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Further Developments in the MLPG Method for Beam Problems

I. S. Raju1 and D. R. Phillips2

Abstract: An accurate and yet simple Meshless Lo-
cal Petrov-Galerkin (MLPG) formulation for analyzing
beam problems is presented. In the formulation, simple
weight functions are chosen as test functions as in the
conventional MLPG method. Linear test functions are
also chosen, leading to a variation of the MLPG method
that is computationally efficient compared to the conven-
tional implementation. The MLPG method is evaluated
by applying the formulation to a variety of patch tests,
thin beam problems, and problems with load disconti-
nuities. The formulation successfully reproduces exact
solutions to machine accuracy when higher order power
and spline functions are chosen as test functions or when
the linear test function is used, and when constructing
the trial functions, the order of the basis function is prop-
erly balanced by the order of the weight function. For
mixed boundary value problems, deflections, slopes, mo-
ments, and shear forces are calculated to the same accu-
racy by the MLPG method without the use of elaborate
post-processing techniques. Problems with load discon-
tinuities require special care – when a reasonable num-
ber of nodes are used, the method yields very accurate
results.

1 Introduction

Meshless methods are developed to overcome some of
the disadvantages of the Finite Element Method (FEM)
such as discontinuous secondary variables across inter-
element boundaries and the need for remeshing in large
deformation problems. Recent literature shows exten-
sive research on meshless methods and in particular the
Meshless Local Petrov-Galerkin (MLPG) method. The
majority of literature published to date on the MLPG
method presents variations of the method for C0 prob-
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lems (see the monograph by Atluri and Shen, 2002a).
However, a comparatively limited amount of work is
reported on the more complicated C1 problems (Krysl
and Belytschko, 1995, Donning and Liu, 1998, Atluri et
al., 1999, and Gu and Liu, 2001). Atluri et al. (1999)
presented an analysis of thin beam problems using a
Galerkin implementation of the MLPG method. In their
(Atluri et al.) paper, a generalized moving least squares
(GMLS) approximation was used to construct the trial
functions, and the test functions were chosen from the
same space. While accurate results for primary and sec-
ondary variables were obtained with these choices, spe-
cial procedures were needed to integrate the weak form
accurately.

The purpose of this paper is to explore two MLPG for-
mulations for beam problems – the conventional ver-
sion of the MLPG method (i.e., a true meshless Petrov-
Galerkin implementation, originally presented by Atluri
and Zhu in 1998) and a modification to the MLPG
method that is computationally less expensive than the
conventional version of the method. In the conventional
MLPG method, test functions are chosen from a different
space than the trial functions and involve simple weight
functions. In the computationally efficient and less ex-
pensive modification, special test functions are chosen
that eliminate the domain integrals. This formulation is
evaluated by comparing the results with those obtained
using the conventional MLPG method. This paper also
presents extensive studies on various parameters of the
method for beam problems.

The outline of the paper is as follows. First, the local
weak form of the governing differential equation is de-
rived in a general sense, and a system of algebraic equa-
tions is developed from this local weak form. Next, the
generalized moving least squares interpolation scheme
used to construct the trial functions is described. Then,
the test functions chosen in the conventional MLPG
method are presented. The computationally efficient
modification to the MLPG method is described next and
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compared to the conventional MLPG method. Several
patch test problems are used to validate the method, and
specific problem parameters are discussed. Then, various
mixed boundary value problems are presented to test the
method. Finally, the method is applied to problems with
load discontinuities and continuous beam problems.

2 Local Weak Form for Euler-Bernoulli Beam Prob-
lems

The governing equation for an Euler-Bernoulli beam is

EI
d4w
dx4 = f in domain Ω (0≤ x≤ L) with boundary Γ,

(1)

where w is the transverse displacement, L is the length
and EI is the flexural rigidity of the beam, and f is the
distributed load on the beam. The boundary conditions
at x = 0 and x = L can have several combinations. The
essential boundary conditions (EBCs) are of the form

w = w̃ on Γw and

dw
dx

= θ̃ on Γθ, (2)

and the natural boundary conditions (NBCs) are of the
form

V = Ṽ on ΓV and

M = M̃ on ΓM , (3)

where V and M are the shear force and bending moment,
respectively, and are related to the deflection, w, as

V = −EI
d3w
dx3 and M = EI

d2w
dx2 , (4)

and Γw, Γθ, ΓV , and ΓM denote the boundary points
where deflection (w), slope (θ), shear (V), and moment
(M) are prescribed, respectively. Note that the prescrip-
tions of w̃ and Ṽ and θ̃ and M̃ are mutually disjoint, i.e.,
when w = w̃ is prescribed, the shear force V becomes the
corresponding reaction, and when θ = θ̃ is prescribed,
the moment M becomes the corresponding reaction.

The classical weighted residual form of the governing
differential equation for fourth order problems is ob-
tained by multiplying the residual by a weight function,
v, integrating over the whole domain, and setting the in-
tegral to zero:

0 =
∫
Ω

(
EI

d4w
dx4 − f

)
vdx. (5)

The weak form of the weighted residual equation is set
up by transferring the differentiation from the primary
variable, w, to the weight function, v. This is achieved by
integrating by parts twice, yielding

0 = EI
∫
Ω

d2w
dx2

d2v
dx2 dx−

∫
Ω

f v dx

+nx

[
EI

d3w
dx3 v

]
Γ
−nx

[
EI

d2w
dx2

dv
dx

]
Γ
, (6)

where nx[v · EI(d3w/dx3)]Γ and nx[(dv/dx) ·
EI(d2w/dx2)]Γ are introduced as boundary terms
and nx is the direction cosine of the unit outward drawn
normal to Ω with respect to the x-axis. The nx thus takes
values ±1 in 1-D problems. In this paper, the essential
boundary conditions are enforced by a penalty method
(Atluri et al., 1999). The penalty terms are written as

αw [(w− w̃) v]Γw
(7)

and

αθ

[(
dw
dx

− θ̃
)

dv
dx

]
Γθ

,

where αw and αθ are the penalty parameters to enforce
the deflection and slope boundary conditions, respec-
tively. Thus, including the penalty terms, Eq. (6) is writ-
ten as

0 = EI
∫
Ω

d2w
dx2

d2v
dx2 dx−

∫
Ω

f v dx+αw [(w− w̃)v]Γw

+αθ

[(
dw
dx

− θ̃
)

dv
dx

]
Γθ

+nx

[
EI

d3w
dx3 v

]
Γ

−nx

[
EI

d2w
dx2

dv
dx

]
Γ

. (8)
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In Eq. (8), called the weak form of the governing differ-
ential equation, the chosen approximations for the vari-
able w are called the trial functions, and the weight func-
tions, v, are now called the test functions. To make the
current implementation a Petrov-Galerkin method, the
test functions are chosen independently from the trial
functions.

k j i N1
x

2

(a) An N-node model of a beam

Domain of the trialfunction (2Rj)

Domain of the
testfunction (Ωs)

Componentof
testfunction

of node i

Shape function of node j

Ro

k j i

Rj

ΓsΓs

(b) Components of the trial and test functions

Figure 1 : Comparison of the domains of the trial and
test functions

Consider an N-node model of a beam as shown in Fig-
ure 1a. The solution to the beam problem for a given
loading and set of boundary conditions is sought as w
and θ at each of the nodes in the model. To achieve this,
first the trial functions are chosen for w and the test func-
tions are chosen for v, and then the weak form of Eq. (8)
is applied to each of the nodes in the model to yield a
system of algebraic equations in terms of the unknown
primary variables, w and θ, at each of the nodes in the
model. Figure 1b illustrates the component of the trial
function (the shape function) at node j and the compo-
nent of the test function at node i. Unlike in the finite
element method, the trial functions at node j are diffused
and extend over a domain (x j −R j) to (x j + R j). Simi-
larly, the test functions span over the domain (x i −Ro) to
(xi + Ro). The variables Ro and R j are user-defined pa-
rameters. As the test functions are defined over a local
region, (xi −Ro) to (xi + Ro), i.e., as they are chosen to
be zero for x < (xi −Ro) and x > (xi + Ro), the integra-

tions over Ω in Eq. (8) reduce to integrations over a local
sub-domain Ωs, defined by (xi −Ro) to (xi + Ro), with
boundary Γs (see Figure 1b), and the weak form reduces
to

0 = EI
∫
Ωs

d2w
dx2

d2v
dx2 dx−

∫
Ωs

f vdx

+αw [(w− w̃) v]Γsw
+αθ

[(
dw
dx

− θ̃
)

dv
dx

]
Γsθ

+nx

[
EI

d3w
dx3 v

]
Γs

−nx

[
EI

d2w
dx2

dv
dx

]
Γs

(9)

where Γsw and Γsθ are the boundaries where w and θ are
prescribed on the local boundary (Γ s ∩ Γw and Γs ∩ Γθ).
The penalty terms are considered only if the local sub-
domain, Ωs, intersects Γw or Γθ . In general, when a
local boundary, Γs, intersects a global boundary, Γ, four
boundary condition possibilities exist. These possibili-
ties are Γs ∩ Γw, Γs ∩ Γθ, Γs ∩ ΓV , and Γs ∩ ΓM and are
denoted Γsw, Γsθ, ΓsV , and ΓsM , respectively. Addition-
ally, when Γs coincides with an interior point, that point
is denoted ΓsI . Using these boundary condition possibil-
ities, Eq. (9) is rewritten as

0 = EI
∫
Ωs

d2w
dx2

d2v
dx2 dx−

∫
Ωs

f v dx (10)

+αw [(w− w̃)v]Γsw
+αθ

[(
dw
dx

− θ̃
)

dv
dx

]
Γsθ

+nx

[
EI

d3w
dx3 v

]
ΓsI

−nx

[
EI

d2w
dx2

dv
dx

]
ΓsI

−nx
[
Ṽ v
]

ΓsV

−nx

[
M̃

dv
dx

]
ΓsM

+nx

[
EI

d3w
dx3 v

]
Γsw

−nx

[
EI

d2w
dx2

dv
dx

]
Γsθ

.

As mentioned previously, nx is the direction cosine of the
unit outward drawn normal to Ωs; nx = 1 if the boundary
is on the right side of Ωs, and nx = –1 if the boundary is
on the left side of Ωs.

The trial functions are assumed as

w(x) =
n

∑
j=1

(
ŵ jψ

(w)
j (x)+ θ̂ jψ

(θ)
j (x)

)
, (11a)
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and the test functions are assumed as

v(x) = µ(w)
i χ(w)

i (x)+µ(θ)
i χ(θ)

i (x), (11b)

where ŵ j and θ̂ j are the fictitious nodal values of deflec-
tion and slope at node j, ψ j are the shape functions and
n is the number of nodes involved in the GMLS inter-
polation, µ(w)

i and µ(θ)
i are the arbitrary constants for de-

flections and slopes of the test function, and χ (w)
i (x) and

χ(θ)
i (x) are components of the test functions. The trial

and test functions will be discussed in detail later.

3 MLPG Equations

Substituting the trial and test functions of Eq. (11) into
the weak form of Eq. (10), and requiring that the weak
form be valid for arbitrary values of µ(w)

i and µ(θ)
i leads to

the MLPG equations as

K (node)d̂ +K (bdry)d̂− f(node) − f(bdry) = 0 (12)

where “bdry” denotes boundary and

d̂ =
{

ŵ1, θ̂1, ŵ2, θ̂2, . . . , ŵN , θ̂N
}T

(13a)

are the fictitious nodal values of deflections, w, and
slopes, θ, at all the N nodes of the model used to ana-
lyze the problem, and

K (node) =
[
k(node)

i j

]
(13b)

K (bdry) =
[
k(bdry)

i j

]
(13c)

with

k(node)
i j = EI




∫
Ω(i)

s

d2χ(w)
i

dx2

d2ψ(w)
j

dx2 dx
∫

Ω(i)
s

d2χ(w)
i

dx2

d2ψ(θ)
j

dx2 dx

∫
Ω(i)

s

d2χ(θ)
i

dx2

d2ψ(w)
j

dx2 dx
∫

Ω(i)
s

d2χ(θ)
i

dx2

d2ψ(θ)
j

dx2 dx




+nxEI


 χ(w)

i
d3ψ(w)

j

dx3 χ(w)
i

d3ψ(θ)
j

dx3

χ(θ)
i

d3ψ(w)
j

dx3 χ(θ)
i

d3ψ(θ)
j

dx3




Γ(i)
sI

−nxEI




dχ(w)
i

dx
d2ψ(w)

j

dx2
dχ(w)

i
dx

d2ψ(θ)
j

dx2

dχ(θ)
i

dx
d2ψ(w)

j

dx2
dχ(θ)

i
dx

d2ψ(θ)
j

dx2




Γ(i)
sI

(13d)

k(bdry)
i j = αw


 χ(w)

i ψ(w)
j χ(w)

i ψ(θ)
j

χ(θ)
i ψ(w)

j χ(θ)
i ψ(θ)

j




Γ(i)
sw

+nxEI


 χ(w)

i
d3ψ(w)

j

dx3 χ(w)
i

d3ψ(θ)
j

dx3

χ(θ)
i

d3ψ(w)
j

dx3 χ(θ)
i

d3ψ(θ)
j

dx3




Γ(i)
sw

+αθ


 dχ(w)

i
dx

dψ(w)
j

dx
dχ(w)

i
dx

dψ(θ)
j

dx

dχ(θ)
i

dx
dψ(w)

j

dx
dχ(θ)

i
dx

dψ(θ)
j

dx




Γ(i)
sθ

−nxEI




dχ(w)
i

dx
d2ψ(w)

j

dx2
dχ(w)

i
dx

d2ψ(θ)
j

dx2

dχ(θ)
i

dx
d2ψ(w)

j

dx2
dχ(θ)

i
dx

d2ψ(θ)
j

dx2




Γ(i)
sθ

(13e)

f(node) =




∫
Ω(i)

s

χ(w)
i f dx

∫
Ω(i)

s

χ(θ)
i f dx


 (13f)

and

f(bdry) = nxM̃




dχ(w)
i

dx

dχ(θ)
i

dx




Γi
sM

+nxṼ




χ(w)
i

χ(θ)
i




Γi
sV

+αw




w̃χ(w)
i

w̃χ(θ)
i




Γi
sw

+αθ




θ̃dχ(w)
i

dx

θ̃dχ(θ)
i

dx




Γi
sθ

,

(13g)

where i = 1, 2, . . . N and j = 1, 2, . . . n.

The system of equations presented in Eqs. (12 – 13g)
are the general equations valid for any set of trial and
test functions. In this paper, a Petrov-Galerkin method is
used; the test functions are chosen to be different from
the trial functions. The choices for the trial and test func-
tions are discussed next.

4 Trial Functions: The Generalized Moving Least
Squares Interpolation

A generalized moving least squares (GMLS) approxima-
tion for w and θ is developed (Atluri et al., 1999) follow-
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ing the general principals of the moving least squares ap-
proximation used for C0 problems (Nayroles et al., 1992
and Atluri and Zhu, 1998).

Nayroles et al. (1992) suggested an approximation for w
in the neighborhood of node j as

w(x) = pT (x)a(x) =
m

∑
j=1

p j(x)a j(x), (14)

or

w(x) = a1 +a2x+a3x2 + . . .+amxm−1 (15)

where a1, a2, . . . , am are, in general, functions of x (Be-
lytschko et al., 1994). Figure 2 shows two identical shape
functions, one centered at node j, and the other centered
at node e. The global approximation for w (Eq. 15)
around node j in Figure 2 can be rewritten in terms of
a local coordinate, ξ, ξ = x− x j, as (Raju and Phillips,
2002a)

ex

ξ ξ

)(w
jψ

j

2Rj

)(w
eψ

2Rj

Figure 2 : Local coordinate definitions

w(x) = a1 +a2 (x j + ξ)+a3 (x j + ξ) 2 + . . .+am (x j + ξ) m−1

=
(
a1 +a2x j +a3x2

j + . . .
)
+(a2 +2a3x j + . . .) ξ

+(a3 + . . .) ξ2 + . . .+()ξm−1. (16)

Therefore,

w(x) = b1 +b2ξ +b3ξ2 + . . .+bmξm−1

=
m

∑
j=1

p j(ξ)b j(x) = pT (ξ)b(x) (17)

where x = x j + ξ, p(ξ) is the basis function defined in
terms of the local coordinate ξ,

pT (ξ) =
[
1, ξ, ξ2, . . . ,ξm−1] , (18)

with (m-1) as the order of the 1-D basis function, and b(x)
is the new vector of undetermined coefficients, which are
functions of x. (A similar local coordinate transformation
can be affected for node e in Figure 2 as x = xe +ξ). The
b(x) are evaluated by minimizing a weighted discrete H h

error norm (Nayroles et al., 1992 and Atluri et al., 1999):

Hh(b) =
n

∑
j=1

∑
|α|≤h

λ j(x)
[
Dα{pT (ξ)b} j −Dα ŵ j

]2
(19)

where λ j(x) is a weight function, n is the number of
nodes in the domain of definition of the trial function, D α

denotes the α th derivative, and ∑
|α|≤h

indicates the summa-

tion of all derivatives up to order h. The weight functions,
λ j(x), in Eq. (19) play an important role in the MLS ap-
proximation. These functions have the following prop-
erties. They are continuous, have nonzero values over a
range 2R j, have unit value at x = x j, and have zero val-
ues when x ≤ (x j − R j) and x ≥ (x j + R j). The extent
of the weight function determines the extent of the trial
functions (Nayroles et al., 1992, Belytschko et al., 1994,
Atluri and Zhu, 1998). Typical weight functions are pre-
sented later in the paper.

As the primary variables for beam problems are the de-
flection, w, and slope, θ = (dw/dx), the weighted discrete
H1 error norm can be written as

H1(b) =
n

∑
j=1

∑
|α|≤1

λ j(x)
[
Dα{pT (ξ)b} j −Dαŵ j

] 2

=
n

∑
j=1

{
λ(w)

j (x)
[{pT (ξ)b} j − ŵ j

]2

+λ(θ)
j (x)

[{
dpT (ξ)

dx
b
}

j
− θ̂ j

]2

 . (20)

In this paper, λ(w)
j (x) and λ(θ)

j (x) are chosen to be identi-
cal, and they are hereafter referred to as λ j(x). Equation
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(20) can be written in matrix form as

H1(b) = [Pb− ŵ]T λλλ [Pb− ŵ]+
[
Pxb− θ̂̂θ̂θ

]T
λλλ
[
Pxb− θ̂̂θ̂θ

]

=
{[

P
Px

]
{b}−

{
ŵ
θ̂̂θ̂θ

}}T [λλλ 0
0 λλλ

]{[
P
Px

]
{b}−

{
ŵ
θ̂̂θ̂θ

}}

= [Qb− ŝ]T ΛΛΛ [Qb− ŝ] (21)

where P and Px are (n,m) matrices and λλλ is a diagonal
(n,n) matrix defined as

[P] =
[

pT (ξ1) pT (ξ2) . . . pT (ξn)
]T

, (22a)

[Px] =
[

pT
x (ξ1) pT

x (ξ2) . . . pT
x (ξn)

]T
, (22b)

and

λλλ =




λ1(x)
λ2(x)

. . .
λn(x)


 , (23)

where ξk = xk −x j , k = 1, 2, . . . , n,

pT (ξ) =
[

1, ξ, ξ2, . . . ξm−1
]
, (24a)

and

pT
x (ξ) =

dpT (ξ)
dx

=
[

0, 1, 2ξ, . . . (m−1)ξm−2
]

(24b)

as

d
dx

() =
d
dξ

() . (25)

Also,

Q =
[

P
Px

]
, ŝ=

{
ŵ
θ̂̂θ̂θ

}
, and ΛΛΛ =

[
λλλ 0
0 λλλ

]
(26)

are the basis function matrix, the nodal displacement vec-
tor, and the weight function matrix, respectively. Mini-
mization of the H1 norm (i.e., ∂H1/∂bT = 0)leads to

[A]
(m,m)

{b}
(m,1)

= [B]
(m,2n)

{ŝ}
(2n,1)

, (27)

where

[A]
(m,m)

= [Q]T
(m,2n)

[ΛΛΛ]
(2n,2n)

[Q]
(2n,m)

= [P]T
(m,n)

[λλλ]
(n,n)

[P]
(n,m)

+[Px]T
(m,n)

[λλλ]
(n,n)

[Px]
(n,m)

(28)

and

[B]
(m,2n)

= [Q]T
(m,2n)

[ΛΛΛ]
(2n,2n)

=
[

[P]T
(m,n)

[λλλ]
(n,n)

, [Px]T
(m,n)

[λλλ]
(n,n)

]
. (29)

Solving for {b} using Eq. (27) gives

{b}
(m,1)

= [A]−1

(m,m)
[B]

(m,2n)
{ ŝ}
(2n,1)

(30)

Substituting into the approximation Eq. (17),

w(x) ∼= pT (ξ)
(1,m)

[A]−1

(m,m)
[B]

(m,2n)
{ŝ}
(2n,1)

. (31)

The trial functions used for beam problems are finally
written as a linear combination of nodal shape functions:

w(x) =
n

∑
j=1

(
ŵ jψ

(w)
j (x)+ θ̂ jψ

(θ)
j (x)

)
, (32)

where

ψ(w)
j (x) =

m
∑

g=1
pg(ξ j)

[
[A]−1[P]T [λλλ]

]
g j and

ψ(θ)
j (x) =

m
∑

g=1
pg(ξ j)

[
[A]−1[Px]T [λλλ]

]
g j .

(33)

The derivatives of these shape functions are needed in
Eqs. (13). Explicit expressions for these derivatives are
presented in Appendix A.

4.1 Weight Functions

Three types of weight functions, λ j(x), are considered
for constructing the trial functions – power functions and
two different spline functions – to demonstrate the ro-
bustness of the MLPG method. The power functions con-
sidered are (Atluri et al., 1999)
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λ j(x) =



[

1−
(

d j

R j

)2
]α

if 0 ≤ d j ≤ R j

0 if d j > R j,
(34)

with d j = ||x−x j||, the Euclidean distance between x and
x j, and α = 2, 3, 4, 5, and 6. Note that higher values
of α yield weight functions with higher order continuity
(Atluri and Shen, 2002a). The spline functions consid-
ered are a 3-term spline,

λ j(x) =

{
1−3

(
d j

R j

)2
+2

(
d j

R j

)3
if 0 ≤ d j ≤ R j

0 if d j > R j,

(35)

and a 4-term spline (Atluri and Zhu, 1998),

λ j(x)=

{
1−6

(
d j
R j

)2
+8

(
d j
R j

)3−3
(

d j
R j

)4
if 0 ≤ d j ≤ R j

0 if d j > R j.

(36)

In Eqs. (34 – 36), R j is a user-defined parameter that
controls the extents of the trial functions.

5 Test Functions

As mentioned previously, the test function, v, is assumed
as in Eq. (11b) as

v(x) = µ(w)
i χ(w)

i (x)+µ(θ)
i χ(θ)

i (x).

In previous literature, a generalized moving least squares
(GMLS) interpolation scheme was used to develop a
Galerkin formulation for analyzing beam problems. The
trial and test functions in the meshless Galerkin formula-
tion for beam problems were chosen to be identical, i.e.,
χ j ≡ ψ j . This formulation showed discontinuities (“scis-
sors”) at the boundaries of the supports of the higher
order derivatives of the trial functions in the local sub-
domain of the test function. Due to these scissors, elabo-
rate numerical integration schemes were needed to inte-
grate the weak form accurately (Atluri et al., 1999).

In this paper, a true Petrov-Galerkin method is used,
i.e., the test function components, χ i, are chosen

to be distinctly different from the shape functions,
ψi (χi �= ψi). In the conventional MLPG method, the

χ(w)
i (x)components of the test functions are chosen as

simple weight functions similar to those of Eqs. (34 –
36) as

χ(w)
i (x) =



[

1−
(

di
Ro

)2
]β

if 0 ≤ di ≤ Ro

0 if di > Ro,
(37)

power weight functions with d i = ||x− xi|| and β = 2, 3,
and 4, a 3-term spline,

χ(w)
i (x) =

{
1−3

(
di
Ro

)2
+2

(
di
Ro

)3
if 0 ≤ di ≤ Ro

0 if di > Ro,

(38)

and a 4-term spline,

χ(w)
i (x) =

{
1−6

(
di
Ro

)2
+8

(
di
Ro

)3−3
(

di
Ro

)4
if 0 ≤ di ≤ Ro

0 if di > Ro.
(39)

In Eqs. (37 – 39), Ro is a user-defined parameter that de-
termines the extent of the test functions (and hence Ω s).
The components of the test functions chosen for θ are the
first derivatives of the components of the test functions
chosen for the primary variable, w, i.e.,

χ(θ)
i =

dχ(w)
i

dx
, (40)

as θ = (dw/dx) is also a primary variable.

For the power functions with β = 3 and 4 and the 4-term
spline function, the values of χ (w)

i , χ(θ)
i , (dχ(w)

i /dx), and

(dχ(θ)
i /dx) are zero when di = Ro. The point di = Ro

corresponds to the end points of each Ω s, and when Ωs

does not intersect the global boundary (Γ), its Γ s are the
ΓsI (Eq. 13d). Consequently, when these test functions
are used, the k(node) in Eq. (13d) reduces to

k(node)
i j = EI



∫

Ω(i)
s

d2χ(w)
i

dx2

d2ψ(w)
j

dx2 dx
∫

Ω(i)
s

d2χ(w)
i

dx2

d2ψ(θ)
j

dx2 dx

∫
Ω(i)

s

d2χ(θ)
i

dx2

d2ψ(w)
j

dx2 dx
∫

Ω(i)
s

d2χ(θ)
i

dx2

d2ψ(θ)
j

dx2 dx


. (41)
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For the 3-term spline and the power function with β =

2, the values of χ(w)
i , χ(θ)

i , and (dχ(w)
i /dx) are zero when

di = Ro; however, the derivative (dχ(θ)
i /dx) is nonzero

when di = Ro. As such, all the terms involved in Eq.
(13d) need to be considered.

6 Computationally Efficient Modification to the
MLPG Method

Recently, Atluri and Shen (2002a and 2002b) presented
six different variations of the MLPG method (MLPG1,
MLPG2, . . . , MLPG6) for Poisson problems by choos-
ing different classes of test functions for each of the vari-
ations. Of the six, the most attractive variation is the
choice of a heaviside function as the test function (called
MLPG5 by Atluri and Shen, 2002b). With this choice,
the domain (Ωs) integrals involved in the weak form van-
ish, and this leads to a very computationally efficient and
inexpensive MLPG method.

RoRo

i
x

w

)(w
iχ

dx
d i

)(θχ

dx
d w

i
i

)(
)( ,

χχ θ

1.0

Figure 3 : Linear test function components and their
derivatives

A similar variation of the MLPG method is proposed here
for beam problems. The components of the test function
of Eq. (11b) in this variation are chosen as (see Figure 3)

χ(w)
i (x) = x

χ(θ)
i (x) = 1

if 0 ≤ di ≤ Ro (42a)

and

χ(w)
i (x) = 0

χ(θ)
i (x) = 0

if di > Ro (42b)

so that

d2χ(w)
i

dx2 =
d2χ(θ)

i

dx2 = 0. (43)

Thus the integrand of the integral over Ω s vanishes in Eq.
(13d) and the k (node) reduces to

k(node)
i j = +nxEI


 χ(w)

i
d3ψ(w)

j

dx3 χ(w)
i

d3ψ(θ)
j

dx3

χ(θ)
i

d3ψ(w)
j

dx3 χ(θ)
i

d3ψ(θ)
j

dx3




ΓsI

−nxEI




dχ(w)
i

dx
d2ψ(w)

j

dx2
dχ(w)

i
dx

d2ψ(θ)
j

dx2

dχ(θ)
i

dx
d2ψ(w)

j

dx2
dχ(θ)

i
dx

d2ψ(θ)
j

dx2




ΓsI

. (44)

Note that for the higher order (β > 2) power func-
tions and the 4-term spline function considered in Eqs.

(37 – 39), the values of the χ(w)
i , χ(θ)

i , (dχ(w)
i /dx), and

(dχ(θ)
i /dx) are zero at ΓsI , while the (d2χ(w)

i /dx2) and

(d2χ(θ)
i /dx2) are nonzero everywhere in Ωs. In contrast,

for the choice of the test function components of Eq.
(42), χ(w)

i , χ(θ)
i , and (dχ(w)

i /dx) are nonzero at ΓsI , and

the (d2χ(w)
i /dx2) and (d2χ(θ)

i /dx2) are identically zero
everywhere in Ωs. Thus the contributions to the k (node)

for this variation of the MLPG method come only from
the ends of Ωs, the ΓsI points. This leads to a computa-
tionally efficient and inexpensive method as the integra-
tions involved in the Ω s integrals are eliminated.

In the sections that follow, the two variations of the
MLPG method are used to analyze several numerical ex-
amples. For convenience in presentation, the conven-
tional MLPG method will hereafter be referred to as in
Atluri and Shen (2002a and 2002b) as the “MLPG1,” and
the computationally efficient modification to the MLPG
method (with linear test functions) will be referred to as
the “MLPG5.”

7 Beam Configurations and Models

A beam of constant flexural rigidity EI and a length of 4l
is considered. The length 4l was specifically chosen to
avoid scaling by a unit length, l. Six models with 5, 9,
17, 33, 65, and 129 nodes uniformly distributed along the
length of the beam are considered. Figure 4 shows a typi-
cal 17-node model. The distances between the nodes (∆x/
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l) in these models are 1, 0.5, 0.25, 0.125, 0.0625, and
0.03125 for the 5-, 9-, 17-, 33-, 65-, and 129-node mod-
els, respectively. Four types of basis function, linear ba-
sis (1, ξ), quadratic basis (1, ξ, ξ2), cubic basis (1, ξ, ξ2,
ξ3), and quartic basis (1, ξ, ξ2, ξ3, ξ4) are used. Numeri-
cal integration is used to integrate the system of equations
as closed-form integration of the terms in Eqs. (13d and
13f) is extremely complicated. The order of Gaussian
integration required for acceptable results in the MLPG
method depends on the basis functions and weight func-
tions used. The system of equations (Eqs. 12 – 13g)
is developed with these parameters. For each problem
analyzed, the results for the MLPG1 are discussed first,
followed by the results for the MLPG5.

1 92

x

16 17

4l

∆x

Figure 4 : A 17-node model of the beam

While the MLPG method gives smooth distributions for
the primary and secondary variables, in the numerical
evaluations that follow, the MLPG solutions are evalu-
ated at 25 points along the length of the beam and shown
as symbols in the figures, and the exact solutions are
shown as continuous lines. Additionally, certain val-
ues of several parameters are specified for the individual
problems. For the trial function in each problem, the or-
der of the basis function and the weight function, λ j(x)
from Eqs. (34 – 36), are chosen. For the test function
in each problem, the component χ(w)

i (x) is chosen from

Eqs. (37, 38, 39, or 42). The component χ(θ)
i (x) is the

derivative of χ(w)
i (x). The user-controlled parameters are

(Ro/l) – the extent of the test functions, (R j/l) – the ex-
tent of the trial functions, and the order of the Gaussian
integration.

8 Numerical Evaluations – Patch Tests

The two current variations of the MLPG formulation
were evaluated by applying the formulations to simple
patch-test problems. The problems considered were (a)
rigid body translation:

w(x) = c0, θ =
dw
dx

= 0 , (45a)

(b) rigid body rotation:

w(x) = c1x, θ = c1, (45b)

and (c) constant-curvature condition:

w(x) = c2x2/2,θ = c2x, (45c)

where c0, c1, and c2 are arbitrary constants. The third
patch test could be looked upon as the problem of a can-
tilever beam with a moment, M=EI(d2w/dx2)= EIc2, ap-
plied at x=4l. The deflection, w, and the slope, θ, corre-
sponding to problems (a), (b), and (c) were prescribed as
essential boundary conditions (EBCs) at x =0 and x =4l.
With these EBCs, the beam problems were analyzed us-
ing the MLPG method. If the MLPG method recovers
the exact solution at all the interior nodes and at every ar-
bitrary point of the beam, then the MLPG method passes
the patch test.

In preliminary evaluations, the χ (w)
i (x)component of the

test functions in the MLPG weak form was chosen as
Eq. (37) with β = 4. The weight functions λ j(x) used
to construct the trial functions were Eq. (34) with α =
3 and α = 4. The term (Ro/l) (Eq. 37) in each of these
six models was different and chosen equal to (2∆x). The
(R j/l) in Eq. (34) was chosen to be (R j/l = 3.5) for the
5- and 9-node models and (R j/l = 16∆x) for the 17-, 33-,
65-, and 129-node models. The usable ranges of (Ro/l)
and (R j/l) are discussed later.

For a displacement of w(x) = c0 and c1x units, the rigid
body conditions (Eqs. 45a and 45b) were modeled with
boundary conditions

(a) w|x=0 = c0, w|x=4l = c0,

θ|x=0= 0, θ|x=4l= 0.

(b) w|x=0= 0, w|x=4l= 4c1l,

θ|x=0 = c1, θ|x=4l = c1.

Since the exact solutions are constant and linear in x, re-
spectively, the MLPG method developed with a linear or
higher order basis function must reproduce the solutions
exactly. As expected, the algorithm reproduced the exact
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solutions for w and θ to machine accuracy for both rigid
body modes at all the nodes and at any arbitrary point in
the beam.

For the constant – curvature condition, w = c2x2/2, the
problem was modeled with EBCs

(c) w|x=0= 0, w|x=4l= 8c2l2,

θ|x=0= 0, θ|x=4l= 4c2l.

Since the exact solution is quadratic in x, the MLPG
method developed with a quadratic or higher order ba-
sis function must reproduce the solution exactly. As ex-
pected, the algorithm reproduced the exact solution for
the primary variables to machine accuracy at all nodes
and at any arbitrary point in the beam. When the lin-
ear basis function was used, the accuracy of the MLPG
method increased as the value of α in Eq. (34) increased
from 3 to 5. A value of α = 5 gave results that are very
close to machine accuracy. Thus, a quintic weight func-
tion (α = 5) is preferable when the linear basis function
is used.

An 8-point Gaussian quadrature was found to be suf-
ficient to integrate the weak form accurately when the
power functions with β = 2, 3, and 4 were used. The
MLPG1 passed the patch tests with these test function
components. When the spline functions (Eqs. 38 and 39)
were used as test function components, elaborate integra-
tion like that reported by Atluri et al. (1999) was needed.
The Ωs was subdivided into sub-regions in a manner sim-
ilar to Figure 8 of Atluri et al. (1999), and in each sub-
region, a 20-point Gaussian integration was used. The
4-term spline passed all the patch tests to machine accu-
racy with this integration scheme. On the other hand, the
results obtained with the 3-term spline were numerically
unreliable.

The three patch test problems were repeated with the lin-
ear test function (Eq. 42). The MLPG5 reproduced exact
solutions to machine accuracy, thus passing all the patch
tests.

9 Problem Parameters

As mentioned previously, the parameters (Ro/l) and
(R j/l) in the MLPG method are user-controlled. Ranges
of values of these parameters were studied, and a general
rule of thumb was established. The lengths (R o/l = 2∆x)
and (R j/l = 8∆x) were used at all nodes of an N-node
model. As the models are refined, the value of (∆x/l) de-
creases, and thus the size of Ωs and the extent of the trial

functions also decrease. For finer models, i.e. for the 33-,
65-, and 129-node models, when 8∆x ≤ (R j/l) ≤ 16∆x,
the MLPG method yielded very accurate results. As the
value of (R j/l) approached (20∆x), the accuracy of the
MLPG method progressively deteriorated for the patch
tests. When (R j/l) exceeds (20∆x), the trial function
is too diffused, and the size of Ωs(Ro/l = 2∆x) is too
small in comparison to (R j/l). The small Ωs size and
large (R j/l) are apparently incompatible. While the finer
models performed well over a large range of (R j/l), the
coarser models performed well in a much smaller range
of (R j/l). For good performance, the (R j/l) needed to be
approximately (8∆x) but less than the total beam length.
Special cases of (Ro/l) values that should be avoided
when using the MLPG5 are presented in Appendix B.

10 Numerical Evaluations – Mixed Boundary Value
Problems

The MLPG method was applied to beam problems with
mixed boundary conditions. In this section, cantilever
beam problems are presented first. Then, the problem
of a simply supported beam subjected to a uniformly dis-
tributed load is studied in great detail to demonstrate sev-
eral important features of the MLPG method for beam
problems.

10.1 Cantilever beam problems

The first problem considered was a cantilever beam with
a concentrated moment at the free end (i.e. M = M0 at x
= 4l, see Figure 5a). The exact solution for this problem
is w = M0x2 / 2EI and θ = M0x / EI. For all trial func-
tions considered (i.e., Eq. (34) with α = 2, 3, and 4, the
3-term spline (Eq. 35), and the 4-term spline (Eq. 36),
each combined with a quadratic basis), the MLPG1 re-
produced the exact solution when the test function com-
ponents in Eq. (37) with β = 2, 3, and 4 (and when the
4-term spline function in Eq. 39) were used. Also for
all trial functions considered, the MLPG5 reproduced the
exact solution. This behavior suggests that the smooth-
ness of the weight functions is less restrictive when the
weight functions are used to construct the trial functions
than when the weight functions are used as test function
components.

The second problem considered was a cantilever beam
with a tip load (see Figure 5b). Since the exact solu-
tion for this problem is cubic in terms of the x-coordinate
of the beam, all six models with cubic basis functions
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M0

4l

(a) Concentrated moment

P

(b) Tip load

Figure 5 : Cantilever beam problems

and power test function components with β = 2, 3, and 4
(MLPG1) or a linear test function (MLPG5) reproduced
the exact solution to machine accuracy.

In summary, the power test function components with β
= 2, 3, and 4 for the MLPG1 and the linear test function
(MLPG5) showed excellent performance in the patch
tests and mixed boundary value problems. On the other
hand, the spline test function components did not show
good performance and needed the special sub-region in-
tegration discussed previously. Hence, in the remain-
der of this paper, the spline test function components are
deleted from further consideration.

10.2 Simply supported beam subjected to uniformly
distribute load

The third problem considered was a simply supported
beam subjected to a uniformly distributed load (see Fig-
ure 6). The problem was analyzed with various combi-
nations of parameters to demonstrate interesting features
of the MLPG method. The parameters used for each case
are summarized in Table 1.

q

Figure 6 : Simply supported beam subjected to a uni-
formly distributed load

10.2.1 Basis function

The exact solution for this problem is given by

w =
q

24EI

(−2Lx3 +x4 +L3x
)

,

dw
dx

=
q

24EI

(−6Lx2 +4x3 +L3) (46)

where L = 4l. Using symmetry, half of the beam was
modeled. Since the exact solution for this problem is
quartic in terms of the x-coordinate of the beam, the
MLPG method with a cubic basis function did not re-
produce the exact solution. Error norms defined as

‖Ew‖2 =

√
1
g

g

∑
k=1

[
(wMLPG−wexact )

wexact

]2

k

‖EM‖2 =

√
1
g

g

∑
k=1

[
(MMLPG−Mexact)

Mexact

]2

k

(47)

were computed at g uniformly spaced points along the
beam. A value of g = 200 was used. The norms ||Ew||2
and ||EM||2 are presented in Table 2.

For the parameters studied, the method did not show
monotonic convergence. All models (N ≥ 9) yielded ac-
curate solutions (within 4% for w and M). As the number
of nodes in the models was increased, the ||Ew||2 norm
changed marginally, suggesting the same accuracy in the
solutions for the various models. Also, the ||E M||2 norm
was of the same order as the ||Ew||2 norm, suggesting the
same accuracy for the primary and the secondary vari-
ables. When the order of the basis function was increased
to quartic, the MLPG method reproduced the exact solu-
tions (for w, θ, M, and V) to machine accuracy.

When the basis function is not sufficient to recover the
exact solution, the accuracy of the MLPG solution de-
pends on the choice of basis and weight function used to
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Table 1 : Problem parameters – simply supported beam subjected to a uniformly distributed load
Model Basis used λ j(x) N†

G χ(w)
i (x) (Ro/l) (R j/l)

5-, 9-node; uniform spacing; symmetric half
Cubic α = 3 20 β = 4 2∆x 3.5

Quartic α = 3 8 β = 4 2∆x 3.5

17-, 33-, 65-, 129-node; uniform spacing; symmetric half
Cubic α = 3 20 β = 4 2∆x 8∆x

Quartic α = 3 8 β = 4 2∆x 8∆x

65-node; uniform spacing; full beam
Cubic α = 3 20 β = 4 2∆x 8∆x

Quadratic α = 4 20 β = 4 2∆x 8∆x
Linear α = 5 20 β = 4 2∆x 8∆x

5-, 9-node; uniform spacing; full beam Quartic α = 3 8 β = 4 < ∆x 3.5
17-, 33-, 65-, 129-node; uniform spacing; full beam Quartic α = 3 8 β = 4 < ∆x 8∆x

19-node; non-uniform spacing; full beam
Quartic α = 3 8 β = 4 0.5 2.0
Quartic α = 3 8 Eq. 43 0.5 2.0

†NG = order of Gaussian integration

Table 2 : Error norm ||E||2 for a simply supported beam subjected to a uniformly distributed load with cubic
basis used in the MLPG1. (Trial function using Eq. (34) withα=3 and test function using Eq.(37) withβ=4.)

Error norm
Number of nodes in the model

5* 9* 17† 33† 65† 129†

||Ew||2 0.1662e-1 0.1306e-2 0.4573e-2 0.3829e-1 0.1742e-1 0.2368e-1
||EM||2 0.2774e+0 0.1057e-1 0.1704e-1 0.3680e-1 0.1763e-1 0.2340e-1

* R j/l = 3.5, †R j/l = 8∆x

construct the trial function. To demonstrate this behavior,
the full beam problem was analyzed using three different
trial functions. Figure 7 shows the solutions for the three
different combinations of basis and weight function. As
suggested previously, as the order of the basis function
decreased, the order of the corresponding weight func-
tion needed to increase to maintain accuracy.

This problem also demonstrates an interesting phe-
nomenon. When the order of the basis function equals
the order of the exact solution, an 8-point Gaussian
quadrature in a single Ωs is found to integrate the weak
form very accurately. However, when the order of the ba-
sis function is less than the order of the exact solution, a
higher order integration rule (such as a 20-point Gaussian
integration) is needed to obtain accurate results.

10.2.2 Overlapping Ωs regions

All the models that have been considered so far had over-
lapping Ωs regions in the beam. To demonstrate that
overlapping Ωs regions are not required by the MLPG
method, several (Ro/l < ∆x/2) cases were used with all
six (5-, 9-, . . . , 129-node) of the models. For the MLPG1
and MLPG5, all models reproduced the exact solutions
to machine accuracy when the quartic basis function was

0
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Figure 7 : Comparison of solutions obtained from three
different combinations of basis and weight function

used. These computations suggest that the Ω s regions
need not overlap for the MLPG method. However, for
the algorithm to perform accurately, the extents of the
trial functions (2R j/l) must collectively cover the whole
analysis domain of the beam – this condition is inherently
satisfied by the MLS approximation.

Another numerical experiment was considered. The or-
der of the basis function was set to be less than that
required by the problem. (For the simply supported
beam problem with the uniformly distributed loading,
the order was set to cubic.) Non-overlapping Ω s regions
(Ro/l < ∆x/2) were used. Both the MLPG1 and MLPG5
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failed to yield a solution anywhere near the correct solu-
tion. Thus, as a general rule of thumb, non-overlapping
Ωs regions are not recommended.

10.2.3 Non-uniform nodal spacing

The problem of the simply supported beam subjected to
a uniformly distributed load was modeled next using the
full beam with non-uniform nodal spacing shown in Fig-
ure 8a. This model was generated by randomly placing
nodes in the region 0 < x < 2l and symmetrically repli-
cating these nodes in the region 2l < x < 4l. A quartic
basis function and (Ro / l) = 0.5 were used. The MLPG1
and exact solutions for deflection, moment, and shear
are presented in Figures 8b and 8c. As expected, the
MLPG1 reproduced the exact solutions to machine ac-
curacy for both the primary and secondary variables de-
spite the nodal arrangement. The MLPG5 yielded similar
results (see Figure 8b).
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(a) A 19-node model with unequally spaced nodes
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(c) Moment and Shear Forces, MLPG1

Figure 8 : MLPG and exact solutions for a simply sup-
ported beam subjected to a uniformly distributed load

11 Numerical Evaluations – Load Discontinuities

In all meshless methods, obtaining continuous secondary
variables is an objective, and the trial functions are cho-
sen with this in mind. However, across concentrated
loads and interior supports, the secondary variables are
discontinuous. When meshless methods are applied to
problems with load discontinuities, these conflicting con-
ditions are expected to cause difficulties. To evalu-
ate the performance of the MLPG method for problems
with concentrated loads, discontinuous loads, and inte-
rior supports, three problems were analyzed. These were
(1) a simply supported beam with a central concentrated
load, (2) a cantilever beam with uniformly distributed
loading on a portion of the beam, and (3) a continuous
beam subjected to a uniformly distributed load.

P

L = 4l

x

z 2l

Figure 9 : Simply supported beam subjected to a central
concentraded load

11.1 Simply supported beam subjected to a central
concentrated load

The first problem considered was a simply supported
beam subjected to a central concentrated load (see Fig-
ure 9). The exact solution for this problem is

EIw = − P
12x3 + PL2

16 x

EI dw
dx = EIθ = −P

4 x2 + PL2

16

for 0 ≤ x ≤ L
2

(48)

and

EIw = P
12x3 − PL

4 x2 + 3PL2

16 x− PL3

48

EI dw
dx = EIθ = P

4 x2 − PL
2 x+ 3PL2

16

for
L
2
≤ x ≤ L (49)

where L = 4l. The problem was analyzed in two different
ways. First, utilizing the symmetry in the problem, one-
half of the beam was modeled. Next, the full beam was
modeled without the use of symmetry.
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Various parameters used to analyze the beam are summa-
rized in Table 3. For the symmetric representation of the
beam, the boundary conditions used were w = M = 0 at
x = 0, and V = −P/2 and θ = 0 at x = L/2 = 2l. An
8-point Gaussian integration was used. The MLPG1 and
the MLPG5, as expected, reproduced the exact solutions
for all models at all nodes and at all interior points of the
beam.

Next, the full beam was modeled without utilizing sym-
metry. The exact solution is cubic in x and is in two parts,
and as such the MLPG method is not expected to repro-
duce the exact solution. To evaluate the performance of
the method, cubic and quartic basis functions were con-
sidered. As previously mentioned, when the order of the
basis function equals the order of the exact solution, an
8-point Gaussian is sufficient to integrate the weak form.
However, due to the discontinuity in the applied loading,
the 8-point Gaussian was found to be inadequate to ac-
curately integrate the weak form when the full beam was
modeled, and a higher order integration rule (such as the
20-point Gaussian) was needed. The normalized MLPG1
values of w(max) and θ(max) for each of the models studied
are presented in Table 4.

The MLPG1 solutions with the quartic basis and the ex-
act solutions for deflection and moment of the 65-node
model are compared in Figure 10. These plots and the
results presented in Table 4 demonstrate that the MLPG1
yields excellent results for both primary and secondary
variables. These results were obtained without the use
of elaborate post-processing techniques. As the number
of nodes was increased from 33 to 129, the accuracy of
the solutions did not appreciably change, suggesting that
a 33-node model is sufficient to obtain an accurate solu-
tion. The solutions obtained with the coarser models (5-,
9-, and 17-node) are not as accurate as those obtained
with the finer models. These results suggest that more
nodes are needed around a concentrated load to handle
the discontinuity caused by the loading condition.

The MLPG5 is considered next with the six (5-, 9-, 17-,
33-, 65-, and 129-node) models for the full beam. This
method was unable to yield meaningful results. Appar-
ently, the MLPG5 is unable to handle the load disconti-
nuity. In other words, the linear test function is unable
to control the errors when the full beam is modeled and
requires further study. Thus, the MLPG5 is not applied
to the next two problems.
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Figure 10 : MLPG1 and exact solutions for a simply
supported beam with a central concentrated load

11.2 Cantilever beam with a UDL on a portion of the
beam

The second problem considered was the cantilever beam
with L = 2l and with a UDL on a portion of the beam de-
picted in Figure 11. The exact solution for this problem
is

w = q
24EI

[
−(l −x)4 −4l3x+ l4

]
θ = q

6EI

[
(l−x)3 − l3

] for 0 ≤ x ≤ l (50)

and

w = q
24EI

[−3l4 −4l3 (x− l)
]

θ = − ql3

6EI

for l ≤ x ≤ 2l. (51)

q

x

z

l l

Figure 11 : Cantilever beam subjected to a discontinuous
distributed load

As a result of the choice of test function in the algorithm,
careful attention is needed when evaluating the contri-
bution of the distributed load to the f (node) vector in Eq.
(13f). Consider the region of the 17-node beam in the
area localized around x = l in Figure 12. In this figure,
the test functions centered around nodes 9, 10, and 11
are shown along with the distributed load, q. The f (node)

is evaluated over the sub-domain, Ωs; however, the dis-
tributed load, q, does not extend the length of every Ω s
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Table 3 : Problem parameters – simply supported beam subjected to a central concentrated load (weight
function λ j(x) with α = 3 in Eq. 34 and (Ro / l) = 2∆x)

Model Basis used N†
G χ(w)

i (x) (R j/l)

5-, 9-node; uniform spacing; symmetric half
Cubic 8 β = 4 3.5
Cubic 8 Eq. 42 3.5

17-, 33-, 65-, 129-node; uniform spacing; symmetric half
Cubic 8 β = 4 8∆x
Cubic 8 Eq. 42 8∆x

5-, 9-node; uniform spacing; full beam
Cubic 20 β = 4 3.5

Quartic 20 β = 4 3.5

17-, 33-, 65-, 129-node; uniform spacing; full beam
Cubic 20 β = 4 8∆x

Quartic 20 β = 4 8∆x
Quartic 20 Eq. 42 8∆x

†NG = order of Gaussian integration

Table 4 : MLPG1 values of deflection and slope for models with various nodal arrangements

Basis function
Number of nodes in the model

5* 9* 17 33 65 129

cubic
w(max)/w(max)Exact 1.0252 1.0846 0.9946 0.9831 0.9871 0.9830
θ(max)/θ(max)Exact 1.0198 1.1986 0.9934 0.9831 0.9871 0.9826

quartic
w(max)/w(max)Exact 0.9923 1.2624 1.1818 0.9982 0.9992 1.0120
θ(max)/θ(max)Exact 1.0333 1.5309 1.1833 1.0012 0.9975 1.0126

* (R j / l) = 3.5. w(max)Exact = P(4l)3/48EI; θ(max)Exact = θ|x=0 = θ|x=4l = P(4l)2/16EI.

q
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)9(

sΩ
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sΩ
)11(
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x = l

Figure 12 : Localized region of cantilever beam problem

in the localized region. For example, for node 9, the dis-
tributed load, q, extends only over half of the Ω s. Simi-
larly, for node 10, the loading spans a small portion of Ω s,
and for node 11, the distributed loading makes no contri-
bution to the f (node) vector. Thus, to evaluate the f (node)

contributions for each of these nodes, the extent of the
region of the integration needs to be calculated carefully.
Problem specifics used to analyze this problem are pre-
sented in Table 5. The MLPG1 and exact solutions for
deflection and moment of the 65-node model are com-
pared in Figure 13. The MLPG1 yielded very accurate
results for both the primary and secondary variables.
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Figure 13: MLPG1 and exact solutions for the cantilever
beam with a UDL on a portion of the beam

11.3 Continuous beams

The MLPG1 was then applied to a continuous beam
problem to evaluate its effectiveness. A continuous beam
with one additional support along the interior of the beam
(shown in Figure 14) is considered. The additional sup-
port is treated by the penalty terms in the weak form.

The problem specifics used for the continuous beam are
presented in Table 6. The MLPG1 and exact solutions for
deflection, slope, and moment obtained from the 65-node
model are shown in Figure 15. The MLPG1 obtained
very accurate results for both the primary and secondary
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Table 5 : Problem parameters – cantilever beam with a UDL on a portion of the beam
Model Basis used λ j(x) N†

G χ(w)
i (x) (Ro/l) (R j/l)

65-node; uniform spacing; full beam Quartic α = 3 20 β = 4 2∆x 8∆x
†NG = order of Gaussian integration

Table 6 : Problem parameters – continuous beam
Model Basis used λ j(x) N†

G χ(w)
i (x) (Ro/l) (R j/l)

65-node; uniform spacing; full beam Quartic α = 3 20 β = 4 2∆x 8∆x
†NG = order of Gaussian integration

l1 = l

q

l2 = 3l

x

z

Figure 14 : Continuous beam subjected to a uniformly
distributed load
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Figure 15 : MLPG1 and exact solutions for primary and
secondary variables of a continuous beam subjected to a
uniformly distributed load

variables and handled the discontinuity caused by the ad-
ditional support well.

12 Concluding Remarks

Two variations of the MLPG formulation were presented
for bending of beams – C1 problems. A local weak
form (LWF) was developed from the classical weighted-

residual form of the fourth order governing differential
equation. The generalized moving least squares interpo-
lation scheme was used to develop the trial functions for
the primary variables, the deflections and slopes. The
test functions were chosen from a different space than
the trial functions, making the method a Petrov-Galerkin
method. The Petrov-Galerkin implementation of the
method is much more computationally efficient than the
previously reported Galerkin implementation for beam
problems.

The MLPG method was developed with two classes
of test functions – power functions or spline functions
(termed as MLPG1) and a linear test function (termed
as MLPG5). The MLPG5 is a computationally efficient
method as the domain integrals in the weak form are
eliminated by the choice of linear test functions. A range
of trial functions could be developed using different ba-
sis and weight functions. If a proper balance between the
basis and weight functions is met, the MLPG method is
capable of yielding very accurate results. For example,
when a lower order basis function is used, weight func-
tions with higher order continuity are needed to provide
smooth trial functions.

The MLPG method was evaluated by applying the for-
mulation to a variety of patch tests. For all trial func-
tions considered, for higher order spline and power test
functions, and for a linear test function, the method re-
produced exact solutions to machine accuracy, thus pass-
ing all the patch tests. Usable ranges of the method’s
user-controlled parameters were determined. The use
of higher order basis and smooth weight functions for
the development of the trial functions and higher order
power test functions yield accurate results for MLPG1
and hence are recommended. While the trial functions
must have a large enough extent to collectively cover the
whole domain of the problem, the domains of the test
functions need not overlap when the order of the basis
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function is equal to or greater than that required by the
problem. However, overlapping test function domains
are recommended for the beam problems with the MLPG
method. For mixed boundary value problems, deflec-
tions, slopes, moments, and shear forces were calculated
to the same accuracy by the MLPG method without the
use of elaborate post-processing techniques. Problems
with load discontinuities require special care – when a
reasonable number of nodes are used around the loca-
tion of the discontinuity, the MLPG1 yields very accu-
rate results. The method was easily extended to con-
tinuous beam problems. The MLPG method with linear
test functions (MLPG5) needs further study for problems
with load discontinuities.
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Appendix A: Explicit Expressions For the Derivatives
of the Shape Functions

This appendix presents the explicit expressions for the
first, second, and third derivatives of the shape functions
used for 1-D C1 problems. The detailed derivation of
these derivatives may be found in Appendix A of Phillips
and Raju (2002). The shape functions (from Eq. 33) are

ψ(w)
j (x) =

m
∑

g=1
pg(ξ j)

[
[A]−1[P]T [λλλ]

]
g j and

ψ(θ)
j (x) =

m
∑

g=1
pg(ξ j)

[
[A]−1[Px]T [λλλ]

]
g j,

(33)

or

ψ(w)
j =

m

∑
g=1

pg
[

[A]−1[Bw]
]

g j (52a)

and

ψ(θ)
j =

m

∑
g=1

pg
[
[A]−1[Bθ]

]
g j, (52b)

where

[
[Bw] [Bθ]

]
=
[

[P]T [λλλ] [Pθ]T [λλλ]
]
. (53)
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The first derivatives of ψ jare

dψ(w)
j

dx
= ψ(w)

j,x =
m

∑
g=1

{
pg,x

(
[A]−1[Bw]

)
g j

+pg
(
[A]−1[Bw],x +[A]−1

,x [Bw]
)

g j

}
(54a)

and

ψ(θ)
j,x =

m

∑
g=1

{
pg,x

(
[A]−1[Bθ]

)
g j

+pg
(
[A]−1[Bθ],x +[A]−1

,x [Bθ]
)

g j

}
, (54b)

where

[A]−1
,x = −[A]−1[A],x[A]−1. (55)

The second derivatives are

ψ(w)
j,,x =

m

∑
g=1

{
pg,,x

(
[A]−1[Bw]

)
g j

+2pg,x
(
[A]−1[Bw],x +[A]−1

,x [Bw]
)

g j
(56a)

+pg
(
[A]−1[Bw],,x +2[A]−1

,x [Bw],x +[A]−1
,,x [Bw]

)
g j

}

and

ψ(θ)
j,,x =

m

∑
g=1

{
pg,,x

(
[A]−1[Bθ]

)
g j

+2pg,x
(
[A]−1[Bθ],x +[A]−1

,x [Bθ]
)

g j
(56b)

+pg
(
[A]−1[Bθ],,x +2[A]−1

,x [Bθ],x +[A]−1
,,x [Bθ]

)
g j

}
,

where

[A]−1
,,x = −[A]−1[A],,x[A]−1−2[A]−1[A],x[A]−1

,x . (57)

The third derivatives are

ψ(w)
j,,,x =

m

∑
g=1

{
pg,,,x

(
[A]−1[Bw]

)
g j

+3pg,,x
(
[A]−1[Bw],x +[A]−1

,x [Bw]
)

g j
(58a)

+3pg,x
(
[A]−1[Bw],,x +2[A]−1

,x [Bw],x +[A]−1
,,x [Bw]

)
g j

+ pg
(
[A]−1[Bw],,,x +3[A]−1

,x [Bw],,x +3[A]−1
,,x [Bw],x

+[A]−1
,,,x[Bw]

)
g j

}
and

ψ(θ)
j,,,x =

m

∑
g=1

{
pg,,,x

(
[A]−1[Bθ]

)
g j

+3pg,,x
(
[A]−1[Bθ],x +[A]−1

,x [Bθ]
)

g j
(58b)

+3pg,x
(
[A]−1[Bθ],,x +2[A]−1

,x [Bθ],x +[A]−1
,,x [Bθ]

)
g j

+ pg
(
[A]−1[Bθ],,,x +3[A]−1

,x [Bθ],,x +3[A]−1
,,x [Bθ],x

+[A]−1
,,,x[Bθ]

)
g j

}
,

where

[A]−1
,,,x = −[A]−1[A],,,x[A]−1−3[A]−1[A],,x[A]−1

,x

−3[A]−1[A],x[A]−1
,,x . (59)

Appendix B: Special Cases of(Ro/l)

The purpose of this appendix is to discuss special choices
of (Ro/l) that should be avoided when using the MLPG5.
While it is convenient to choose the same value of (R o/l)
for all nodes of a model, the MLPG algorithm does not
require that the same value of (Ro/l) be used at all nodes.
In fact, the algorithm passed all the patch tests when dif-
ferent values of (Ro/l) were chosen for each node. Raju
and Phillips (2002b) suggested the use of (∆x) for nodes
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2 and (N-1) and (2∆x) for all other nodes for the MLPG1.
With this choice, the boundary terms in Eq. (13e) for
nodes 2 and (N-1) are identically zero, thus simplifying
the computations. While this choice (of different (R o/l)
for nodes 2 and (N-1) ) is beneficial for the MLPG1,
this choice should be avoided for the MLPG5. In the
MLPG5, when (Ro/l) is chosen as (∆x) for nodes 2 and
(N-1) and as (2∆x) for all other nodes, the equations for
w and θ developed for nodes 1 and 2 are identical. (As
the Γs points for these nodes, x = 0 and x = 2∆x, are iden-
tical, the values of the test functions are identical, and
their derivatives are also identical at these points.) Sim-
ilarly, the equations for nodes (N-1) and N are identical,
leading to a singular “stiffness” matrix. (In the MLPG1,
the Ωs integrals in Eq. (13d) are nonzero, and hence the
equations developed for nodes 1 and 2 (and nodes (N-
1) and N) are not identical.) Thus in the MLPG5, any
choice of (Ro/l) values that leads to identical Γ s points
for any two nodes (for example, (4∆x) for node 1 and
(2∆x) for node 3) should be avoided as such choices lead
to singular “stiffness” matrices.

Note that in the MLPG5, other variations of the test func-
tion of Eq. (42), such as vi = x− xi , may avoid the sin-
gularity in the w terms, but still lead to singularity in the
θ terms of nodes 1 and 2 (and nodes (N-1) and N). Thus,
when different (Ro/l) values are used for different nodes,
the singularity of the system matrix cannot be avoided for
certain choices of (Ro/l). However, the singularity situ-
ation can be completely avoided if one assumes the same
value of (Ro/l) at all nodes and hence is recommended
for both the MLPG1 and the MLPG5.




