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A Mathematical Framework Towardsa Unified Set of Discontinuous State-Phase
Hierarchical Time Operatorsfor Computational Dynamics

R.Kanapady! and K.K.Tamma?

Abstract:  Of general interest here is the time dimen-
sion aspect wherein discretized operators in time may
be continuous or discontinuous; and of particular inter-
est and focus here is the design of time discretized op-
erators in the context of discontinuous state-phase for
computational dynamics applications. Based on a gen-
eralized bi-discontinuoustime weighted residual formu-
lation, the design leading to a new unified set of hierar-
chical energy conserving and energy dissipatingtimedis-
cretized operators are devel oped for thefirst time that are
fundamentally useful for time adaptive computations for
dynamic problems. Unlike time discontinuous Galerkin
approaches, the design is based upon a time discontinu-
ous Petrov-Gal erkin-like approach employing an asymp-
totic series type approximations for the state variables
involving derivatives at the beginning of the time step.
As a consequence, this enables to design methods that
have spectral properties corresponding to the diagonal,
first sub-diagonal and second sub-diagonal Padé entries.
Thus, A-stable schemes of order 2q, L-stable schemes of
order 2q— 1 and 29— 2 are obtained. The spectral equiva-
lent algorithmsto the diagonal Padé entry are energy con-
serving algorithms. The spectral equivalent algorithmsto
the first and second sub-diagonal Padé entries are energy
dissipating algorithms with the property of asymptotic
annihilation of the high frequency response. Addition-
ally, these time operators naturally inherit a hierarchical
structurethat are extremely useful for time adaptive com-
putations. Moreover, since Padé entries have the lowest
relative error the developed schemes are optimal interms
of order of accuracy in time, dissipation, dispersion and
zero-order displacement and velocity overshoot charac-
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1 Introduction

For computational dynamics applications, the commonly
employed time integration operators, when applied to the
equations of motion in state space representation (two-
field form or mixed or hybrid formulations) lead to the
following amplifications of the errors as dn1 = R(z)dn
where z = At and R(2) is the so-called “ stability func-
tion”. Inthe context of time continuous operators, for the
explicit Euler method, trapezoidal and implicit midpoint
rule, and the implicit Euler method, respectively, the sta-
bility functionsare R(z) = 1+z R(z) = (1+2)/(1—2)
and R(z) = 1/(1— z). Theseare simply particular entries
of the Padé table of the exponential map in which the nu-
merator P and the denominator Q may be expressed in
rational form as [Ehle (1969)]

D)

where i and j are the degrees of the polynomials of the
numerator and denominator, respectively. It is a well
known fact that for a given degree of the numerator and
denominator the resulting approximation has the highest
order of accuracy [Gragg (1972)] where the order of ac-
curacy isgivenby i+ j. Inaddition, all entries (i, j) of the
Padé table of the exponential map, withi < j (entries be-
low diagonal) possess the asymptotic annihilation prop-
erty. Time operators that possess this property asymp-
totically annihilate the high-frequency response, i.e., the
spurious oscillations in the high frequency regime are
eliminated after onetime step. However, the famous con-
jecture of Ehle ([Ehle (1969)], p.65) which was proved
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Figure 1 : Typical spectra curves for the diagonal,
first sub-diagonal, second sub-diagona and third sub-
diagonal Padé exponential map substantiates that with
the exception of the diagonal and the first and second
lower sub-diagonals, no entry of the Padé table is A-
stablefor structural dynamics.

by Hairer and Warner [Hairer and Wanner (2000)] states
that with the exception of the diagonal and the first and
second lower sub-diagonals,i.e, of j—2 <i < j,noen-
try of the Padé table is A-stable where A-stability is de-
fined as |R(z)| < 1. Thisis asoillustrated in the Fig. 1
where the spectra radius curve is plotted for a typical
row of entries of the Padé table for structural dynamics.
Figure 1 clearly indicates that only the diagonal and the
first and second sub-diagonal entries of the Padétable are
A-stable asillustrated by p < 1.

Thus, the above discussion clearly provides a motiva-
tion for the need to design time operators with proper-
ties equivalent to diagonal, the first lower sub-diagonal
and the second lower sub-diagonal entries of the Padé ta-
ble in a unified framework. Such agorithmic attributes
are important for computational dynamics. Previous ef-
forts[Hulbert (1992); Borri and Bottassso (1993); Li and
Wiberg (1996); Wiberg and Li (1996); Chien and Wu
(2001)] fail to provide a unified framework to simulta-
neously yield a unified set of computational algorithms
that are spectrally equivalent to the diagonal, the first
sub-diagonal, and the second sub-diagonal Padé approx-
imations from time discontinuous formulations. Finaly,
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no framework exists to-date that simultaneously yields a
hierarchical unified set of the same for time dependent
adaptive computations.

Emanating from a generalized bi-discontinuous time
weighted residual formulation, a new unified set of en-
ergy conserving and energy dissipating time discretized
operators for the two-field form are presented here that
are fundamentally useful for structural dynamic com-
putations. Unlike the time discontinuous Galerkin ap-
proach [Hulbert (1992)], the design of the algorithms
are based upon a time discontinuous Petrov-Galerkin-
like approach with the particular notion of independent
approximationsof the state variables. The state variables
specifically employ an asymptotic series type approxi-
mation involving values of derivatives of state variable
at the beginning of time step. These latter approaches
now readily enable the design of time discretized oper-
ators that have spectral properties corresponding to the
diagonal, thefirst and second lower sub-diagonals of the
Padé table entries. Thus, A-stable schemes of order 2q,
L-stable schemes of order 2q— 1 and 2q— 2 can be read-
ily designed where q is the number of system solves.
The time integration operators that are spectrally equiv-
alent to the diagonal Padé table entries are termed en-
ergy conserving algorithms. The time integration oper-
ators that are spectrally equivalent to first and second
sub-diagonal Padé table entries are energy dissipating
algorithms with the property of asymptotic annihilation
of the high-frequency response. Since Padé approxima-
tions have the lowest relative error, the present design
of the time operators is optimal in terms of the order
of accuracy in time, and numerical dissipation and dis-
persion with zero-order displacement and vel ocity over-
shoot characteristics. It is aso noteworthy to point out
that additionally, the integration operators that are spec-
trally equivaent to the diagonal, first sub-diagonal, and
also the second sub-diagonal Padé exponential maps nat-
urally inherit ahierarchical structurethat isuseful for en-
abling adaptive computations. The theoretical develop-
ments and stability, and convergence are also described
for the various designs of time operators for computa
tional dynamics.

The present exposition is organized as follows. Follow-
ing the aforementioned brief introductionand motivation
in Section 1, adescription of the equations of motion and
the weakforms considered is described in Section 2. In
Section 3, the approximations of the weighted timefields
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and state variables are described followed by the design
of the time discontinuous operatorsin Section 4. In Sec-
tion 5, the spectral analyses as related to the stability,
consistency, humerical dissipation, numerical dispersion
and overshoot behavior are presented for the devel oped
time integrators followed by conclusionsin Section 6.

2 Equationsof Motion

The dynamic problems can be represented in config-
uration space representation (single-field or irreducible
form), second-order ordinary differential equation sys-
tem after the finite element discretizationin space. These
can be described in matrix form (strong form) as:

L(uy—f=0; u(ty) =uo; U(ty) =Ug 2
where the operator L (u) isgivenby L(u)=M U +Cu
+Ku =f. M, C and K are the respective mass, damp-
ing, and stiffness matrices, f is the vector of externally

applied forces, u is the displacement vector, and (.) and

(.) denotes a single and doubl e derivative with respect to
time. Thematrix M isassumed to be symmetric positive-
definite and matrices C and K are assumed to be sym-
metric semi-definite. For convenience in the theoretical
design, we focus on an equivalent first-order system for
structural dynamics where the second-order differential
Eq. 2 istransformed into two first-order differential equa-
tions. Letting u=v and U=V in Eq. 2, the equivalent
state-phase (two-field, first-order, reducible or mixed for-
mulations) representation is given as

Ld)—-F=0; d(tn) =

do (©)

where the operator L (d) isgiven by

L(d)=d+Ad=F (4)

and

d_‘CD;A_[MgK MjLJ;F_<M9H>

Assuming an arbitrary virtual field or weighted time
field, w(t), for enacting the time discretization process,
the above semi-discretized system can be cast into the
form:

()

(L(d)—F,w)=0; d(tn) =do YW € [tn,tn+1] (6)

After integrating by parts, we have

Mw.d) twd| — (Fw) =0

tn

(7)

The solution of the adjoint equation M (w) =w.A— w=
0 yields w(t) = Weaa Which when employed in Eq. 7
leads to the exact theoretical solution which is an ex-
ponential matrix representation. It is also evident from
Eqg. 7 that such a selection, does not necessitate the
need to approximate the state variables as it isirrelevant
[ Tamma, Zhou, and Sha (2000)].

3 Approximation of Weighted Time Fieldsand State
Variables

In this section, emanating from the exact weighted time
fields, the degeneration process and the resulting con-
sequence leading to and explaining the design of the
so-called time integration operators involving a multiple
system and a single solution step are described. The ob-
jectives and focus here isto first describe the underlying
basisthat can explain how to obtain the resulting approx-
imations of the weighted time fields emanating from the
exact weighted time fields, and also the imposed condi-
tionsfor approximating the state variables and leading to
the general design and framework of computational algo-
rithms encompassing state-phase time discretized opera-
tors.

Consider the following transformation permitting the de-
generation of the exact weighted time fields from the
second-order tensor (matrix) representation to a first-
order tensor (vector) as

0

=
kel
—

Weaet —W(T)=wt(®)"'=| : . : (8)
Wep | \ T

-

where p <nand p > g. Thiscan bewrittenin an asymp-
totic series type expansion as

Wagmp(T) = Wi+ Wy T+ T+ +wiP TP (9)
= [WrT,WrT,...,WEp)* t(T)" (10)
= wi(D)" (12)

where w; W ... wiP'" are vectors of span{w} which

admits the set of al linear combination of vectors
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Figure 2 : Illustration of local approximation functions
viathe proposed asymptotic series.

wi" j=0,1,...,p. t(T)T isa vector of monomials T.
The size of these vectors is of order q and dictates the
number of unknownsin the weakform. The dimension p
dictates the other features of the time integration opera
tors. The(.);; representationfor the vectors of span(w) is
employed here merely to be consistent with the represen-
tationsof the timediscontinuousformulations. If the vec-
torswi'*,j =0,1,..., p are linearly independent, then
each vector of span{w} admits a unique expression as a
linear combination of thewﬁ,‘”, j=0,1,...,p. Thusthe
set w isthen called abasisof the subspace span{w}. This
selection of w now dictates the corresponding approxi-
mation for the state variables unlike employing W e as
evident from Eq. 7 (see also [ Tamma, Zhou, and Sha
(2000)]).

As a conseguence, the corresponding local independent
approximations to the state variables follows. Consider
the following notion of alocal asymptotic seriestype ex-
pansion for the approximation for d as

d ~ d = dagmp(T) = Zj/\idﬁ,')*m'f' (12)
i=

where T € (0,1). Next, consider the following indepen-

dent local approximation for d as

d~d=dagmp (T) = ZAk+idQ>+At'—1f'—1 (13)
i=

where Aj,i = 0,...,2k are free parameters. Alterna
tively, one may consider the equations of motion given
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by d +Ad —F = 0 for the approximation of the state vari-
ables. Thisimplies that the state variable d can aso be
independently approximated as d= —Ad + F, and results
in

) k . .
d~d= —Ad+F = —A Zj/\idé')*At'T' +F (14)
i=

Based on Eq. 12, for illustration, the relevant approxima-
tions of linear and quadratic forms are given by

Moy + Ay dy AT k=1 (15)
Aot + Mg dy AT+, dyy M2 k=2 (16)

(1) =
(1) =
Based on Eg. 13, the corresponding independent local
approximationsfor d, respectively yield
Aadr: k=1

Asd, +Asdy AT, k=2

d@m =
d) =

(17)
(18)

Alternatively, following Eq. 14, we can also have thein-
dependent local approximationsfor d as

d(T) =—Ad+F

= —A(Nodf; + g dy AT) +Fr k=1
d(T)=-Ad+F

= “A(Aod+A; dy ATHA, d At2T?) 4+ F; k= 2

(19)

The load is approximated consistently upto | terms as

F ~ Fagmp(T) = Zyei SORYNEE (20)
i=

where 6;,i = 1,...,1 are free parameters. The order of
approximation | for the load F is taken to be one less
than the order of accuracy of the time integration opera-
tor. Thatis, if 2k+ 2, 2k+ 1 and 2k are the order of accu-
racy of the timeintegration operator, then| = 2k+1, 2k,
and 2k — 1 respectively. Note that the size of the degen-
erated weighted time vector field, w(T), is the number
of unknowns in the weakform. In designing time oper-
ators, there exists two fundamental aspects. (i) the as-
pect involvingthe “‘integrator” (which isassociated with
the semi-discretized equation system and the solution of
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the corresponding equation system), and (ii) the aspect
involving the design of “updates’ (which are associated
with computing or updating the primary state variablesto
advance to the end of thetime step). In the text to follow,
various bi-discontinuous (BD) integrators and the asso-
ciated design updates with desired algorithmic attributes
mimicking the diagonal, first and second sub-diagonal
Padé entries are described.

4 Design of Time Integrator

The generalized bi-discontinuous weighted residual
statement, with the limits of the integrals changed from
(tn,tn+1) to (0,1) isdescribed first.

If L (d) isdefined by Eq. 4, then thetime weighted resid-
ual statement, Eqg. 6, has the following two weighted
residual statements as the equivalent time discontinuous
weak form representations:

(L((d)—Fat,w),
+Wnt 1 [dnr1] +wn. [dn]] =0Vw e [0,1] (21)

(a’_ aw>
I

+Wn+1. H:an_t,_l:” +Wn H:an:ﬂ - OVW € [0, l] (22)

where d and d are independent approximationsto the so-
lutiond and d of L(d) —F =0, d is the differentiation
of d with respect tot, and and [.] is the temporal jump
operator defined as [[]] = ()" — ()7, 0F = ()(ty) =
lime_o=(.) (t+€) = d(ty) = do, (-,.);- isthe L?[tn, tn.1]

inner product is defined by (x,y)|+- = ttnf_“x(t).y(t)dt,
and 1y € (t7,t,. ).

4.1 Design of Integrator

Substituting the degenerated weighted time vector field,
Eq. 8, and the approximations Egs. 12 and 13 for d and

d respectively in the generalized bi-discontinuous weak-
form, Eq. 21, results in the following multiple system
single solve (g = k+ 1) representation of the time inte-
gration operator:

— A

Ad=F (23)
where theintegrator matrix A, the unknown vector d and
the effective load vector F have the following representa-
tions:

ri1l +spAAML r1q| + SlqAAt

K = : . (24)
rqul +sqAAt Fogl + SggAAL
~ - T
3= (0 o) @
Fq = (ald;,...,aqd;)T (27)
) + I+
BioFn +B11 Fn +-..+BuFn
Fo = At : (28)
BooFr + Bqr Fn+ +... 4By Fo*
. 0 .
s _ (m—lfﬁ,”* > j=01,.... (29

with the coefficients in the above integrator given by

j=1

o1 ) Wio _
ri= [rlj]_{/\k-s-j—lfol;VViTJ_sz 2<j< q:kﬁo)

-
s:= [sij] :/\1—1/ wtldt1<j<q=k+1 (31)
ot

a = [ai] = wio (32)

B:— [Bi,-]:e,-mi/m wt 0<j<l; (33)
p

yi= i)=Y wij (34)
=0

Once the unknown quantities (dn*,dnJr Ot,.. .,d,ﬂq)*Atq)
are found employing the integrator, Eq. 23, the end con-
ditions, namely, d;} ; can be found employing the design
updates as described next.

4.2 Design of Updates

To design the updates, consider the weakform in Eq. 22
of the proposed weighted residual statements relating to
Eq. 6. Integrating by parts the term associated withd in
Eq. 22, we have

(35)

Ay W1 = dyy W+ (d,v*v) + (d At,w) .

(EN
ot

ot
Consider the degenerated weighted time field for the up-
dates, the span of which isgiven by
Wp ]

span{W} = [ Wo (36)
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At thispoint, consider the two alternativesin Egs. 12, 13

for the approximation of d in Eq. 35. First, Eq. 13 iscon-
sidered and then Eq. 14 is considered. Substituting the
weighted time fields, Eq. 36 and the IocaJ_ independent

approximations, Egs. 12 and 13 for d and d respectively
in Eq. 35, yields the following design for the updates:

k . )
Ay = Aody +1 ijldﬁ:)*m' (37)
i=

Alternatively, substitutingtheweighted timefieldsEq. 36
and the local independent approximations Egs. 12 and 14

instead for d and d respectively in Eq. 35, yieldsthe fol-
lowing design for the updates:

k . . 1~
A, = Aod; — At(A ijldﬁ,')*m' + /O CWFdT) (38)
i=

The above two distinct designs for the updates, namely,
Egs. 37 and 38 can be combined with a generic matrix
Aqinstead | and A into one as

k . . .
di,, = Aod;+Alszi+ld§,'>+At'+Ak+2(At /O WFdT) (39)
i=
where

Al_{ I—AZrt (40)
Wo i —
oW '=0
Aq [3 WdT
Yi—oW
Jor (N_pWT A WE—2)dT,
Z?:owj '

0O or 1

(41)
2<i<k+1
i — k2

In the following text, the algorithmic discrete numeri-
cally assigned [DNA] markers, namely, the coefficients
(w,W,A\,\), for the various time integration operators
equivaent to the diagonal, the first sub-diagonal and the
second sub-diagona follow next, and involve relation-
shipstor,s,a, B that are uniquefor a particular algorithm
and serve as the algorithm’s signature (i.e. the w,w, A
and A must satisfy the unique relations).

CMES, vol .4, no.1, pp.103-118, 2003

43 BDgqqAlgorithms: q=k+1,p=k+1,p=p

BD,o: The selected agorithmic [DNA] markers in
Eq. 23 are asfollows (k= 1):

Wio W11 Wi2
span{w} =
W2o W21 W22

- [1 -1 o]
1 0 -1
AN = {No AN}
= {1,1,1}
span{W} = [ Wi W1 Wi |
= [1 0 0]
A = {Ao, A1, A2}

1
= 1 —
{17 72}

(42)

(43)

(44)

The resulting coefficients of the time integrator A and F
are asfollows:

_1
I
| —— |
e
WINNI-

E el
[

(45)

DlPole WINNIE
—_

BD33: The selected algorithmic [DNA] markers are as
follows (k= 2):

[ Wio Wi1 Wiz Wi
span{w} = Woo Wo1 W Wi
| W3o Wz1 Wz Wi3
1 -1 0 0
— |10 -1 o0 (46)
10 0 -1
AN = {No, A1, N2, N3, N4}
1 1
— {1,1,2.1= 47
{ Y 727 72} ( )
span{W} = [ Wi Wiy Wio Vg |
- [1000]
—  N={Ao,A1,A2,A3}
11
p— —_ —_— 4
{17 1727 6} ( 8)

The resulting coefficients of the time integrator A and F
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Figure 3 : Weighted time fields w (test functions) for linear and quadratic trial functionsfor BD 4 time operators.

are asfollows:

14 114
"y 101 1 (49)
: 5 8 7
mHESIFE]
L 4 10 12

The weighted time fields w for the BD 2, and BD33 time
integration operators that are equivalent to the diagonal

Padé table entries are depicted in Fig. 3a and 3b, respec-
tively.

4.4 BDg-1qAlgorithms. q=k+1,p=k+2,p=p

BD5: The selected algorithmic [DNA] markers are as
follows (k= 1):

Wio W1 Wi Wiz
spaniw} = [Wzo W21 Wo2 W3 ]
1 -3 12 -10
- [o -2 12 —10] (50)
AN = {/\0,/\1,/\2}
= {1,1,1} (51)
span{W} = [ Wo Wi Wip Wi |
[ 010 O] (52)
— A= {)\0,)\1,)\2}
={0,1,1} (53)

The resulting coefficients of the time integrator A and F
inEq. 23 areasfollows:

WIFENI-
[

(54)

wiFNIR NI =
| I

BD,3: The selected algorithmic [DNA] markers are as
follows (k= 2):

(Wi w1 Wiz Wiz Wi
span{w} = Wy Wp1 W22 Wiz Woy
| W3o W31 Wz W3z Wz
1 4 —-30 60 —-35
= 0O 5 -30 60 —35 (55)
| 0 4 -29 60 -35
AN = {/\07/\17/\27/\37/\4}
1 1
= {171757175} (56)
span{W} = [Wio Wiz Wi Wiz Wig |
= [ 0 01 00O ] (57)
—  A={Ao,A1,A2,A3}
1

The resulting coefficients of the time integrator A and F
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r 1+4t-30t° + 60t° -35t *
F — — — - 5t-30t+60t-35t*
F —-—-—-— 4t-29t*+ 60t -35t

Figure 4 : Weighted time fieldsw (test functions) for linear and quadratic trial functionsfor BD 41 q time operators.

in Eq. 23 are asfollows:

(11 L
Tl il T

:134 1l3l4 10 (59)
SHESIE

Y 37 10

The weighted time fields w for the BD 1, and BDy3 time
integration operators that are equivalent to the first lower
sub-diagonal Padé table entries are depicted in Fig. 4a
and 4b, respectively.

45 BDg 2qAlgorithms: g=k+1,p=k+2,p=p

BDoo: The selected algorithmic [DNA] markers are as
follows (k= 1):

Wio Win Wiz Wiz
spaniw} = [Wzo W21 Wo2 W3 ]
1 -3 12 -10
- [o —12 42 —30] (60)
N = {No,A1,N\2}
= {1,1,1} (61)
span{W} = [ Wgo Wiy Wip Viag |
= [ 010 0] (62)
— A= {)\0,)\1,)\2}
={0,1,1} (63)

The resulting coefficients of the time integrator A and F
inEq. 23 areasfollows:

NN
[

(64)

Nl NI =
—_

BD,3: The selected algorithmic [DNA] markers are as
follows (k= 2):

(Wi w1 Wiz Wiz Wi
span{w} = Woo Wp1 W22 Woz Wyy
| W3o W31 Wz W3z Wz
1 4 -30 60 -35
= 0 30 —-210 390 -—-210 | (65)
| 0 105 —-750 1380 -735
N = {/\07/\17/\27/\37/\4}
1 1
= {171757175} (66)
span{w} = [Wio Wiz Wi Wiz Wig |
= [ 0 01 00O ] (67)
—  A={Ao,A1,A2,A3}
1
={0.11,5} (68)

The resulting coefficients of thetime integrators A and F
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— — — - 42t+42¢-30t°
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)
N

Figure 5 : Weighted time field w (test functions) for linear and quadratic trial functionsfor BD ¢ q time operators.

in Eq. 23 are asfollows:

r1 1 1% 1 1 1
rfOli Sflii
- %2’ - 2 2 4
[0 3 1 13
-1 111 (69)
7 9
L
Y 3 1 3

The weighted time fields w for the BD o, and BD43 time
operator that are equivalent to second lower sub-diagonal
Padé table entries are depicted in Fig. 5a and 5b, respec-
tively.

Particularly note that the time integration operator co-
efficients, namely r,s,a and B for the BDgq, BDg-14
and BDq_2 ¢ have a hierarchical structure. That is, the
time operator coefficients of the BD,» operator is con-
tained in the BD3 3 operator, and likewisethe BD1 > and
BDo, operators are contained in the BD,3 and BDj 3
operators which implies that the lower order time inte-
grators are contained in the high-order time integrators.
The resulting design and such features provide a unified
framework for a concise implementation and are useful
in time adaptive computations to consistently increase
the order of accuracy to arbitrary high-order as required
by the prablem at hand. Thus, in general, the design of
the present bi-discontinuous time integration operators
BDij,j =2,3;j—2<i <] of arbitrary order that are
equivalent to the Padé tableentries (i, j), j=2,3; ] —2<
i < j can be summarized as follows.

Timeintegrator

Integrator:
Ad=F
where
dy

d= :

dl9* At

ri1l +sp1AA r1q| + SlqAAt
A= : : ,

ri1l +si1AAL rqql + SqqAAt

_ [

aad, BuoFy +... +BuFh"
F= D | +At : ;
Design updates:

K o
Ay 3 =Aody +A; ijﬂdﬁ,')*At' Az / WFdT)
i=

(69)

Note that the above time integration operator represents
the integrators equivalent to all entries of the Padé table
(i,]),i<j.Since0<i< j—2doesnot have an A-stable
property, as pointed out earlier, the selection of the al-
gorithmic [DNA] markers, namely, (w, W, A, ) for these
integratorsis not derived here. Depending upon the rep-
resentation selected for the matrix operator A, the present
design of BD timeintegration operators are applicableto
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structural dynamics or Hamiltonian systems. In such sit-
uations, the primary state variable d constitutes the dis-
placement u and velocity u for structural dynamics, and
displacement u and momenta p for the Hamiltonian sys-
tem. It is also important to note here that the BD time
integration operators are indeed applicableto the form of
the semi-discrete first-order initial value problem having
commonalities for applications in heat conduction and
convection/diffusion type problems.

5 Spectral analysis

In this section, the spectral analyses as related to the
stability, consistency, numerical dissipation, numerical
dispersion and overshoot behavior are presented for the
above developed integrators.

51 Stability

Here we derive the stability polynomial expression of
the BD; j integrators. For the system of first-order equa-
tions, the corresponding scalar equation after employing
the eigenmodes to decouple the Eq. 3 (this also satisfies
the Lax equivalence theorem) is given by
d+Ad=0; d(0)=do (70)
where A = +iw. For stability analysis, the end condition
d, for the current timeinterval is expressed in terms of
the end condition of the previoustime interval d,,. This
can be written in theform:

ABDd_ (71)

dn-&-l
where Agp is the amplification factor for the bi-
discontinuoustime integrators. For all the BD; j integra-
tors described, the amplification factor can be derived as
follows. Defining AAt = z, the unknownswithin the time
interval suchasd;, dn+, ...,d@" are solved first employ-
ing theintegrator BD; ; and then substituting these solved
variables into the update equation to get the representa-
tion of the form Eq. 71. For the various integrators de-
scribed earlier, the amplification factors can be respec-
tively given as:

1-1z4+ 12

Aep,, = m (72)
1-3z+ 42— 5 23

Agp,; = 120 (73)

1+3z+ _22"’ 22
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A _ 13 (74)
801z Ty %z+ 1z
1-2z+ &7
Agp,; = > R (75)
1+ 82+ 22 + 7
1
A = 76
BDo,2 1+27+ %22 ( )
A = 1= 42 77
e R WP 5 N 0
Comparing the amplification factor Agp, ; to the ratio-

nal polynomial R(z) of the Padé approximations, namely
Eq. 1, implies that the BDj j, j = 2,3 integrators are
spectrally equivalent to the diagonal Padé table entries,
the BDj_1j, ] = 2,3 integrators are spectrally equiva-
lent to the first sub-diagonal Padé table entries, and the
BDj_2j, ] = 2,3 integrators are spectrally equivalent to
the second sub-diagonal Padé table entries. Thus, the
BD; j integrators are unconditionally stable (A-stable).
Anagorithmistermed to be energy conserving provided
that 1im; . |A| = 1. For Eq. 72 and Eq. 73 this can be
verified since the highest power of z in the denominator
isequal tothat highest power of zinthe numerator. Thus,
we have

ABD, ‘Zl‘lm Agp,, =1

ABDs; ‘Zl‘lm Agp,; = —1 (78)
which impliesthat

|ABD,,| = [ABD,,| = 1 (79)

An algorithm is termed to be asymptotically annihilat-
ing provided that lim ;.. |A| = 0. For Egs. 74 - 75 and
Egs. 76 — 77 this can be verified since the highest power
of zin the denominator is greater than the highest power
of zin the numerator. Thus, we have
‘l‘lm ‘ABDl,z‘ = ‘l‘lm ‘ABDo,z‘ =0
‘l‘lm ‘ABD23‘ = ‘l‘lm ‘ABDls‘
This property of the spectral radius monotonically go-
ing to zero is aso referred to as L-stability [Hairer and
Wanner (1991)]. The spectral radius curves for the BD;
integratorsareillustratedin Figs. 6a—6b. From thesefig-
uresthe energy conserving property of BDj j, j = 2,3in-
tegrators and asymptotic annihilation property of BD j_1 |

(80)
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Figure 6 : Spectral radiusfor bi-discontinuoustime inte-
gration methods with and without physical damping.

and BDj_ j, ] = 2,3 integratorsis clearly evident. Fig-
ure 6b depictsthe spectral radius curve for BD; j integra-
tors with physical damping (§ = 0.1). From these fig-
ures it is clear that the BDj_;j and BD;j_5j time inte-
gration operators remain L-stable and energy dissipating.
Whereas the BD; ; time integration operators remain A-
stable , however, in the neighborhood of the frequencies
associated with At /T = 1 some dissipationisintroduced.
Inthe limit as At/T — oo it isseen that p — 1 for al &.
A similar behavior is observed for the well known New-
mark and the midpoint rule algorithms, which are spec-
trally equivalent to the Padé rational function Ry 1(2).

0
[pepeeement

L
-0.2

L
-0.2

Figure 7 : Convergence analysisof the displacement and
the velocity as At decreases for bi-discontinuoustime in-
tegration operators with f(t) = 0.

5.2 Consistency

The order of accuracy can be found by determining the
leading term of the difference between the exact solution
(exponential) and the Agp with respect to the powers of
At. FortheBD; j, j —2 <i < j timeintegration operators,
we have the following results:

., . —At5z 4
BD272 (e —ABDZZ)dn = 7—20dn = O(At )
_ Mz
BD373 (e Z—ABD3?3)dn = Mdn = O(Ate)
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Figure 8 : Convergence analysis of state variable d,
(the displacement and the velocity), as At decreases for
bi-discontinuous time integration operators with f(t) =
acos(wt).

_, MYz 3
BD12> : (€ “—Asp,,)dy = de = O(At®)
—Atbz
BD23 : (€ °—Aep,;)dy = =500 —d; = O(At®)
_, _ —At3z
BD072 . (e _ABDo,z)dn Td O(At )
Atz
BD13 : (€ “—Asp,5)d, = 4—80d; = O(At%)

Thus, the BD; j integrators have the order of accuracy
equal toi+ j. Thatis, they are of the order 2q, 29— 1,
and 2q — 2, respectively, for the BDgq, BDg-14 and
BDq-2,q timeintegration operatorswhere n isthe number
of unknownsin the bi-discontinuous weakform, Eq. 23,
and hence the number of system solves. To confirm
these orders of accuracy of the BD; j integrators, a un-
damped single-degree-of-freedom homogeneous system
U +w?u = 0 and a non-homogeneous system U +w’u =
acos(wyt) withug = 1, Up= Linitial conditionsand w= Tt
and wy = w— 1 isconsidered. The error at the end of
timet = 0.5 is computed. Figures. 7 and 8 shows the
convergence for the displacement and velocity for the
BDij,j =2,3,j—2<i < | as At decreases for homo-
geneous and non-homogeneous system respectively. As
expected, these figures exhibit the theoretical order of
convergence. Similarly, the convergence results can be
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Figure 9 : Numerical dissipation (£ algorithmic damp-
ing) for bi-discontinuous (BD) time integration methods
with and without physical damping.

readily shown for damped ¢ # 0 system. Note that the
time step employed for the study isrelatively large com-
pared to the time step considered for the traditional lower
order (< O(At?)) time integration operators.

5.3 Numerical Dissipation

Numerical dissipationisalso called as algorithmic dissi-
pation or algorithmic damping. This provides a measure
of the dissipative effect induced by the algorithm. In or-
der to study the dissipative characteristics of the time in-
tegration operators small values of Q are considered (i.e.
for low frequency modes). If the eigenvalues of the A
remain complex conjugate, i.e., we have
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)\172 :aiib:eﬁf’(‘&i) (81)
wherei = v/—1 and b # 0, then we have
_ I
=t g 1P
Qp+In*(p) P
Qp = arccos(g) (83)
p = vaz+h? (84)

where € is the physical damping, and &4 is the agorith-
mic damping ratio which provides the measure of the nu-
merical dissipation. Figure 9 illustrates the algorithmic
damping of the BD; j,j =2,3,] —2<i < j timeintegra-
tion operators.

The function &4 is plotted in Fig. 9a for the case with-
out physical damping (§ = 0). The BD;j; time inte-
gration operators do not possess any numerical dissipa
tion. The BDj_j and the BD;_5 j time integration op-
erators possess numerical dissipation with BD > having
the highest and BD, 3 having the least. It is also evi-
dent that with the increase in the order of accuracy of
the time integrators, the numerical dissipation decreases.
Figure 9b shows the numerical dissipation with physical
damping (¢ = 0.1). For the BD; ; time integration oper-
ators, &g = & at At/T = 0 and tendsto zero with increas-
ing values of At/T. However, for the BD;_1 j and the
BD;_»; time integration operators, &g = § at At/T =0
and increases with increasing values of At /T.

5.4 Numerical Dispersion

Numerical dispersionis related to the relative period er-
ror, which is defined as

T-T Q
- 2 85
T Qp (89
where
T = 2n T = ZtT[ (86)
[A) @
Q = wh; Qp=upht (87)

The period error without physical damping (§ = 0) isde-
scribed inFig. 10a. The BDjj and BD;_1 j time integra-
tion operators have positive period errors. That is, for a
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Figure 10 : Numerical dispersion (T —T)/T period er-
ror) for bi-discontinuous time integration methods with
and without physical damping.

given time step the period of the solution is larger than
theactual period. TheBD|_» ; time integration operators
have a negative period error. In al the cases, the period
error is reduced with increase in the order accuracy of
of the time integrators. Figure 10b shows the period er-
ror with physical damping (§ = 0.1). The above obser-
vations still hold with physical damping. However, the
errors show a more positive trend in comparison to the
error without physical damping for agiven At/T.

5.5 Overshoot characteristics

Although an algorithm is unconditionally stable, exces-
sively large oscillationsin the displacement and velocity
may occur during the first few time steps of the compu-
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Figure 11 : The displacement and velocity response for large time steps At/T = 10 and At/T = 100 indicates
zero-order displacement and zero-order overshoot behavior of bi-discontinuoustime integration operators.

tation in the high frequency regime when nonzero ini-
tial conditions are imposed. This characteristic which
is independent of the stability properties of the time in-
tegration operator is termed as the overshoot behavior
of the algorithm. To study the overshoot behavior of
the time integration operators, undamped, conservative
system with non-zero initial conditionsin displacement
and/or velocity are considered. Then, the solution at the
end first time step with limQ — oo can be represented as

Cuu(Qa) Uo + Cu\/(Qb) Uo
Cw(Q°) o+ cw(QY) Uo

u =
u =

(88)
(89)

where the coefficients ¢, ¢y, 6w and ¢,y are functions
of Q = wht. These coefficients contribute to the over-
shoot behavior of thetimeintegration operators. Thus, to
enable zero-order displacement and zero-order velocity
overshoot behavior (UO-V0), the powers of Q, a,b,c,d
have to be less than or equal to zero. The coefficients
Cuu» Cuv» G and ¢y are entries of the amplification ma-
trix at limQ — o. First, it can be readily proved that
the time integration operators BD; ; have zero-order dis-

placement and zero-order velocity overshoot behavior
since the Egs. 78 and 80 are independent of the terms
involving z. For structural dynamics, taking

0o -1
Z= [ Q2 280 ] (%0)
and the initial condition vector as
do = (Uo, U At) " (91)

and taking the Agp = limq_... Agp, We have the coeffi-
cients as listed in the Table 1. From the Table 1 it is
clear that all the BD time integration operators have zero-
order displacement and zero-order vel ocity overshoot be-
havior for no-zero initial conditions as the coefficients
are independent of the term Q(2z). It can also be readily
shown that thisresult is also true for systemswith physi-
cal damping.

To validate these theoretical results the following experi-
ment is carried out. The responsesu and U of the single-
degree-freedom system, U +w?u = 0 with nonzero initial
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Figure 12 : The displacement and velocity responsefor largetime stepsAt/T = 10and At/T = 100 (T = 2.0) inthe
vicinity of end of first time step for BD time integration operators (zoom of Figs. 11a— 11d to illustrate elimination
of spurious high-frequency response at the end of first time step).

Table1: Overshoot coefficients of the amplification ma-
trix for BD time integration operators.

Time d1 = Agp,,do Remarks
operators | Cuu  Cw Gu  Ow
BD2> 1 0 12 1 | Diagonal
BDzz | -1 0 -24 -1
BD1» 0 O 2 0 | Firstsub-diagonal
BD23 0O 0 -3 O
BDg» 0 0 0 0 | Secondsub-diagonal
BD13 0O 0 0 O

conditions ug = 1 and Up= 1 are recorded for the time
step At = 10T, 100T where T (T = 2) isthe period of the
oscillations. The responses are shown in Fig. 11a—11b
for u and Figs. 11c — 11d for u, respectively. Again, it
is clear from these figures that the BD time integration
operators are zero-order in displacement and zero-order
in velocity overshoot behavior. That is, the displacement
and vel ocity responses are bounded with increasing val-

uesof At/T >> 1.

From the Table 1 and Figs. 11a — 11d and Figs. 12a —
12d the following conclusions can be drawn. All the BD
time integration operators are (U0-V0) methods. Only
BD;_»,j timeintegration operatorsideally inherit and are
asymptotically annihilating operators, i.e, the spurious
oscillations in the high-frequency are eliminated at the
end of the first time step (see. Figs. 12a— 12d). How-
ever, the BDj_1 j time integration operators are only al-
most to perfect asymptotic annihilating operators, i.e.,
the spurious oscillationsin the high-frequency are elim-
inated only after the first time step (see Fig. 12a— 12d).
While the responses of BDj j time integration operators
are bounded in the high-frequency regime, they possess
spuriousoscillationswhich are characterized by the over-
shoot coefficients ¢y, Cuy, G and cyy. In addition, with
the increase in the order of accuracy of the time integra-
torsthe value of the overshoot coefficientsincreases (see.
Table 1). Thisaso true for the BDj_; j time integration
operators. However, the effects due to these are negligi-
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ble.

6 Conclusions

A mathematical framework and the design leading to a
unified set of hierarchical time discontinuous state-phase
operators useful for computational dynamics was de-
scribed. The resulting algorithms fundamentally inherit
good algorithmic attributes, and the framework provides
for the first time the simultaneous design of a unified set
of energy conserving/dissipating time integration opera-
tors. Lastly, al the time operatorsin the present context
naturally inherit a hierarchical structure that is useful for
time adaptive computations.
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