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A Mathematical Framework Towards a Unified Set of Discontinuous State-Phase
Hierarchical Time Operators for Computational Dynamics

R.Kanapady1 and K.K.Tamma2

Abstract: Of general interest here is the time dimen-
sion aspect wherein discretized operators in time may
be continuous or discontinuous; and of particular inter-
est and focus here is the design of time discretized op-
erators in the context of discontinuous state-phase for
computational dynamics applications. Based on a gen-
eralized bi-discontinuous time weighted residual formu-
lation, the design leading to a new unified set of hierar-
chical energy conserving and energy dissipating time dis-
cretized operators are developed for the first time that are
fundamentally useful for time adaptive computations for
dynamic problems. Unlike time discontinuous Galerkin
approaches, the design is based upon a time discontinu-
ous Petrov-Galerkin-like approach employing an asymp-
totic series type approximations for the state variables
involving derivatives at the beginning of the time step.
As a consequence, this enables to design methods that
have spectral properties corresponding to the diagonal,
first sub-diagonal and second sub-diagonal Padé entries.
Thus, A-stable schemes of order 2q, L-stable schemes of
order 2q−1 and 2q−2 are obtained. The spectral equiva-
lent algorithms to the diagonal Padé entry are energy con-
serving algorithms. The spectral equivalent algorithms to
the first and second sub-diagonal Padé entries are energy
dissipating algorithms with the property of asymptotic
annihilation of the high frequency response. Addition-
ally, these time operators naturally inherit a hierarchical
structure that are extremely useful for time adaptive com-
putations. Moreover, since Padé entries have the lowest
relative error the developed schemes are optimal in terms
of order of accuracy in time, dissipation, dispersion and
zero-order displacement and velocity overshoot charac-
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1 Introduction

For computational dynamics applications, the commonly
employed time integration operators, when applied to the
equations of motion in state space representation (two-
field form or mixed or hybrid formulations) lead to the
following amplifications of the errors as dn+1 = R(z)dn

where z = λ∆t and R(z) is the so-called “stability func-
tion”. In the context of time continuous operators, for the
explicit Euler method, trapezoidal and implicit midpoint
rule, and the implicit Euler method, respectively, the sta-
bility functions are R(z) = 1 + z; R(z) = (1 + z)/(1− z)
and R(z) = 1/(1− z). These are simply particular entries
of the Padé table of the exponential map in which the nu-
merator P and the denominator Q may be expressed in
rational form as [Ehle (1969)]

Ri, j(z) =
Pi(z)
Q j(z)

=
∑ j

l=0
j!

( j−l)!
(i+ j−l)!
(i+ j)!

zl

l!

∑i
l=0

i!
(i−l)!

(i+ j−l)!
(i+ j)!

(−z)l

l!

(1)

where i and j are the degrees of the polynomials of the
numerator and denominator, respectively. It is a well
known fact that for a given degree of the numerator and
denominator the resulting approximation has the highest
order of accuracy [Gragg (1972)] where the order of ac-
curacy is given by i+ j. In addition, all entries (i, j) of the
Padé table of the exponential map, with i < j (entries be-
low diagonal) possess the asymptotic annihilation prop-
erty. Time operators that possess this property asymp-
totically annihilate the high-frequency response, i.e., the
spurious oscillations in the high frequency regime are
eliminated after one time step. However, the famous con-
jecture of Ehle ([Ehle (1969)], p.65) which was proved
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Figure 1 : Typical spectral curves for the diagonal,
first sub-diagonal, second sub-diagonal and third sub-
diagonal Padé exponential map substantiates that with
the exception of the diagonal and the first and second
lower sub-diagonals, no entry of the Padé table is A-
stable for structural dynamics.

by Hairer and Warner [Hairer and Wanner (2000)] states
that with the exception of the diagonal and the first and
second lower sub-diagonals, i.e., of j−2 ≤ i ≤ j, no en-
try of the Padé table is A-stable where A-stability is de-
fined as |R(z)| ≤ 1. This is also illustrated in the Fig. 1
where the spectral radius curve is plotted for a typical
row of entries of the Padé table for structural dynamics.
Figure 1 clearly indicates that only the diagonal and the
first and second sub-diagonal entries of the Padé table are
A-stable as illustrated by ρ ≤ 1.

Thus, the above discussion clearly provides a motiva-
tion for the need to design time operators with proper-
ties equivalent to diagonal, the first lower sub-diagonal
and the second lower sub-diagonal entries of the Padé ta-
ble in a unified framework. Such algorithmic attributes
are important for computational dynamics. Previous ef-
forts [Hulbert (1992); Borri and Bottassso (1993); Li and
Wiberg (1996); Wiberg and Li (1996); Chien and Wu
(2001)] fail to provide a unified framework to simulta-
neously yield a unified set of computational algorithms
that are spectrally equivalent to the diagonal, the first
sub-diagonal, and the second sub-diagonal Padé approx-
imations from time discontinuous formulations. Finally,

no framework exists to-date that simultaneously yields a
hierarchical unified set of the same for time dependent
adaptive computations.

Emanating from a generalized bi-discontinuous time
weighted residual formulation, a new unified set of en-
ergy conserving and energy dissipating time discretized
operators for the two-field form are presented here that
are fundamentally useful for structural dynamic com-
putations. Unlike the time discontinuous Galerkin ap-
proach [Hulbert (1992)], the design of the algorithms
are based upon a time discontinuous Petrov-Galerkin-
like approach with the particular notion of independent
approximations of the state variables. The state variables
specifically employ an asymptotic series type approxi-
mation involving values of derivatives of state variable
at the beginning of time step. These latter approaches
now readily enable the design of time discretized oper-
ators that have spectral properties corresponding to the
diagonal, the first and second lower sub-diagonals of the
Padé table entries. Thus, A-stable schemes of order 2q,
L-stable schemes of order 2q−1 and 2q−2 can be read-
ily designed where q is the number of system solves.
The time integration operators that are spectrally equiv-
alent to the diagonal Padé table entries are termed en-
ergy conserving algorithms. The time integration oper-
ators that are spectrally equivalent to first and second
sub-diagonal Padé table entries are energy dissipating
algorithms with the property of asymptotic annihilation
of the high-frequency response. Since Padé approxima-
tions have the lowest relative error, the present design
of the time operators is optimal in terms of the order
of accuracy in time, and numerical dissipation and dis-
persion with zero-order displacement and velocity over-
shoot characteristics. It is also noteworthy to point out
that additionally, the integration operators that are spec-
trally equivalent to the diagonal, first sub-diagonal, and
also the second sub-diagonal Padé exponential maps nat-
urally inherit a hierarchical structure that is useful for en-
abling adaptive computations. The theoretical develop-
ments and stability, and convergence are also described
for the various designs of time operators for computa-
tional dynamics.

The present exposition is organized as follows. Follow-
ing the aforementioned brief introduction and motivation
in Section 1, a description of the equations of motion and
the weakforms considered is described in Section 2. In
Section 3, the approximations of the weighted time fields
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and state variables are described followed by the design
of the time discontinuous operators in Section 4. In Sec-
tion 5, the spectral analyses as related to the stability,
consistency, numerical dissipation, numerical dispersion
and overshoot behavior are presented for the developed
time integrators followed by conclusions in Section 6.

2 Equations of Motion

The dynamic problems can be represented in config-
uration space representation (single-field or irreducible
form), second-order ordinary differential equation sys-
tem after the finite element discretization in space. These
can be described in matrix form (strong form) as:

L(u)− f = 0; u(tn) = u0;
.
u (tn) =

.
u0 (2)

where the operator L(u) is given by L(u) ≡ M
..
u +C

.
u

+Ku = f. M, C and K are the respective mass, damp-
ing, and stiffness matrices, f is the vector of externally

applied forces, u is the displacement vector, and
.

(.) and
..

(.) denotes a single and double derivative with respect to
time. The matrix M is assumed to be symmetric positive-
definite and matrices C and K are assumed to be sym-
metric semi-definite. For convenience in the theoretical
design, we focus on an equivalent first-order system for
structural dynamics where the second-order differential
Eq. 2 is transformed into two first-order differential equa-
tions. Letting

.
u= v and

..
u=

.
v in Eq. 2, the equivalent

state-phase (two-field, first-order, reducible or mixed for-
mulations) representation is given as

L(d)−F = 0; d(tn) = d0 (3)

where the operator L(d) is given by

L(d)≡ .
d +Ad = F (4)

and

d =
(

u
v

)
; A =

[
0 −I

M−1K M−1C

]
; F =

(
0

M−1f

)
(5)

Assuming an arbitrary virtual field or weighted time
field, w(t), for enacting the time discretization process,
the above semi-discretized system can be cast into the
form:

(L(d)−F,w) = 0; d(tn) = d0 ∀w ∈ [tn, tn+1] (6)

After integrating by parts, we have

(M (w),d)+w.d

∣∣∣∣
tn+1

tn

− (F,w) = 0 (7)

The solution of the adjoint equation M (w)≡ w.A− .
w=

0 yields w(t) = wexact which when employed in Eq. 7
leads to the exact theoretical solution which is an ex-
ponential matrix representation. It is also evident from
Eq. 7 that such a selection, does not necessitate the
need to approximate the state variables as it is irrelevant
[ Tamma, Zhou, and Sha (2000)].

3 Approximation of Weighted Time Fields and State
Variables

In this section, emanating from the exact weighted time
fields, the degeneration process and the resulting con-
sequence leading to and explaining the design of the
so-called time integration operators involving a multiple
system and a single solution step are described. The ob-
jectives and focus here is to first describe the underlying
basis that can explain how to obtain the resulting approx-
imations of the weighted time fields emanating from the
exact weighted time fields, and also the imposed condi-
tions for approximating the state variables and leading to
the general design and framework of computational algo-
rithms encompassing state-phase time discretized opera-
tors.

Consider the following transformation permitting the de-
generation of the exact weighted time fields from the
second-order tensor (matrix) representation to a first-
order tensor (vector) as

wexact →w(τ)=wt(τ)T =




w10 . . . w1p
...

. . .
...

wq0 . . . wqp






τ0

...
τp


 (8)

where p ≤ n and p ≥ q. This can be written in an asymp-
totic series type expansion as

wAsymp(τ) = w+
n +

.
w+

n τ+
..
w+

n τ2 + . . .+w(p)+
n τp (9)

=
[
w+

n ,
.

w+
n , . . .,w(p)+

n

]
t(τ)T (10)

= wt(τ)T (11)

where w+
n ,

.
w+

n , . . .,w(p)+
n are vectors of span{w} which

admits the set of all linear combination of vectors
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Figure 2 : Illustration of local approximation functions
via the proposed asymptotic series.

w( j)+
n , j = 0,1, . . ., p. t(τ)T is a vector of monomials τ.

The size of these vectors is of order q and dictates the
number of unknowns in the weakform. The dimension p
dictates the other features of the time integration opera-
tors. The (.)+

n representation for the vectors of span(w) is
employed here merely to be consistent with the represen-
tations of the time discontinuous formulations. If the vec-
tors w( j)+

n , j = 0,1, . . ., p are linearly independent, then
each vector of span{w} admits a unique expression as a

linear combination of the w( j)+
n , j = 0,1, . . ., p. Thus the

set w is then called a basis of the subspace span{w}. This
selection of w now dictates the corresponding approxi-
mation for the state variables unlike employing w exact as
evident from Eq. 7 (see also [ Tamma, Zhou, and Sha
(2000)]).

As a consequence, the corresponding local independent
approximations to the state variables follows. Consider
the following notion of a local asymptotic series type ex-
pansion for the approximation for d as

d ≈ d = dAsymp(τ) =
k

∑
i=0

Λid
(i)+
n ∆t iτi (12)

where τ ∈ (0,1). Next, consider the following indepen-

dent local approximation for
.

d as

.
d≈

.

d=
.
dAsymp (τ) =

k

∑
i=1

Λk+id
(i)+
n ∆t i−1τi−1 (13)

where Λi, i = 0, . . . ,2k are free parameters. Alterna-
tively, one may consider the equations of motion given

by
.
d +Ad−F = 0 for the approximation of the state vari-

ables. This implies that the state variable
.
d can also be

independently approximated as
.
d= −Ad+F, and results

in

.
d≈

.

d= −Ad +F = −A
k

∑
i=0

Λid
(i)+
n ∆t iτi +F (14)

Based on Eq. 12, for illustration, the relevant approxima-
tions of linear and quadratic forms are given by

d(τ) = Λ0d+
n +Λ1

.
d

+
n ∆tτ; k = 1 (15)

d(τ) = Λ0d+
n +Λ1

.
d

+
n ∆tτ +Λ2

..
d

+
n ∆t2τ2; k = 2 (16)

Based on Eq. 13, the corresponding independent local

approximations for
.

d, respectively yield

.

d (τ) = Λ2
.
d

+
n ; k = 1 (17)

.

d (τ) = Λ3
.
d

+
n +Λ4

..
d

+
n ∆tτ; k = 2 (18)

Alternatively, following Eq. 14, we can also have the in-

dependent local approximations for
.

d as

.

d (τ) = −Ad +F

= −A(Λ0d+
n +Λ1

.
d

+
n ∆tτ)+F; k = 1

.

d (τ) = −Ad +F

= −A(Λ0d+
n +Λ1

.
d

+
n ∆tτ+Λ2

..
d

+
n ∆t2τ2)+F; k = 2

(19)

The load is approximated consistently upto l terms as

F ≈ FAsymp(τ) =
l

∑
i=0

θiF
(i)+
n ∆t iτi; (20)

where θi, i = 1, . . ., l are free parameters. The order of
approximation l for the load F is taken to be one less
than the order of accuracy of the time integration opera-
tor. That is, if 2k+2, 2k+1 and 2k are the order of accu-
racy of the time integration operator, then l = 2k +1, 2k,
and 2k−1 respectively. Note that the size of the degen-
erated weighted time vector field, w(τ), is the number
of unknowns in the weakform. In designing time oper-
ators, there exists two fundamental aspects: (i) the as-
pect involving the “‘integrator” (which is associated with
the semi-discretized equation system and the solution of
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the corresponding equation system), and (ii) the aspect
involving the design of “updates” (which are associated
with computing or updating the primary state variables to
advance to the end of the time step). In the text to follow,
various bi-discontinuous (BD) integrators and the asso-
ciated design updates with desired algorithmic attributes
mimicking the diagonal, first and second sub-diagonal
Padé entries are described.

4 Design of Time Integrator

The generalized bi-discontinuous weighted residual
statement, with the limits of the integrals changed from
(tn, tn+1) to (0,1) is described first.

If L(d) is defined by Eq. 4, then the time weighted resid-
ual statement, Eq. 6, has the following two weighted
residual statements as the equivalent time discontinuous
weak form representations:(

L((d)−F)∆t,w
)

I−+

+wn+1.
[[

dn+1
]]

+wn.
[[

dn
]]

= 0∀w ∈ [0,1] (21)(
d
′−

.

d, ŵ
)

I−+

+ŵn+1.
[[

dn+1
]]

+ ŵn.
[[

dn
]]

= 0∀ ŵ ∈ [0,1] (22)

where d and
.

d are independent approximations to the so-
lution d and

.
d of L(d)−F = 0, d

′
is the differentiation

of d with respect to t, and and [[.]] is the temporal jump
operator defined as [[.]] = (.)+ − (.)−, ()± = (.)(t±n ) =
limε→0±(.)(tn+ε)⇒ d(t−n ) = d0, (., .)I−+ is the L2[tn, tn+1]

inner product is defined by (x,y)I−+ =
∫ t−n+1

t+n
x(t).y(t)dt,

and I−+ ∈ (t+n , t−n+1).

4.1 Design of Integrator

Substituting the degenerated weighted time vector field,
Eq. 8, and the approximations Eqs. 12 and 13 for d and
.

d respectively in the generalized bi-discontinuous weak-
form, Eq. 21, results in the following multiple system
single solve (q = k + 1) representation of the time inte-
gration operator:

Ad̂ = F (23)

where the integrator matrix A, the unknown vector d̂ and
the effective load vector F have the following representa-
tions:

A =




r11I+ s11A∆t . . . r1qI+ s1qA∆t
...

. . .
...

rq1I+ sq1A∆t . . . rqqI+ sqqA∆t


 (24)

d̂ =
(

d+
n ,

.
d

+
n ∆t, . . .,d(q)+

n ∆tq
)T

(25)

F = Fα +Fβ (26)

Fα =
(
α1d−

n , . . .,αqd−
n

)T
(27)

Fβ = ∆t




β10F+
n +β11

.
F

+
n + . . .+β1lF

(l)+
n

...

βq0F+
n +βq1

.
F

+
n + . . .+βqlF

(l)+
n


 (28)

F( j)+
n =

(
0

M−1f( j)+
n

)
j = 0,1, . . ., l (29)

with the coefficients in the above integrator given by

r := [ri j]=

{
wi0 j = 1

Λk+ j−1
∫ 1−

0+ wiτ j−2dτ 2 ≤ j ≤ q=k +1
(30)

s := [si j] = Λ j−1

∫ 1−

0+
wiτ j−1dτ 1 ≤ j ≤ q = k +1 (31)

ααα := [α i] = wi0 (32)

βββ := [βi j] = θ j∆t j
∫ 1−

0+
wiτ j 0 ≤ j ≤ l; (33)

γγγ := [γi j] =
p

∑
j=0

wi j (34)

Once the unknown quantities (d+
n ,

.
d

+
n ∆t, . . .,d(q)+

n ∆tq)
are found employing the integrator, Eq. 23, the end con-
ditions, namely, d+

n+1 can be found employing the design
updates as described next.

4.2 Design of Updates

To design the updates, consider the weakform in Eq. 22
of the proposed weighted residual statements relating to
Eq. 6. Integrating by parts the term associated with d ′

in
Eq. 22, we have

d+
n+1.ŵn+1 = d−

n .ŵn +
(

d,
.

ŵ
)

I1−
0+

+
( .

d ∆t, ŵ
)

I1−
0+

(35)

Consider the degenerated weighted time field for the up-
dates, the span of which is given by

span{ŵ}=
[

ŵ0 . . . ŵp̂
]

(36)
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At this point, consider the two alternatives in Eqs. 12, 13

for the approximation of
.

d in Eq. 35. First, Eq. 13 is con-
sidered and then Eq. 14 is considered. Substituting the
weighted time fields, Eq. 36 and the local independent

approximations, Eqs. 12 and 13 for d and
.

d respectively
in Eq. 35, yields the following design for the updates:

d+
n+1 = λ0d−

n + I
k

∑
i=0

λi+1d(i)+
n ∆t i (37)

Alternatively, substituting the weighted time fields Eq. 36
and the local independent approximations Eqs. 12 and 14

instead for d and
.

d respectively in Eq. 35, yields the fol-
lowing design for the updates:

d+
n+1 = λ0d−

n −∆t(A
k

∑
i=0

λi+1d(i)+
n ∆t i +

∫ 1−

0+
ŵFdτ) (38)

The above two distinct designs for the updates, namely,
Eqs. 37 and 38 can be combined with a generic matrix
A1 instead I and A into one as

d+
n+1 = λ0d−

n +A1

k

∑
i=0

λi+1d(i)+
n ∆t i+λk+2(∆t

∫ 1−

0+
ŵFdτ) (39)

where

A1=
{

I or
−A∆t

(40)

λi=




w0

∑q
j=0 ŵ j

i = 0

Λ1
∫ 1−

0+
.
ŵdτ

∑q
j=0 ŵ j

i = 1
∫ 1−

0+ (Λi−1
.
ŵτi−1+Λk+i ŵτi−2)dτ

∑q
j=0 ŵ j

; 2 ≤ i ≤ k +1

0 or 1 i = k +2

(41)

In the following text, the algorithmic discrete numeri-
cally assigned [DNA] markers, namely, the coefficients
(w, ŵ,Λ,λ), for the various time integration operators
equivalent to the diagonal, the first sub-diagonal and the
second sub-diagonal follow next, and involve relation-
ships to r, s,ααα,βββ that are unique for a particular algorithm
and serve as the algorithm’s signature (i.e. the w,ŵ, Λ
and λ must satisfy the unique relations).

4.3 BDq,q Algorithms: q = k +1, p = k +1, p̂ = p

BD2,2: The selected algorithmic [DNA] markers in
Eq. 23 are as follows (k = 1):

span{w} =
[

w10 w11 w12

w20 w21 w22

]

=
[

1 −1 0
1 0 −1

]
(42)

ΛΛΛ = {Λ0,Λ1,Λ2}
= {1,1,1} (43)

span{ŵ} =
[

ŵ10 ŵ11 ŵ12
]

=
[

1 0 0
]

→ λ = {λ0,λ1,λ2}
= {1,1,

1
2
} (44)

The resulting coefficients of the time integrator A and F
are as follows:

r =
[

1 1
2

1 2
3

]
; s =

[ 1
2

1
6

2
3

1
4

]

ααα =
[

1
1

]
; βββ =

[ 1
2

1
6

2
3

1
4

] (45)

BD3,3: The selected algorithmic [DNA] markers are as
follows (k = 2):

span{w} =


 w10 w11 w12 w13

w20 w21 w22 w13

w30 w31 w32 w13




=


 1 −1 0 0

1 0 −1 0
1 0 0 −1


 (46)

ΛΛΛ = {Λ0,Λ1,Λ2,Λ3,Λ4}
= {1,1,

1
2
,1,

1
2
} (47)

span{ŵ} =
[

ŵ10 ŵ11 ŵ12 ŵ13
]

=
[

1 0 0 0
]

→ λλλ = {λ0,λ1,λ2,λ3}
= {1,1,

1
2
,

1
6
} (48)

The resulting coefficients of the time integrator A and F
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Figure 3 : Weighted time fields w (test functions) for linear and quadratic trial functions for BD q,q time operators.

are as follows:

r =


 1 1

2
1
6

1 2
3

1
4

1 3
4

3
10


 ; s =


 1

2
1
6

1
24

2
3

1
4

1
15

3
4

3
10

1
12




ααα =


 1

1
1


 ; βββ =


 1

2
1
6

1
24

2
3

1
4

1
15

3
4

3
10

1
12




(49)

The weighted time fields w for the BD22 and BD33 time
integration operators that are equivalent to the diagonal
Padé table entries are depicted in Fig. 3a and 3b, respec-
tively.

4.4 BDq−1,q Algorithms: q = k +1, p = k +2, p̂ = p

BD1,2: The selected algorithmic [DNA] markers are as
follows (k = 1):

span{w} =
[

w10 w11 w12 w13

w20 w21 w22 w13

]

=
[

1 −3 12 −10
0 −2 12 −10

]
(50)

ΛΛΛ = {Λ0,Λ1,Λ2}
= {1,1,1} (51)

span{ŵ} =
[

ŵ10 ŵ11 ŵ12 ŵ13
]

=
[

0 1 0 0
]

(52)

→ λ = {λ0,λ1,λ2}
= {0,1,1} (53)

The resulting coefficients of the time integrator A and F
in Eq. 23 are as follows:

r =
[

1 1
0 1

2

]
; s =

[
1 1

2
1
2

1
3

]

ααα =
[

1
0

]
; βββ =

[
1 1

2
1
2

1
3

] (54)

BD2,3: The selected algorithmic [DNA] markers are as
follows (k = 2):

span{w} =


 w10 w11 w12 w13 w14

w20 w21 w22 w13 w24

w30 w31 w32 w33 w34




=


 1 4 −30 60 −35

0 5 −30 60 −35
0 4 −29 60 −35


 (55)

ΛΛΛ = {Λ0,Λ1,Λ2,Λ3,Λ4}
= {1,1,

1
2
,1,

1
2
} (56)

span{ŵ} =
[

ŵ10 ŵ11 ŵ12 ŵ13 ŵ14
]

=
[

0 0 1 0 0
]

(57)

→ λ = {λ0,λ1,λ2,λ3}
= {0,1,1,

1
2
} (58)

The resulting coefficients of the time integrator A and F
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Figure 4 : Weighted time fields w (test functions) for linear and quadratic trial functions for BD q−1,q time operators.

in Eq. 23 are as follows:

r =


 1 1 1

2
0 1

2
1
3

0 1
3

1
4


 ; s =


 1 1

2
1
6

1
2

1
3

1
8

1
3

1
4

1
10




ααα =


 1

0
0


 ; βββ =


 1 1

2
1
6

1
2

1
3

1
8

1
3

1
4

1
10




(59)

The weighted time fields w for the BD12 and BD23 time
integration operators that are equivalent to the first lower
sub-diagonal Padé table entries are depicted in Fig. 4a
and 4b, respectively.

4.5 BDq−2,q Algorithms: q = k +1, p = k +2, p̂ = p

BD0,2: The selected algorithmic [DNA] markers are as
follows (k = 1):

span{w} =
[

w10 w11 w12 w13

w20 w21 w22 w13

]

=
[

1 −3 12 −10
0 −12 42 −30

]
(60)

Λ = {Λ0,Λ1,Λ2}
= {1,1,1} (61)

span{ŵ} =
[

ŵ10 ŵ11 ŵ12 ŵ13
]

=
[

0 1 0 0
]

(62)

→ λ = {λ0,λ1,λ2}
= {0,1,1} (63)

The resulting coefficients of the time integrator A and F
in Eq. 23 are as follows:

r =
[

1 1
0 1

2

]
; s =

[
1 1

2
1
2

1
2

]

ααα =
[

1
0

]
; βββ =

[
1 1

2
1
2

1
2

] (64)

BD1,3: The selected algorithmic [DNA] markers are as
follows (k = 2):

span{w} =


 w10 w11 w12 w13 w14

w20 w21 w22 w23 w24

w30 w31 w32 w33 w34




=


 1 4 −30 60 −35

0 30 −210 390 −210
0 105 −750 1380 −735


 (65)

Λ = {Λ0,Λ1,Λ2,Λ3,Λ4}
= {1,1,

1
2
,1,

1
2
} (66)

span{w} =
[

ŵ10 ŵ11 ŵ12 ŵ13 ŵ14
]

=
[

0 0 1 0 0
]

(67)

→ λ = {λ0,λ1,λ2,λ3}
= {0,1,1,

1
2
} (68)

The resulting coefficients of the time integrators A and F
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Figure 5 : Weighted time field w (test functions) for linear and quadratic trial functions for BD q−2,q time operators.

in Eq. 23 are as follows:

r =


 1 1 1

2
0 1

2
1
2

0 1
2 1


 ; s =


 1 1

2
1
6

1
2

1
2

1
4

1
2 1 5

8




ααα =


 1

0
0


 ; βββ =


 1 1

2
1
6

1
2

1
2

1
4

1
2 1 5

8




(69)

The weighted time fields w for the BD02 and BD13 time
operator that are equivalent to second lower sub-diagonal
Padé table entries are depicted in Fig. 5a and 5b, respec-
tively.

Particularly note that the time integration operator co-
efficients, namely r, s,ααα and βββ for the BDq,q, BDq−1,q

and BDq−2,q have a hierarchical structure. That is, the
time operator coefficients of the BD2,2 operator is con-
tained in the BD3,3 operator, and likewise the BD1,2 and
BD0,2 operators are contained in the BD2,3 and BD1,3

operators which implies that the lower order time inte-
grators are contained in the high-order time integrators.
The resulting design and such features provide a unified
framework for a concise implementation and are useful
in time adaptive computations to consistently increase
the order of accuracy to arbitrary high-order as required
by the problem at hand. Thus, in general, the design of
the present bi-discontinuous time integration operators
BDi, j, j = 2,3; j− 2 ≤ i ≤ j of arbitrary order that are
equivalent to the Padé table entries (i, j), j = 2,3; j−2≤
i ≤ j can be summarized as follows.

Time integrator

Integrator:

Ad̂ = F

where

d̂ =




d+
n
...

d(q)+
n ∆tq




A =




r11I+ s11A∆t . . . r1qI+ s1qA∆t
...

. . .
...

r11I+ s11A∆t . . . rqqI+ sqqA∆t


 ;

F =




α1d−
n

...
αqd−

n


+∆t




β10F+
n + . . .+β1lF

(l)+
n

...

βq0F+
n + . . .+βqlF

(l)+
n


 ;

Design updates:

d+
n+1 = λ0d−

n +A1

k

∑
i=0

λi+1d(i)+
n ∆t i +λk+2(

∫
ŵFdτ)

(69)

Note that the above time integration operator represents
the integrators equivalent to all entries of the Padé table
(i, j), i≤ j. Since 0 ≤ i≤ j−2 does not have an A-stable
property, as pointed out earlier, the selection of the al-
gorithmic [DNA] markers, namely, (w, ŵ,Λ,λ) for these
integrators is not derived here. Depending upon the rep-
resentation selected for the matrix operator A, the present
design of BD time integration operators are applicable to
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structural dynamics or Hamiltonian systems. In such sit-
uations, the primary state variable d constitutes the dis-
placement u and velocity

.
u for structural dynamics, and

displacement u and momenta p for the Hamiltonian sys-
tem. It is also important to note here that the BD time
integration operators are indeed applicable to the form of
the semi-discrete first-order initial value problem having
commonalities for applications in heat conduction and
convection/diffusion type problems.

5 Spectral analysis

In this section, the spectral analyses as related to the
stability, consistency, numerical dissipation, numerical
dispersion and overshoot behavior are presented for the
above developed integrators.

5.1 Stability

Here we derive the stability polynomial expression of
the BDi, j integrators. For the system of first-order equa-
tions, the corresponding scalar equation after employing
the eigenmodes to decouple the Eq. 3 (this also satisfies
the Lax equivalence theorem) is given by

.
d +λd = 0; d(0) = d0 (70)

where λ = ±iω. For stability analysis, the end condition
d+

n+1 for the current time interval is expressed in terms of
the end condition of the previous time interval d −

n . This
can be written in the form:

d+
n+1 = ABDd−

n (71)

where ABD is the amplification factor for the bi-
discontinuous time integrators. For all the BD i, j integra-
tors described, the amplification factor can be derived as
follows. Defining λ∆t = z, the unknowns within the time

interval such as d+
n ,

.
d

+
n , . . . ,d(q)+

are solved first employ-
ing the integrator BDi, j and then substituting these solved
variables into the update equation to get the representa-
tion of the form Eq. 71. For the various integrators de-
scribed earlier, the amplification factors can be respec-
tively given as:

ABD2,2 =
1− 1

2 z+ 1
12z2

1+ 1
2 z+ 1

12z2
(72)

ABD3,3 =
1− 1

2z+ 1
10z2 − 1

120 z3

1+ 1
2z+ 1

12z2 + 1
120 z3

(73)

ABD1,2 =
1− 1

3 z

1+ 2
3z+ 1

6 z2
(74)

ABD2,3 =
1− 2

5 z+ 1
60z2

1+ 3
5z+ 3

20z2 + 1
60z3

(75)

ABD0,2 =
1

1+ z+ 1
2 z2

(76)

ABD1,3 =
1− 1

4z

1+ 3
4z+ 1

4z2 + 1
24z3

(77)

Comparing the amplification factor ABDi, j to the ratio-
nal polynomial R(z) of the Padé approximations, namely
Eq. 1, implies that the BD j, j, j = 2,3 integrators are
spectrally equivalent to the diagonal Padé table entries,
the BD j−1, j, j = 2,3 integrators are spectrally equiva-
lent to the first sub-diagonal Padé table entries, and the
BD j−2, j, j = 2,3 integrators are spectrally equivalent to
the second sub-diagonal Padé table entries. Thus, the
BDi, j integrators are unconditionally stable (A-stable).
An algorithm is termed to be energy conserving provided
that lim|z|→∞ |A| = 1. For Eq. 72 and Eq. 73 this can be
verified since the highest power of z in the denominator
is equal to that highest power of z in the numerator. Thus,
we have

A∞
BD2,2

= lim
|z|→∞

ABD2,2 = 1

A∞
BD3,3

= lim
|z|→∞

ABD3,3 = −1 (78)

which implies that

|A∞
BD2,2

| = |A∞
BD3,3

| = 1 (79)

An algorithm is termed to be asymptotically annihilat-
ing provided that lim |z|→∞ |A| = 0. For Eqs. 74 – 75 and
Eqs. 76 – 77 this can be verified since the highest power
of z in the denominator is greater than the highest power
of z in the numerator. Thus, we have

lim
|z|→∞

|ABD1,2 |= lim
|z|→∞

|ABD0,2 |= 0

lim
|z|→∞

|ABD2,3 |= lim
|z|→∞

|ABD1,3 |= 0
(80)

This property of the spectral radius monotonically go-
ing to zero is also referred to as L-stability [Hairer and
Wanner (1991)]. The spectral radius curves for the BDi, j

integrators are illustrated in Figs. 6a – 6b. From these fig-
ures the energy conserving property of BD j, j, j = 2,3 in-
tegrators and asymptotic annihilation property of BD j−1, j
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Figure 6 : Spectral radius for bi-discontinuous time inte-
gration methods with and without physical damping.

and BD j−2, j, j = 2,3 integrators is clearly evident. Fig-
ure 6b depicts the spectral radius curve for BD i, j integra-
tors with physical damping (ξ = 0.1). From these fig-
ures it is clear that the BD j−1, j and BD j−2, j time inte-
gration operators remain L-stable and energy dissipating.
Whereas the BD j, j time integration operators remain A-
stable , however, in the neighborhood of the frequencies
associated with ∆t/T = 1 some dissipation is introduced.
In the limit as ∆t/T → ∞ it is seen that ρ → 1 for all ξ.
A similar behavior is observed for the well known New-
mark and the midpoint rule algorithms, which are spec-
trally equivalent to the Padé rational function R 1,1(z).
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Figure 7 : Convergence analysis of the displacement and
the velocity as ∆t decreases for bi-discontinuous time in-
tegration operators with f (t) = 0.

5.2 Consistency

The order of accuracy can be found by determining the
leading term of the difference between the exact solution
(exponential) and the ABD with respect to the powers of
∆t. For the BDi, j, j−2≤ i≤ j time integration operators,
we have the following results:

BD2,2 : (e−z −ABD2,2)d−
n =

−∆t5z
720

d−
n ⇒ O(∆t4)

BD3,3 : (e−z −ABD3,3)d−
n =

∆t7z
100800

d−
n ⇒ O(∆t6)
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BD1,2 : (e−z −ABD1,2)d−
n =

∆t4z
72

d−
n ⇒ O(∆t3)

BD2,3 : (e−z −ABD2,3)d−
n =

−∆t6z
7200

d−
n ⇒ O(∆t5)

BD0,2 : (e−z −ABD0,2)d−
n =

−∆t3z
6

d−
n ⇒ O(∆t2)

BD1,3 : (e−z −ABD1,3)d−
n =

∆t5z
480

d−
n ⇒ O(∆t4)

Thus, the BDi, j integrators have the order of accuracy
equal to i + j. That is, they are of the order 2q, 2q−1,
and 2q − 2, respectively, for the BDq,q, BDq−1,q and
BDq−2,q time integration operators where n is the number
of unknowns in the bi-discontinuous weakform, Eq. 23,
and hence the number of system solves. To confirm
these orders of accuracy of the BDi, j integrators, a un-
damped single-degree-of-freedom homogeneous system
..
u +ω2u = 0 and a non-homogeneous system

..
u +ω2u =

acos(ωlt) with u0 = 1,
.
u0= 1 initial conditions and ω= π

and ωl = ω− 1 is considered. The error at the end of
time t = 0.5 is computed. Figures. 7 and 8 shows the
convergence for the displacement and velocity for the
BDi, j, j = 2,3; j− 2 ≤ i ≤ j as ∆t decreases for homo-
geneous and non-homogeneous system respectively. As
expected, these figures exhibit the theoretical order of
convergence. Similarly, the convergence results can be
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Figure 9 : Numerical dissipation (ξ algorithmic damp-
ing) for bi-discontinuous (BD) time integration methods
with and without physical damping.

readily shown for damped ξ �= 0 system. Note that the
time step employed for the study is relatively large com-
pared to the time step considered for the traditional lower
order (≤ O(∆t2)) time integration operators.

5.3 Numerical Dissipation

Numerical dissipation is also called as algorithmic dissi-
pation or algorithmic damping. This provides a measure
of the dissipative effect induced by the algorithm. In or-
der to study the dissipative characteristics of the time in-
tegration operators small values of Ω are considered (i.e.
for low frequency modes). If the eigenvalues of the A
remain complex conjugate, i.e., we have
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λ1,2 = a± ib = eΩD(−ξ±i) (81)

where i =
√−1 and b �= 0, then we have

ξd = ξ−ξ = − ln(ρ)√
Ω2

D + ln2(ρ)
−ξ ≈− ln(ρ)

ΩD
−ξ (82)

ΩD = arccos(
b
ρ
) (83)

ρ =
√

a2 +b2 (84)

where ξ is the physical damping, and ξ d is the algorith-
mic damping ratio which provides the measure of the nu-
merical dissipation. Figure 9 illustrates the algorithmic
damping of the BDi, j, j = 2,3, j−2≤ i ≤ j time integra-
tion operators.

The function ξd is plotted in Fig. 9a for the case with-
out physical damping (ξ = 0). The BD j, j time inte-
gration operators do not possess any numerical dissipa-
tion. The BD j−1, j and the BD j−2, j time integration op-
erators possess numerical dissipation with BD 0,2 having
the highest and BD2,3 having the least. It is also evi-
dent that with the increase in the order of accuracy of
the time integrators, the numerical dissipation decreases.
Figure 9b shows the numerical dissipation with physical
damping (ξ = 0.1). For the BD j, j time integration oper-
ators, ξd = ξ at ∆t/T = 0 and tends to zero with increas-
ing values of ∆t/T . However, for the BD j−1, j and the
BD j−2, j time integration operators, ξd = ξ at ∆t/T = 0
and increases with increasing values of ∆t/T .

5.4 Numerical Dispersion

Numerical dispersion is related to the relative period er-
ror, which is defined as

T −T
T

=
Ω

ΩD
−1 (85)

where

T =
2π
ω

; T =
2π
ω

(86)

Ω = ω∆t; ΩD = ωD∆t (87)

The period error without physical damping (ξ = 0) is de-
scribed in Fig. 10a. The BD j, j and BD j−1, j time integra-
tion operators have positive period errors. That is, for a
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Figure 10 : Numerical dispersion ((T −T )/T period er-
ror) for bi-discontinuous time integration methods with
and without physical damping.

given time step the period of the solution is larger than
the actual period. The BD j−2, j time integration operators
have a negative period error. In all the cases, the period
error is reduced with increase in the order accuracy of
of the time integrators. Figure 10b shows the period er-
ror with physical damping (ξ = 0.1). The above obser-
vations still hold with physical damping. However, the
errors show a more positive trend in comparison to the
error without physical damping for a given ∆t/T .

5.5 Overshoot characteristics

Although an algorithm is unconditionally stable, exces-
sively large oscillations in the displacement and velocity
may occur during the first few time steps of the compu-
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Figure 11 : The displacement and velocity response for large time steps ∆t/T = 10 and ∆t/T = 100 indicates
zero-order displacement and zero-order overshoot behavior of bi-discontinuous time integration operators.

tation in the high frequency regime when nonzero ini-
tial conditions are imposed. This characteristic which
is independent of the stability properties of the time in-
tegration operator is termed as the overshoot behavior
of the algorithm. To study the overshoot behavior of
the time integration operators, undamped, conservative
system with non-zero initial conditions in displacement
and/or velocity are considered. Then, the solution at the
end first time step with limΩ → ∞ can be represented as

u1 = cuu(Ωa)u0 +cuv(Ωb)
.
u0 (88)

.
u1 = cvu(Ωc)u0 +cvv(Ωd)

.
u0 (89)

where the coefficients cuu, cuv, cvu and cvv are functions
of Ω = ω∆t. These coefficients contribute to the over-
shoot behavior of the time integration operators. Thus, to
enable zero-order displacement and zero-order velocity
overshoot behavior (U0-V0), the powers of Ω, a,b,c,d
have to be less than or equal to zero. The coefficients
cuu, cuv, cvu and cvv are entries of the amplification ma-
trix at limΩ → ∞. First, it can be readily proved that
the time integration operators BDi, j have zero-order dis-

placement and zero-order velocity overshoot behavior
since the Eqs. 78 and 80 are independent of the terms
involving z. For structural dynamics, taking

z =
[

0 −1
Ω2 2ξΩ

]
(90)

and the initial condition vector as

d0 =
(
u0,

.
u0 ∆t

)T
(91)

and taking the A∞
BD = limΩ→∞ ABD, we have the coeffi-

cients as listed in the Table 1. From the Table 1 it is
clear that all the BD time integration operators have zero-
order displacement and zero-order velocity overshoot be-
havior for no-zero initial conditions as the coefficients
are independent of the term Ω(z). It can also be readily
shown that this result is also true for systems with physi-
cal damping.

To validate these theoretical results the following experi-
ment is carried out. The responses u and

.
u of the single-

degree-freedom system,
..
u +ω2u = 0 with nonzero initial
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Figure 12 : The displacement and velocity response for large time steps ∆t/T = 10 and ∆t/T = 100 (T = 2.0) in the
vicinity of end of first time step for BD time integration operators (zoom of Figs. 11a – 11d to illustrate elimination
of spurious high-frequency response at the end of first time step).

Table 1 : Overshoot coefficients of the amplification ma-
trix for BD time integration operators.

Time d1 = ABD∞d0 Remarks
operators cuu cuv cvu cvv

BD2,2 1 0 12 1 Diagonal
BD3,3 -1 0 -24 -1
BD1,2 0 0 2 0 First sub-diagonal
BD2,3 0 0 -3 0
BD0,2 0 0 0 0 Second sub-diagonal
BD1,3 0 0 0 0

conditions u0 = 1 and
.
u0= 1 are recorded for the time

step ∆t = 10T,100T where T (T = 2) is the period of the
oscillations. The responses are shown in Fig. 11a – 11b
for u and Figs. 11c – 11d for

.
u, respectively. Again, it

is clear from these figures that the BD time integration
operators are zero-order in displacement and zero-order
in velocity overshoot behavior. That is, the displacement
and velocity responses are bounded with increasing val-

ues of ∆t/T >> 1.

From the Table 1 and Figs. 11a – 11d and Figs. 12a –
12d the following conclusions can be drawn. All the BD
time integration operators are (U0-V0) methods. Only
BD j−2, j time integration operators ideally inherit and are
asymptotically annihilating operators, i.e, the spurious
oscillations in the high-frequency are eliminated at the
end of the first time step (see. Figs. 12a – 12d). How-
ever, the BD j−1, j time integration operators are only al-
most to perfect asymptotic annihilating operators, i.e.,
the spurious oscillations in the high-frequency are elim-
inated only after the first time step (see Fig. 12a – 12d).
While the responses of BD j, j time integration operators
are bounded in the high-frequency regime, they possess
spurious oscillations which are characterized by the over-
shoot coefficients cuu, cuv, cvu and cvv. In addition, with
the increase in the order of accuracy of the time integra-
tors the value of the overshoot coefficients increases (see.
Table 1). This also true for the BD j−1, j time integration
operators. However, the effects due to these are negligi-
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ble.

6 Conclusions

A mathematical framework and the design leading to a
unified set of hierarchical time discontinuous state-phase
operators useful for computational dynamics was de-
scribed. The resulting algorithms fundamentally inherit
good algorithmic attributes, and the framework provides
for the first time the simultaneous design of a unified set
of energy conserving/dissipating time integration opera-
tors. Lastly, all the time operators in the present context
naturally inherit a hierarchical structure that is useful for
time adaptive computations.
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