

RkDρkds

+
∫

∂Ωs

nqeqpm∂p(eml jnlniτi jkρk)dS

−
∫

Ωs

(σ jkρk, j + τi jkρk,i j)dx−α
∫

Γsu

(uk −u0
k)ρkds

−β
∫

ΓsDu

(vk −v0
k)ρkds = 0 (21)

According to (11), the third term in left hand side van-
ishes if the sub-domain does not intersect with global
boundary Γ, i.e. Ωs ∪Γs =Ø. In two-dimensional cases
the integral over global boundary Γ may be replaced by

∑
γ

[nim jτi jk]γρk (22)

where the sum over γ refers to any corners that may ex-
ist on the global bounding curve of the two-dimensional
body. It should be noted that, in all the coming exam-
ples, (22) will vanish identically on boundaries, so that
for convenience we will not repeat this term in the final
weak form and consequent procedures in calculations.
Then we may re-arrange (21) into

α
∫

Γsu

ukρkds +β
∫

ΓsDu

vkρkds

+
∫

Ωs

(σ jkρk, j + τi jkρk,i j)dx−
∫

Γsu+Ls
tkρkds

−
∫

ΓsDu+Ls
RkDρkds = α

∫
Γsu

u0
kρkds +β

∫
ΓsDu

v0
kρkds

+
∫

Γst

t0
k ρkds+

∫
ΓsR

R0
kDρkds (23)

wherein Γst and ΓsR denote boundary conditions of sur-
face traction and the double stress traction, respectively.
All the natural boundary conditions have been imposed
in (23). In MLPG method (Atluri and Shen 2002a,b),
test functions ρk are treated as functions that are differ-
ent from the trial functions. For convenience, we may
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localize test functions onto sub-domain, such that ρ k and
Dρk vanish on the boundary Ls. Then (23) could be sim-
plified further to be

α
∫

Γsu

ukρkds+β
∫

ΓsDu

vkρkds+
∫

Ωs

(σ jkρk, j + τi jkρk,i j)dx

−
∫

Γsu

tkρkds−
∫

ΓsDu

RkDρkds = α
∫

Γsu

u0
kρkds

+β
∫

ΓsDu

v0
kρkds+

∫
Γst

t0
k ρkds+

∫
ΓsR

R0
kDρkds (24)

Recalling the definitions of τ i jk, ηi jk, and in preceding
sections, due to the presence of derivative of higher order
stress in the surface traction (see equation 2.12), we must
introduce at least C2-continuity interpolation scheme for
the trial function, in order to guarantee the convergence
of numerical solution.

4.2 Meshfree interpolation for trial function and test
function

In general, meshless methods use a local interpolation or
an approximation to represent the trial function , using
the values (or the fictitious values) of the unknown vari-
able at some randomly located nodes in the local vicinity.
A variety of local interpolation schemes that interpolate
the data at randomly scattered points(without the need
for a mesh) in two or more independent variables are cur-
rently available(Atluri and Shen, 2002a,b):

i. Shepard Functions (Shpard, 1968), which have a
consistency of zeroth order only;

ii. Moving Least Squares interpolation (MLS) (Lan-
caster & Salkauskas, 1981; Nayroles, Touzot & Vil-
lon, 1992), which generalizes Shepard’s approach,
implicitly, to the case of shape functions of high or-
der consistency;

iii. Partition of Unity Methods ( Bauska & Melenk,
1997), which generalizes Shepard’s approach, ex-
plicitly, to higher orders of consistency;

iv. Reproducing Kernel Particle Methods (Liu, Chen,
Uras & Chang, 1996), which are identical to the
MLS approach, if the kernel is identical to the
weight functin of a MLS approximation, and is ren-
dered to be higher order consistent by same basis;

v. Radial Basis Functions (Wendland, 1995), which
use random points in the domain, and generate the
required trial & test functions.

The moving least-square method, which is adopted in
this paper, is generally considered to be one of the best
schemes to interpolate data with a reasonable accuracy.
Basically the MLS interpolation does not pass through
the nodal data, as shown in Fig. 4.1. Here we give a brief
summary of the MLS approximation. For details of the
MLS approximation, see Belytschko et al. (1994) and
Atluri et al. (1999).

Consider a domain in question with control points for
boundaries (i.e. nodes on boundaries) and some scat-
tered nodes inside, where every node has its nodal value
(fictitious) and influence radius(radius for local weight
function). Now for the distribution of trial function at
any point x and its neighborhood located in the problem
domain Ω, uh(x) may be defined by

uh (x) = pT (x)a(x)∀x ∈ Ωx (25a)

where pT (x)=[p1(x), p2(x), . . . ,pm(x)] is a complete
monomial basis of order m, and a(x) is a vector con-
taining coefficients a j(x), j=1, 2, . . . ,m which are func-
tions of the space co-ordinates x=[x1,x2,x3]T . The com-
monly used bases in 2-D or 3-D are the linear basis, due
to their simplicity. In Zhu et al. (1998) and Atluri et
al. (1998), both linear and quadratic basis are used, and
the results show that both bases possess high accuracy.
In the present high order elliptic problem, we will begin
with the quadratic basis

pT (x) = [1,x1,x2,x2
1,x1x2,x2

2] (25b)

for 2-D, wherein m=6.

The coefficient vector a(x) is determined by minimizing
a weighted discrete L2 norm, which can be defined as

J (x) =
N

∑
I=1

wI (x)
[
pT (xI)a(x)− ûI]2 (26)

where wI(x), is a weight function associated with the
node I, with wI(x)> 0 for all x in the support of wI (x),
xI denotes the value of x at node I, N is the number of
nodes in Ωx for which the weight functions wI (x)> 0.
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uh(x) uI^

xI x 

Figure 4.1: The distinction between uI and ûI.

Here it should be noted that û I , I=1, 2,. . . , N, in equation
(26), are the fictitious nodal values, and not the actual
nodal values of the unknown trial function u h(x), in gen-
eral (see Fig. 4.1 for a simple one-dimensional case for
the distinction between uI and ûI).

Solving for a(x) by minimizing J in equation (26), and
substituting it into equation (4.9), give a relation which
may be written in the form of an interpolation function
similar to that used in the FEM, as

uh (x) =
N

∑
I=1

φI (x) ûI, (27)

where

φI (x) =
m

∑
j=1

p j (x)
[
A−1 (x)B(x)

]
jI (28)

with the matrix A(x) and B(x) being defined by:

A(x) =
N

∑
I=1

wI (x)p(xI)pT (xI) (29)

B(x) = [w1 (x)p(x1) , w2 (x)p(x2) , · · · , wN (x)p(xN)]
(30)

The partial derivatives of φI(x) are obtained as

φI
,k =

m

∑
j=1

[
p j,k
(
A−1B

)
jI + p j

(
A−1B,k +A−1

,k B
)

jI

]
(31)

in which

B,k (x) =
[
w1,k (x)p(x1) ,w2,k (x)p(x2) ,

. . . , wN,k (x)p(xN)
]

(32)

and A−1
,k =

(
A−1

)
,k represents the derivative of the in-

verse of A with respect to xk, which is given by

A−1
,k = −A−1A,kA−1 (33)

with

A,k (x) =
N

∑
I=1

wI,k (x)p(xI)pT (xI) (34)

The second and third partial derivatives of φI(x) may be
obtained in similar way:

φI
,kl =

m

∑
j=1

[
p j,kl

(
A−1B

)
jI + p j,k

(
A−1

,l B +A−1B,l

)
jI

+ p j,l

(
A−1B,k +A−1

,k B
)

jI
(35)

+p j

(
A−1

,l B,k +A−1B,kl +A−1
,kl B+A−1

,k B,l

)
jI

]

φI
,kli =

m

∑
j=1

[
p j,kli

(
A−1B

)
jI+p j,kl

(
A−1

,i B+A−1B,i

)
jI
+

p j,ki

(
A−1

,l B+A−1B,l

)
jI

+

p j,k

(
A−1

,li B+A−1
,l B,i +A−1

,i B,l +A−1B,li

)
jI

+

p j,li

(
A−1B,k +A−1

,k B
)

jI
+ (36)

p j,l

(
A−1

,i B,k +A−1B,ki +A−1
,ki B+A−1

,k B,i

)
jI

+

p j,i

(
A−1

,l B,k +A−1B,kl +A−1
,kl B+A−1

,k B,l

)
jI

+

p j

(
A−1

,li B,k +A−1
,l B,ki +A−1

,i B,kl +A−1B,kli+
A−1

,kliB+A−1
,kl B,i +A−1

,ki B,l +A−1
,k B,li

)
jI




with

A−1
,kl = A−1A,lA−1A,kA−1 −A−1A,klA−1

+A−1A,kA−1A,lA−1 (37)



186 Copyright c© 2003 Tech Science Press CMES, vol.4, no.1, pp.177-196, 2003

A−1
,kli = (A−1

,kl ),i =

− (A−1
,l A,kA−1−A−1A,klA−1 +A−1A,kA−1

,l ),i =

− (A−1
,li A,kA−1 +A−1

,l A,kiA−1 +A−1
,l A,kA−1

,i

−A−1
,i A,klA−1 −A−1A,kliA−1 −A−1A,klA−1

,i

+A−1
,i A,kA−1

,l +A−1A,kiA−1
,l +A−1A,kA−1

,li ) (38)

B,kl (x) =
[
w1,kl (x)p(x1) ,w2,kl (x)p(x2) ,

· · · , wN,kl (x)p(xN)
]

(39)

B,kli (x) =
[
w1,kli (x)p(x1) ,w,kli (x)p(x2) ,

. . . , wN,kli (x)p(xN)
]

(40)

The MLS approximation is well defined, only when the
matrix in Eq. (29) is non-singular. φI(x) is usually called
the shape function of the MLS approximation, corre-
sponding to the nodal point x I . FromEqs. (28) and (30),
it may be seen that φI(x)=0 when wI(x)=0. The fact that
φI(x) vanishes, as defined, for x not in the support of
nodal point, xI preserves the local character of the mov-
ing least squares approximation. The nodal shape func-
tion is complete up to the highest order of the basis. The
smoothness of the nodal shape function is determined by
that of the basis and weight function.

The choice of the weight function is more or less arbi-
trary, as long as the weight function is positive and con-
tinuous and satisfies the continuity requirement in weak
form. Since C2 continuity is needed in current computa-
tion, (see similar approach by Long and Atluri, 2002) the
weight function corresponding to node I may be written

as

wI (x) =
{

(1− (dI
/

rI)2)3 , 0 ≤ dI ≤ rI

0, dI ≥ rI
(41a)

where dI = |x−xI | is the distance from node xI to point
x and rI is the size of the support for the weight function
wI (and thus determines the influence domain of node
xI). The size of support, rI of the weight function wI as-
sociated with node I should be chosen such that r I should
be large enough to have sufficient number of nodes cov-
ered in the domain of definition of every sample point
(n ≥ m), in order to ensure the regularity of A . Usually,
we have to guarantee all the nodes covered in the domain
of definition of every sample point can not be on a single
line if linear interpolation space is applied; all of these
nodes can not be on two lines if quadratic space is ap-
plied. A very small rI may result in a relatively large
numerical error while using the Gauss numerical quadra-
ture to calculate the entires in the system stiffness ma-
trix. On the other hand, rI should also be small enough to
maintain the local character of the MLS approximation.
It can be easily seen that the weight function (4.25) pos-
sesses C2 continuity. Thus as discussed in detail in Atluri
and Shen (2002a,b), the MLS, and the corresponding trial
functions are C2 continuous over the entire domain.

The consistency condition, namely the ability of the
MLS interpolation (27) to exactly represent the jth
[j=1,2,. . . .m] component of monomials in (4.9b), implies
that in general

N

∑
I=1

φI(x)xl
Ii = xl

i ∀x ∈ Ω, ∀l ≤ k (41b)

where kis the highest order in the base. In fact, the linear
basis assures that the MLS approximation has the linear
completeness. Thus, it can reproduce any smooth func-
tion and its first derivative with arbitrary accuracy, as the
approximation is refined. Quadratic or higher order base
has similar characteristics.

A generalization of the MLS interpolation scheme using
the data for the derivative of a function, in addition to the
value of the function itself, at a finite number of nodes,
can be found in Atluri et al (1999).

The choice of test function is somewhat arbitrary in the
MLPG method. The various features of the MLPG have
been illustrated (Atluri and Shen 2002a,b), by solving
linear Poisson’s equation with use of different kinds
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of the test functions, including MLS weight func-
tion (MLPG1), the collocation Dirac’s Delta function
(MLPG2), discrete least squares (i.e. error func-
tion, MLPG3), modified fundamental solution to the
PDEs(MLPG4), Heaviside step function(MLPG5) and
also nodal shape functions (i.e local Galerkin method,
MLPG6). In MLPG6, the integrand is far more com-
plex than in the five other MLPGs, due to the fact that
the test function comes from the same space of the trial
function. Furthermore, the partition method must be used
to obtain a convergent result (Atluri,et al 1999); sim-
ilar situation exists in MLPG3, where, additionally, a
trial function with higher order continuity requirement
is needed; MLPG4 would be very attractive as long as
the fundamental solution of PDE is available, although
the integration with the singularity has to be handled;
the concept of MLPG2 is very similar with that of the
Collocation Method, where the numerical accuracy is
found to be sensitive to the distribution and density of the
nodes; the main purpose of MLPG1 is to avoid evaluating
the integration on the local boundary, because the MLS
weight function always vanishes over the local boundary
(in equation 4.7, we have to look for a test function such
that its normal gradient over the local boundary also van-
ishes); by taking constant as the test function over every
sub-domain, domain integral is altogether avoided in the
MLPG5, which is widely considered as a robust, fast and
also accurate approach, when solving 2nd order BVPs.

However, in current problem (from the local weak form
(23)), the feature of MLPG5 can not show its advantages
( usually taken to eliminate the need of domain inte-
gration, but can not avoid all the integration over local
boundary): if we consider a constant (i.e. Heaviside step
function) as the test function over every sub-domain, the
last term of right hand side of (23) vanishes (also does the
last term of left hand side ), so that the double stress trac-
tion can not be imposed. In other hand, selecting other
simple function, such as linear function etc., to be a test
function in each local test domain, may eliminate one of
the two domain integrals in (23), but incurs all the local
boundary integration inevitably.

Then we resort to the concept of MLPG1. It is seen
that the local weak form over Ωs involves both the first
derivative as well as the second derivative of ρk in do-
main integrand. Thus the test function for every sub-
domain at least needs C1 continuity over the local sub-
domain. In order to eliminate the integral over the local

boundary, we consider a localized spline weight function
to be the test function, which is defined as:

ρI (x)=

{
1−6

(
dI
RI

)2
+8
(

dI
RI

)3
−3
(

dI
RI

)4
, 0 ≤ dI ≤ RI

0, dI ≥ RI

(42)

such that ρk and Dρk vanish on the boundary Ls re-
quired to obtain (24), where RI is the size of the support
for the weight function, which is usually much smaller
than size of support domain of shape function. It should
be noted that the test functions satisfying these require-
ments are not unique and could have other forms, such

as
(

1− (dI/RI)
2
)2

, or even the current MLS weight

function
(

1− (dI/RI)
2
)3

, or the proper Gaussian weight

functions, etc. All of these choices come from the frame-
work of MLPG1 and it is found that there is no obvious
difference among the rates of convergence when apply-
ing any of weight functions above as test function (Atluri
and Shen 2002a, b). And that is confirmed again in cur-
rent calculations.

4.3 Discretization of the weak form with plane strain
assumption

The plane strain assumption is taken in all of examples
in this paper. In general , the displacement fields are

ui = ui(x1,x2) i = 1,2
u3 = 0 ,

(43)

strains and strain gradients are

εi j = 1
2 (ui, j +u j,i) i = 1,2; j = 1,2

ε3m = 0 m = 1,2,3
ηi jγ = uγ,i j γ= 1,2
ηi j3 = 0
η3 jγ = η j3γ = 0 ,

(44)

and the corresponding conventional and high order
stresses are



188 Copyright c© 2003 Tech Science Press CMES, vol.4, no.1, pp.177-196, 2003

σi j = λεppδi j +2µεi j

σ33 = νσpp

σ3m = 0
τi jk = a1(ηippδjk +η jppδik)
+a2(ηkppδi j + 1

2ηppiδjk + 1
2 ηkk jδik)

+a3(2ηppkδi j)+a4(2ηi jk)+a5(η jki +ηik j)
i, j,k, p = 1,2
m = 1,2,3

(45)

The weak form (24) that is based on any sub-domain then
could be written as

N

∑
i=1

{∫
Ωs

([Bρσ ][Dσ][Bφσ ]+ [Bρτ ][Dτ][Bφτ ]){ûi}dx

−
∫

Γsu

[Su]
 [niρJ]σ[Dσ][Bφσ ]− [niρJ]τ[Dτ′ ][Bφ′τ ]

+(Dpnp)ρJ[nin j][Dτ][Bφτ ]−ρJ[D jni][Dτ][Bφτ ]
−ρJ [niD j][Dτ′ ][Bφ′τ ]


{ûi}ds

−
∫

ΓsDu

(DρJ)[SDu][nin j][Dτ][Bφτ ]{ûi}ds

+
∫

Γsu

αρJ[Su][φu]{ûi}ds

+
∫

ΓsDu

βρJ[SDu][φDu]{ûi}ds

}

=
∫

Γsu

αρJ
{

u0}ds+
∫

ΓsDu

βρJ
{

Du0}ds

+
∫

Γst

ρJ {t0}ds+
∫

ΓsR

ρJ {R0}ds (46)

where ρJ denotes test function (localized spline weight
function) on node J based sub-domain. ‘i’ denotes node
number and N is the total number of nodes, and

[Bρσ] =
[

ρ,1 0 ρ,2

0 ρ,2 ρ,1

]
; [Bφσ] =


 φ,1 0

0 φ,2

φ,2 φ,1


 ;

(47a)

[Bρτ ] =
[

ρ,11 ρ,22 2ρ,12 0 0 0
0 0 0 ρ,11 ρ,22 2ρ,12

]
;

(47b)

[Bφτ ] =
[

φ,11 φ,22 φ,12 0 0 0
0 0 0 φ,11 φ,22 φ,12

]T

; (47c)

{ûi}= {ûi
1 ûi

2}T ; [niρJ]σ = ρJ
[

n1 0 n2

0 n2 n1

]
; (47d)

[niρJ ]τ = ρJ

[
n1 0 n2 0 0 0 0 n2 n1 0 0 0
0 0 0 n1 0 n2 0 0 0 0 n2 n1

]
;

(47e)

[Bφ′τ ] =
[

φ,111 φ,122 φ,112 0 0 0
0 0 0 φ,111 φ,122 φ,112

φ,112 φ,222 φ,122 0 0 0
0 0 0 φ,112 φ,222 φ,122

]T

; (47f)

[nin j] =
[

n1n1 n2n2 2n1n2 0 0 0
0 0 0n1n1 n2n2 2n1n2

]
;

(47g)

[D jni]is a matrix with dimension 2x6, where

[D jni]11 = (1+n2
1)n1,1 +n1n2n1,2

[D jni]12 = (1+n2
2)n2,2 +n1n2n2,1

[D jni]13 = (1+n2
1)n2,1 +(1+n2

2)n1,2 +n1n2(n1,1 +n2,2)

[D jni]24 = [D jni]11 (47h)

[D jni]25 = [D jni]12

[D jni]26 = [D jni]13
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and other components vanish. [niD j] is a matrix with di-
mension 2x12, where

[niD j] =
[

n1 0 n2 0 0 0 0 n2 n1 0 0 0
0 0 0 n1 0 n2 0 0 0 0 n2 n1

]

−
[

n3
1 n1n2

2 2n2
1n2 0 0 0

0 0 0 n3
1 n1n2

2 2n2
1n2

n2
1n2 n3

2 2n1n2
2 0 0 0

0 0 0 n2
1n2 n3

2 2n1n2
2

]
(47i)

[φu] =
[

φ 0
0 φ

]
and [φDu] =

[
φ,1n1 +φ,2n2 0

0 φ,1n1 +φ,2n2

]
(47j)

[Su]and [SDu] are switch matrices in the MLPG method,
defined as

[Su] =
[

Su1 0
0 Su2

]
and [SDu] =

[
SDu1 0

0 SDu2

]
, where

Sui = 1 if ui is prescribed on Γsu

0 if ui is not prescribed on Γsu, i = 1,2
(47k)

SDui = 1 if Dui is prescribed on ΓsDu

0 if Dui is not prescribed on ΓsDu, i = 1,2

(47l)

[Dσ], [Dτ]and [Dτ′]are defined respectively from fol-
lowing equations:

{σ11σ22 σ12}T = [Dσ]{ε11 ε222ε12}T (47m)

{τ111τ221τ121τ112τ222τ122}T

= [Dτ]{η111η2212η121η112η2222η122}T (47n)

{τ111,1 τ221,1 τ121,1 τ112,1 τ222,1 τ122,1

τ111,2 τ221,2 τ121,2 τ112,2 τ222,2 τ122,2}T

= [Dτ′]{η111,1 η221,1 2η121,1 η112,1 η222,1 2η122,1

η111,2 η221,2 2η121,2 η112,2 η222,2 2η122,2}T (47o)

It can be easily seen that the system stiffness matrix in
the present method is banded but unsymmetrical. The
locations of the non-zero entries in the system ‘stiffness’
matrix depend upon the nodes located inside the domain
of influence of the node.

5 Numerical examples

In this section, patch tests and two numerical exam-
ples, including: 1. a bimaterial system under uniform
shear and 2. an infinite plane subjected to a remote uni-
form tension, are presented. The strain-gradient material
model is as described earlier. Compared with analytical
results, the MLPG method has shown its high accuracy
when coping with gradient theory.

5.1 Patch test

The patch test was conducted with a known simple dis-
placement field (Fig. 5.1)

u(x1,x2) =
{

x1

x2

}
(48)

which satisfies the compatibility equations (2.0a, 2.0b)
and governing equation (6). Also a uni-axial traction
boundary problem was used in the patch test (Fig.5.2)

The formulation passed the tests for both kinds of bound-
ary conditions, where the range of the radius of test
domain varies from 1.0 to 3.5 times of the minimum
nodal distancedmin and that of radius of support of nodal
shape function varies from 3.0 to 5.0 times of dmin and
at least one of ai (i=1,5) in equation (4a) does not van-
ish. “Pass” here means that the linear displacement field
(patch test 1) and the simplest (constant) conventional
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u1=x1, u2=0, Du1=0, Du2=-1 

u1=x1, u2=1, Du1=0, Du2=1 

u 1
=

1,
 u

2=
x 2

, D
u 1

=
1,

 D
u 2

=
-0

 

u 1
=

0,
 u

2=
x 2

, D
u 1

=
-1

, D
u 2

=
0 

x1 

x2 

Figure 5.1: Patch test 1: essential boundary conditions
are prescribed in this patch test, where the dimension of
the domain in question is 1 x 1.

U = 0

U
=

0

2

1

u2=t1=Du1=R2=0 

u 1
=

t 2
=

D
u 2

=
R

1=
0 

 

t1=R1=R2=0,  t2=σ

t 1
=

t 2
=

R
1=

R
2=

0  

Figure 5.2: Patch test2: mixed boundary conditions are
enforced, approximating the problem of an infinite plane
with uni-axial traction, for the patch test.

stress field(patch test 2) were reproduced, respectively,
within quadrature and roundoff errors: using double pre-
cision the maximum error in the displacement or stress
field was of order 10−7 or 10−6 respectively. The main
reason why a higher accuracy could not be obtained is
that the shape function is very complicated and the square
of the derivatives could not be integrated accurately (see
Atluri and Shen, 2002a,b). So we can not expect the same
accuracy in the patch test as for finite elements.

5.2 Numerical examples

Due to the complexity and difficulty of a gradient theory,
the obtainable analytical solutions are only restricted to
some simple problems. In this section, we will focus on
two problems : 1. boundary layer analysis; and 2. the
stress field analysis in an infinite plate, with a hole, sub-
jected to bi-axial tension p at infinity, under a plane strain
assumption.

5.2.1 Boundary layer analysis

Higher-order gradient theories predict the existence of
boundary layers adjacent to in-homogeneities such as
interfaces. Consider, for example, a bimaterial system
composed of two perfectly bonded half planes of elastic
strain gradient solids, subjected to a remote

Material #1 

Material #2 

o x1 

x2 

σ21
∞

 

σ21
∞

Figure 5.3: Notation and geometry of a bimaterial under
uniform shear

shear stress σ∞
21 as shown in Fig. 5.3. For the strain gra-

dient solid specified by equations (2.0-2.15) , the shear
strain ε12 has a continuous but non-uniform distribution
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within a boundary layer adjacent to the interface. In a
specific quantitative example, we shall make the follow-
ing arbitrary choice of constitutive parameters. The shear
modulus µ of material 1 is taken to be twice that of ma-
terial 2, i.e. µ1 = 2µ2 . For each material i, the constants
a3 and a4 (as defined in equation (4a)) are equal to 1

2 µl2
i ,

i = 1,2, while a1,a2,a5 vanish. Here is usually called the
internal length scale for materials with strain gradient ef-
fects.

An analytical solution is presented here briefly (Shu et
al. 1999). For this bimaterial system, the conventional
elasticity theory dictates that the shear stress is uniform;
and the shear stain jumps in magnitude at the interface,
from ε12 = σ∞

12/2µ1 in material 1, to ε12 = σ∞
12/2µ2 in

material 2. By including strain gradient effects, a con-
tinuously distributed shear strain can be obtained. In this
problem, the only non-zero displacement, strain, stress
and higher-order stress are u1,ε12,σ12 and τ221, respec-
tively, and they are functions of the co-ordinate x 2 only.
From the constitutive equation (4c), it follows that

σ12 = 2µiε12 and τ221 = 2µl2
i η221 = 4µl2

i
∂ε12

∂x2
(49)

in material i. Substitution of the above relations into the
governing equation (6) leads to

∂ε12

∂x2
− l̂2

i
∂3ε12

∂x3
2

= 0 (50)

where l̂i =
√

2li. The general solution to the above ordi-
nary differential equation is

ε12 = d1 +d2ex2/l̂1 (51)

and

ε12 = d4 +d5ex2/l̂1 (52)

Here d1 to d6 are six constants that need to be determined.
The general solution is subject to the following boundary
conditions:

i. ε12 → σ∞
12/2µ1 as x2 →−∞

and
ε12 → σ∞

12/2µ2 as x2 → +∞
and at the interface,

ii. continuity of traction:
(σ−

12τ221,2)|x2→0− = (σ−
12τ221,2)|x2→0+

iii. continuity of double stress traciton:
τ221|x2→0− = τ221|x2→0+

iv. continuity of strain: ε12|x2→0− = ε12|x2→0+

then the particular solution, satisfying all these condi-
tions, is
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Figure 5.4: A typical nodal pattern for boundary layer
analysis, where m = 1.0 and the uniform nodal distance
in x1 direction is 2.5l.x2 < 0 for material #1 and x2 > 0
for material #2. Besides the boundary conditions shown
above, we set u1 = u2 = 0 at left-bottom corner and u2 =
0 at right-bottom corner to avoid the rigid movement.

ε12 =
σ∞

12

2µ1

{
1+

µ1 −µ2

µ2

µ2 l̂2

µ1l̂1 +µ2
�

l 2

ex2/l̂1

}
for x2 < 0

(53a)

and

ε12 =
σ∞

12

2µ2

{
1+

µ2 −µ1

µ1

µ1 l̂1

µ1l̂1 +µ2
�

l 2

e−x2/l̂2

}
for x2 > 0

(53b)

Defining ε12 = σ∞
12(µ1 + µ2)/(µ1µ2) as an average shear

strain, solutions may be written in a dimensionless form
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as

ε12/ε12 =
1
3

{
1+

1
3

ex2/l̂
}

for x2 < 0 (54a)

ε12/ε12 =
2
3

{
1− 1

3
e−x2/l̂

}
for x2 > 0 (54b)

where µ1 = 2µ2 and l1 = l2 = l have been used without
loss of generosity.

A numerical model with a typical nodal distribution is
described in Fig. 5.4, where the domain with dimen-
sion of 50l x 50l is taken to model the bimaterial sys-
tem. The minimum nodal distance in the x2 direction is
mtimesl,where the value of m varies from 0.5-3.5. Nodal
distance in x1 direction is uniform, which is 2.5 times of
the minimum nodal distance in the x2 direction.

The results are presented in Fig.5.5. The numerical so-
lution converges quickly to the exact solution, with an
increasing refinement of nodal distances, i.e. decreasing
m. It is interesting to note that the strain calculated at the
interface is accurate even for a very coarse nodal pattern,
when m is 3.5.

5.2.2 An infinite plate with a hole

The problem in section 5.2.1 could be regarded as one-
dimensional problem, although it is solved in the frame-
work of a general 2-D plane strain problem. In order to
examine the convergence property of the approach in a
real 2-D problem, we consider an infinite solid contain-
ing a circular cylindrical hole. The solid is subjected to
a remote bi-axial uniform tension, as shown in Figure
5.6. An analytical solution was obtained (Amanatidou
etc. 2002) for this problem, for the special case of a cou-
ple stress solid, i.e. the strain energy density per unit vol-
ume w depends upon strain and upon that part of strain
gradients which can be expressed as

w =
1
2

λεiiεkk +µεi jεi j

+
1
2

l2[λη i j jηikk +µ(ηi jkηi jk +ηi jkηk ji)] (55)

i.e. a2,a3 vanish in (4a) and a1 = 1
2 l2λ, a4 = a5 = 1

2 l2µ.

The problem is axially symmetric and the displacement
field is of the form
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Figure 5.5: An accuracy study for various nodal pat-
terns, where solid line denotes the analytical solution. It
is noticed that a relatively coarse nodal pattern, i.e.m =
3.5, gives fairly accurate results. In all of these calcula-
tions, the radius of the node-based test domain (not con-
stant) is twice that of the shortest distance from that node
to other ones, i.e. 2dshortest . The radius of support of the
nodal shape function is 4.5dshortest .
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Figure 5.6: Notation and geometry of an infinite plane
subjected to bi-axial remote tension.
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Figure 5.7: The quarter of hole in the domain is divided
uniformly into 10 partitions and total number of nodes in
domain is 165, where the radius of circle is a.

u(r) =
p

2µ

{
(1−2ν)r +

a2

r

+
l
c
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K1
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l

)
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)]}
(56)

where

c =
1−2v

2
K0

(a
l

)
+

1−v
2

(
4l
a

+
a
l

)
K1

(a
l

)
(57)

and Kn(x) are the well-known ‘modified Bessel functions
of the second kind’.

The problem is solved numerically using the MLPG
method. One-quarter of the plate is analyzed; the nodal
distributions used in the calculations are shown in Fig.5.7
and Fig. 5.8, where the total number of nodes are 165 and
2091, respectively. The numerical simulations are carried
out for ν = 0.3 and a = 3l. The domain with dimensions
of 10a x 10a is taken to approximate the quarter of the
infinite plate.

The following boundary conditions are prescribed (see
Fig.5.7)

Figure 5.8: The quarter of hole in the calculated domain
is divided uniformly into 40 partitions and total number
of nodes in domain is 2091. The boundary conditions are
as same as those in Fig.5.7.

• u2 = t1 = Du1 = R2 = 0 on bottom boundary
• u1 = t2 = Du2 = R1 = 0 on left boundary
• t2 = R1 = R2 = 0, t1 = p on right boundary
• t1 = R1 = R2 = 0, t2 = p on right boundary
• t1 = t2 = R1 = R2 = 0 on surface of the hole

The numerical solution agrees very well with the exact
solution. The displacement and stress fields are included
in Fig. 5.9. and Fig. 5.10, respectively. When the total
number of nodes is 2091 (shown in Fig.5.8), a remark-
able accuracy is obtained. It should be noted that the
classical elasticity solution with l = 0 predicts a stress
concentration σθθ|r=a = 2.0p and a value σrr|r=a = 0,
whereas the present gradient elasticity solution with a =
3l predicts σθθ|r=a = 1.94p and σrr|r=a = 0.16p.

In all of these calculations, radius of node-based test-
function domain (not constant) is the shortest distance
from that node to other ones, i.e. dshortest . The radius of
support of the nodal shape function is around 3.0d shortest .
We have noticed that increasing the node density would
definitely improve the accuracy in general, but we can not
blindly increase radius of test domain R I or/and support
size of nodal shape function rI. Otherwise, numerical in-
stability may occur.
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Figure 5.9: Variation of ur for the plate with a hole, with
different total number of nodes, where the solid curve
denotes the exact solution.
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Figure 5.10: Variations of σθθand σrr for the plate with
a hole, with different total number of nodes, where the
solid curves denote the exact solution.

6 Concluding Remards

The Meshless local Petrov-Galerkin (MLPG) method has
been developed for materials within the Toupin-Mindlin
framework of strain gradient type constitutive theory. In-
trinsic non-local properties of the meshless interpolation
leads to real rotation-free approaches, where displace-
ments are the only nodal degrees of freedom. The MLPG
method defines the weak form of governing equations on
sub-domains, which consequently helps to evaluate inte-
gration on some well-shaped region, e.g. circle in 2-D,
and no mesh is needed. All of these advantages have
been combined in calculations presented in this paper
and quite accurate results have been obtained. The re-
markable accuracy in these numerical simulations shows
promising characteristics of MLPG for solving general
problems of material in elasticity, where strain-gradient
effects may be important.
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