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Indirect RBFN M ethod with Thin Plate Splines for Numerical Solution of
Differential Equations

N. Mai-Duy, T. Tran-Cong!

Abstract: This paper reports a mesh-free Indirect Ra-
dial Basis Function Network method (IRBFN) using
Thin Plate Splines (TPSs) for numerical solution of Dif-
ferential Equations (DES) in rectangular and curvilinear
coordinates. The adjustable parameters required by the
method are the number of centres, their positions and
possibly the order of the TPS. The first and second order
TPSswhich are widely applied in numerical schemesfor
numerical solution of DEs are employed in this study.
The advantage of the TPS over the multiquadric basis
function is that the former, with a given order, does not
contain the adjustable shape parameter (i.e. the RBF's
width) and hence TPS-based RBFN methods require less
parametric study. The direct TPS-RBFN method is also
considered in some cases for the purpose of comparison
with the indirect TPS-RBFN method. The TPS-IRBFN
method is verified successfully with a series of problems
including linear elliptic PDEs, nonlinear elliptic PDEs,
parabolic PDEs and Navier-Stokes equations in rectan-
gular and curvilinear coordinates. Numerical results ob-
tained show that the method achieves the norm of therel-
ative error of the solution of O(10) for the case of 1D
second order DEs using a density of 51, of O(10~) for
the case of 2D elliptic PDEs using a density of 20 x 20
and a Reynolds number Re= 200 for the case of Jeffery-
Hamel flow with a density of 43 x 12.
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1 Introduction

Neural Networks (NNs) have found applications in
many disciplines [Haykin (1999)]. For example, Mul-
tilayer Perceptrons (MPs) and Radia Basis Func-
tion Networks (RBFNs) have been used in methods
for numerical solution of DEs recently [Dissanayake
and Phan-Thien (1994); Takeuchi and Kosugi (1994);
Kansa (1990); Dubal (1994); Sharan, Kansa and Gupta
(1997); Zerroukat, Power and Chen (1998); Zerroukat,
Djidjeli and Charafi (2000); Mai-Duy and Tran-Cong
(20014,b,2002)]. The advantages of a NN-based numeri-
cal method are its ease of implementation and mesh-free
feature. The concept of solving PDEs using NNs was
first introduced by Kansa (1990) in the case of RBFNs
and by Dissanayake and Phan-Thien (1994) in the case
of MP networks. Since then the NN-based methods, es-
pecially the ones based on RBFNSs, have received a great
deal of attention from researchers and achieved signif-
icant progress in solving a wide variety of DEs. For
example, the MultiQuadric (MQ) RBF approximation
schemes were devel oped successfully for anumerical so-
lution of elliptic PDESs (Laplace, Poisson and biharmonic
equations) by Sharan, Kansa and Gupta (1997) and heat
transfer problems by Zerroukat, Power and Chen (1998).
Atluri has pioneered the truly meshless method based on
thelocal weak form, the MeshlessLocal Petrov-Galerkin
(MLPG) method, and provied a fundamental classifica-
tion of all the so-called meshless methods [Atluri and
Shen (2002a,b)]. Recently, Mai-Duy and Tran-Cong
(20014,b,2002) proposed new point collocation methods
based on MQ-RBFNs for approximation of functionsand
numerical solution of linear ODEs, linear eliptic PDES
and nonlinear Navier-Stokes equationsin rectangular co-
ordinates. The so called Direct RBFN (DRBFN) and In-
direct RBFN (IRBFN) methods were studied and it was
found that the MQ IRBFN method yields a superior ac-
curacy. It should be noted that the accuracy of the MQ
RBFN solution is influenced by the value of the shape
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parameter (i.e. the RBF's width). A method for deter-
mining the optimal value of the shape parameter isyet to
be found. There isincreasing interest in another RBF in
numerical schemes for DEs [Zerroukat, Power and Chen
(1998); Zerroukat, Djidjeli and Charafi (2000)], namely
the Thin Plate Splines(TPS). Thetheoretical foundations
for this basis function were laid by Duchon (1977). Itis
interesting that, even with less adjustable parameters, the
TPS-based RBFN methods can achieve an accuracy sim-
ilar to that of the MQ-based method [Zerroukat, Djidjeli
and Charafi (2000)]. In this paper, the Indirect RBFN
method using TPSsisdevel oped and verified in rectangu-
lar and curvilinear coordinates. It should be emphasised
here that in thiswork the employment of numerical inte-
gration schemesisintroduced in order to deal withthe so-
[ution of high order DEs and problems in curvilinear co-
ordinates. The paper isorganised asfollows. The second
section presents the numerical formulation of the TPS-
IRBFN method for solving DEs in rectangular coordi-
nates and then some test problems governed by linear el-
liptic PDEs, nonlinear eliptic PDEs and parabolic PDEs
are simulated to verify the present method. Thethird sec-
tionisto present the implementation of the TPS-IRBFN
method in curvilinear coordinateswhichisverified by the
solution of linear Poisson’s equation and Navier-Stokes
equations. The last section gives some concluding re-
marks.

2 TPSIRBFN methodsin rectangular coordinates
2.1 Numerical formulation

The basic derivation of the IRBFN method is given else-
where [Mai-Duy and Tran-Cong (2001a,b,2002)] and
further developed here with the use of the Thin Plate
Spline given by

g" =Rlog(R), )
where gistheorder of the TPS and Risthe Euclideandis-
tance between theith centre ¢ and the collocation point
x,i.e. R=||c) —x]||2, inwhich¢,x € 09 and d isany pos-
itive integer [Schaback (1995); Gutmann (2001); Forn-
berg, Driscoll, Wright and Charles (2002)]. However, in
2D, TPSs are rigoroudly justified with extensive theoret-
ical accuracy results and avariationa theory as reported
by Fornberg, Driscoll, Wright and Charles (2002) who
have applied the TPS RBF (1) approximation in a 1D
problem. Thusthe TPS RBF (1) isapplicablein one, two
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and three dimensions. In the present method the highest
order derivatives are expressed in terms of TPS-RBFNs
first, followed by successive symbolic integrationsto ob-
tain closed form expressions for lower order derivatives
and finally the function(s) itself. The general procedure
is briefly recaptured as follows. Consider the variable
in the governing equation, the function Y and its deriva-
tives with respect to x; can be decomposed in terms of
basis functions as follows

W jj (%) = iwmg(”(x), 2)

0100 = [0 = 5w [g00ss. @

W00 = [0

= ii\/\ﬁ”/(/g(i)(x)dxj) dx;.

where misthe number of centres, {g") }T the set of radial

basis functions and {w("}7" the set of RBFN weights.
The closed form representations in terms of basis func-
tions thus obtained are then substituted into the govern-
ing equationsand boundary conditionsto “ discretise” the
system via the mechanism of point collocationat {x17
where n is the number of collocation points [Mai-Duy
and Tran-Cong (2001a)]. This process reduces com-
plex systems of differential equationsto systemsof alge-
braic equationswith the unknown vector being the set of
RBFN weights, which can be solved directly by standard
numerical algorithms. For the purpose of illustration, let
us consider the 2D Poisson’sequation over the domain Q

()

where [0? is the Laplacian operator, X is the spatial posi-
tion, p is a known function of x and u is the unknown
function of x to be found. Equation (5) is subject to
Dirichlet and/or Neumann boundary conditions over the
boundary I

(4)

D?u=p(x), xeQ,

X e I'l,

(6)
(7)

where n is the outward unit normal; [ is the gradient
operator; "1 and ', are the boundaries of the domain

u= pl(x)’

n-Ou = pa(X), XeTly,
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suchasl UM, =T andlM; NI, = 0; py and p2 are known
functions of x.

Theinformation provided by the given DEs and the asso-
ciated boundary conditions are taken into account in de-
signing the networksthrough the following Sum Squared
Error (SSE)

ssE= 3 [(un(x) +uz()) - pc)] 4
xNeQ
[ux) — ()]
xeQ
S [i®) )]+
x(ery
S [(ruate) 4 nua(x) - pex)]”, @
x(er,

where the term uy (x() is symbolically obtained viau 13
and up(x1) viau 2, in the manner of (2)-(4) above. By
substituting the representations for u and its derivatives
(2)-(4) into (8), the unknownsin the governing equations
are now RBFN weights that are to be found by the pro-
cess of minimisation. Note that in the present context of
solving DEs, the “data” points are more general colloca
tion pointsinstead of just actual given numerical values
of the function to be approximated or interpolated. Thus
at a data (collocation) point either the DES (in the case of
internal points) or the DEs and the boundary conditions
(in the case of boundary points) are forced to satisfy. The
SSEabove can be rewritten in the short form as

min{[Aw —y]|2,

(9)

where A is regarded as the design matrix, y is a known
vector and w the solution to be found. Normally, if the
two sets of centres and collocation points are identical,
A is non-sguare and of dimension N x M with M > N.
Note that in general A can be determined, overdeter-
mined or underdetermined depending on the number of
centres and the number of collocation points employed.
The number of columns of A, i.e. M, is decided by the
number of centres mand the number of constants of inte-
gration whilethe number of rows N depends on the num-
ber of collocation pointsn.

2.2 Linear least squaresproblem

The goa here is to find the solution wy of the Linear
Least Squares (LLS) problem (9). The problem has a
unique solution or infinitely many solutions depending
on the characteristic of a matrix A € RN*M " |n the
case of N > M and A has full rank then Aw =y has
a unique solution. Otherwise, if A is rank deficient,
there exist infinitely many solutions and the minimum
norm Ly solution min||x|| 2 is usually the required solu-
tion to the LLS problem. In the case of N < M, there
exist infinitely many solutions to the underdetermined
linear system Aw =y, but the LLS problem still has
a unigue minimum norm L, solution where the combi-
nation of “irrelevant” basis functions if existed will be
driven down to a small value rather than pushed up to
delicately cancelling infinities. The Singular Value De-
compoasition (SVD) of amatrix A isamatrix decomposi-
tion of great theoretical and practical importance for the
treatment of least squares problem and becomes a main
tool in numerous application areas [Bjorck (1996)]. SVD
produces a solution that is the best approximation in the
least-sgquares sense for an overdetermined system, or a
solution whose values are smallest in the least-squares
sense for an underdetermined system [Press, Flannery,
Teukolsky and Vetterling (1988)] and will be employed
in the present IRBFN procedure. Let p be min(M,N),
the singular value decomposition of A can be written in
the form

p
A=UzV' = ZluioiViT’ (10)
i=

where U = (ug,...,up) and V = (v1,...,vp) ae or-
thogonal matrices and = diag(oy,...,0p) has non-
negative diagonal elements appearing in non-increasing
order such that
012>022>...2>0p. (1)
The condition number of A is defined as the ratio be-
tween the largest and smallest singular values 01 /0. If
thisratio islarge then A isill-conditioned. It is observed
that the condition number of matrix A is larger with in-
creasing number of centres. In al of numerical exam-
ples studied in this paper, the two sets of centres and col-
location points are the same and the number of centres
employed is chosen in such a manner that the matrix A
obtained iswell conditioned.
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2.3 Numerical examples

A measure of the relative error of the solution or thenorm
of the error of the solution, Ne, is defined as

e 2 (Ue(x) —u(x))2
° STu(x™)2

(12)

where u(x(V) and ue(x(") are the cal culated and exact so-
lution at the point i respectively and n is the number of
collocation points.

2.3.1 Examm 1 - 1Dlinear Poisson’s equation

Consider the following 1D second order equation

0%u = — 161 sin(41x) (13)

definedon0< x<l1lwithu=2ax=0andx= 1. The
exact solution can be verified to be

Ue(X) = 2+ Sin(41x). (14)

A set of 51 pointsdistributed uniformly on the computa
tional domain 0 < x < 1 is chosen to be the set of cen-
tres and also the set of collocation points. As mentioned
above, the interior collocation points are forced to sat-
isfy the DEswhilethe boundary collocation pointsare to
satisfy both the DEs and the boundary conditions. In or-
der to assess the performance of the present TPS-IRBFN
method, the Direct RBFN (DRBFN) method [Mai-Duy
and Tran-Cong (2001a)], but with the TPS replacing
the MQ-RBFs is also employed. Results are displayed
in Figure 1 with the error norms being 4.110e0 and
1.805e — 6 for TPS-DRBFN and TPS-IRBFN method,
respectively, where the second order TPS are used in both
cases. The TPS-IRBFN method yields a very high ac-
curacy while the opposite is true for TPS-DRBFN ap-
proach. Another scheme for TPS-DRBFN is employed
where the boundary collocation points are used only for
the satisfaction of the boundary conditions, resultingin a
determined linear system of equations. In this case, the
TPS-DRBFN result isimproved with the error norm be-
ing 1.245e — 3 which is still much greater than that asso-
ciated with the TPS-IRBFN method (Ne = 1.805e— 6).
In the case of the first order TPS, which is C* continu-
ous, only the IRBFN method can be established and the
error norm achieved is5.051e— 5. All of the error norms
are presented in Table 1 showing that the TPS-IRBFN
method, especially with the second order TPS, yields
much better results than the TPS-DRBFN approach.
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Figure 1 : Solution of 0%u = —16mPsin(Tx): plots of
the exact solution and the approxi mate sol utionsobtai ned
from the DRBFN (non-square matrix) and IRBFN pro-
cedures with second order TPS. The centre density is
51 and uniformly distributed. The results show that the
DRBFN method does not achieve an accuracy compara
ble with the IRBFN method.

Table1: 1D linear Poisson’s equation: Comparison of
the norm of the relative error of the solution N obtained
by the usual TPS-DRBFN and the present TPS-IRBFN
methods. Note that the DRBFN method using the first
order TPS is not possible for the second order DES be-
cause the basis functionis only C* continuous.

\ Ne | g=1 q=2 |
DRBFN — 4.110
(overdetermined system)
DRBFN — 1.245e—3

(determined system)

IRBFN

5.051le—5 1.805e—6
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2.3.2 Examm 2 - 2Dlinear Poisson’s equation

The problem here isto determine a function u(x1, x») sat-
isfying the following PDE

02U = sin(Tixy) sin(Tx2) (15)

defined ontherectangle 0 < x; < 1,0 < Xy < 1 subjectto
the Dirichlet condition u = 0 along the whole boundary
of the domain. The exact solutionisgiven by

Four centre densities of 5x 5, 10 x 10, 15 x 15 and
20 x 20 are employed to verify the present method. Re-
sults for the second order TPS-DRBFN are shown in
Table 2 from which it can be seen that the results cor-
responding to the determined system are more accurate
than those corresponding to the overdetermined system.
Tables 2 and 3 show that the TPS-IRBFN method, espe-
cialy with the second order TPS, yields better accuracy
than the TPS-DRBFN approach. Therate of convergence
of the TPS-IRBFN method can be estimated via a plot of
the error norm versus the density space. A set of 41 test
points are employed to compute the error norms for four
different centre densities. The solution converges appar-
ently as h*#7 where h isthe centre spacing (Figure 2).

Ue(X1,X2) = N(Tx1) SIN(TX). (16)

2.3.3 Examp 3 - 2Dnonlinear Poisson’s equation

Thermal conduction with nonlinear heat generation is
considered in this example. The temperature distributing
in a homogeneous solid can be described by the follow-
ing PDE

02T = £(T). (17)
In the present work, the heat generation is given by an
exponential function of temperature f(T) = —0.5exp(T)
which isthe same asin Zheng and Phan-Thien (1992). A
square domain with dimensions [0, 1] x [0, 1] is chosen
for analysis. The boundary condition T = 1 isprescribed
along two sides x; = 0 and x, = 0 and the adiabatical
condition 0T /on = 0 aong the other two sides x; = 1
and x, = 1 where n isthe coordinate direction of the unit
outward normal vector at the boundary. In order to deal
with the nonlinear term f(T), the iterative procedure is
employed according to the following steps

1. Render the nonlinear term linear by using the tem-
perature field obtained from the previous iteration.

10'

10° £

10" E

Error

10°E

10" F

10°
10°

10°

CentrewSpaci ng

Figure 2: Solution of 0%u= —16msin(Tx): the rate of
convergence with centre density refinement. The errors
here are defined as normsof therelative error between the
exact solutionand the computed solutionsfor the cases of
density 5x 5, 10 x 10, 15 x 15 and 20 x 20 based on the
same set of 41 x 41 test points. The solution converges
apparently as h*#7° where h is the centre spacing.

Table 2 : 2D linear Poisson’s equation: Error norms NeS
of the solution abtained by the DRBFN method with sec-
ond order TPS.

Density Ne Ne
(overdetermined  (determined
system) system)
5x5 2.819 3.382e—2
10x 10 2.529 5.413e—3
15x 15 2.297 1.787e—3
20x 20 2.062 7.770e—4

Table 3: 2D linear Poisson’s equation: Error norms NeS
of the solution obtained by the IRBFN method with first
and second order TPSs.

Density Ne Ne
(first order) (second order)
5x5 7.447e—3 1.070e—3
10x 10 | 3.507e—4 3.726e—5
15x 15 | 6.396e—5 4.405e—6
20x 20 | 1.950e—5 9.853e—7
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9x9 13x 13

17 x 17 21x21

Figure 4 : Solution of 02T = —0.5exp(T): plots of the distribution of temperature obtained by the IRBFN method
with second order TPS corresponding to four different centre densities.

Note that for the first iteration the initial tempera-
Tor ture field needsto be guessed (in the present work it

(o]
o 11y issimply initialized to zero);

21x 21

10°

10"

2. Apply the TPS-IRBFN procedure to obtain the new
. estimate of the temperature field;

10° F

° ] 3. Compute the convergence measure CM defined as

: | oMo \/zr_mk(xw—Tk—l<x<i>>>2

il (THxD))? ’

where k denotes the current iteration and n is the
number of collocation points;

10 F

10°

I I
1 2 3

Kluméer o% iterjalti onés R 4. Check for convergence. If CM < tol wheretol isa
set tolerance, the solution procedure is terminated.
Figure3: Solutionof 02T = —0.5exp(T): Convergence Otherwise, repeat from the step 1.
measure based on the norm of the difference of the tem-
perature field between two successive iterations. Four centre densities, namely 9 x 9, 13 x 13, 17 x 17 and

21 x 21, are employed. With the tol set to 1.0e— 4, all
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cases converge after 11 iterations (Figure 3) with the re-
sulting temperature fields displayed in Figure 4. It can be
seen that there isa good agreement between the tempera-
ture fields obtained from four centre densities employed.
Another way to estimate the convergence of the iterative
procedure is to use the norm of temperature [Zheng and
Phan-Thien (1992)] which isdefined as

S T?
N =/ &=&—/——.
i \/ n

Figure 5 shows the norm of temperature Nt versus the
number of iterations. The change of Ny is very small
at the iteration number 11 where the solution can be re-
garded asconvergent. In order to estimate therate of con-
vergence with mesh refinement, the solution correspond-
ing to the finest centre density 21 x 21 istaken to be “ex-
act”. Resultsfor lower centre densities are mapped onto
the grid points 21 x 21 by IRBFN interpolation, from
which the norm of the error relative to the “exact” so-
lution is calculated. A plot of these errors is shown in
Figure 6 as afunction of the grid spacing h. The solution
converges apparently as h1041,

2.3.4 Examm 4 - Paabolic PDE
The problem under consideration here is governed by

10u(xt)

_ M2
K ot +g(xat) =0 U(X,t),

xeQ, t>0, (18)
where Q is the domain of analysis [0,1] x [0,1], K isa
positive constant and g is the forcing function. In the

present work, K = 1 and
g(x,t) =sin(xg) sin(x2)(2sin(t) cos(t))

as in Ingber and Phan-Thien (1992). The initial and
boundary conditionsyield the following solution

u(x,t) = sin(xg) sin(xz) sin(t).

A method of discretisation in space-time is employed
whereby the spatial variables are discretised using the
TPS-IRBFN procedure and time is discretised using the
finite difference method. Only first order finite differ-
ence approximation for the time derivative is considered
in thiswork

0Un)  Un) —Un-1)
at At ’

(19)

e}

O 13x13
¢ 17x17
X 21x21

]

""" Numberofiterations
Figure5: Solutionof 02T = —0.5exp(T): Convergence
measure based on the norm of the temperature field Nrt.
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Figure 6 : Solution of 02T = —0.5exp(T): the rate of
convergence with centre density refinement. The solu-
tion corresponding to the case of 21 x 21 is assumed to
be “exact”. The errors here are defined as the norms of
the error computed on the 21 x 21 test points between the
“exact” solution and the approximate solutions from the
cases of density of 9x 9, 13 x 13 and 17 x 17. The solu-
tion converges apparently as h>1%41 where h isthe centre

spacing.



92 Copyright (© 2003 Tech Science Press

where At isthetime step and u ) = u(X, t(, = nAt). Sub-
stitution of (19) into (18) yields

2

Dzu(n) —K"Un) =Qgn) — KZU(n_l), (20)

where k? = 1/(KAt). With uy, ) aready known from
the previous step t(,_1), the PDE with the unknown u
can be solved by the TPS-IRBFN method. Two centre
densities6 x 6 and 11 x 11 are employed. Results at the
interior point x; = 0.8 and x, = 0.8 for the coarse and
fine densities using a time step of 0.25 are displayed in
Table 4. The results of the two cases are close to the ex-
act solution. The results for the fine density is dlightly
better than those for the coarse density as expected. Re-
sultsat theinterior point x; = 0.3 and x, = 0.7 generated
using the fine mesh and for two different time steps are
displayed in Table 5. The results using the smaller time
steps are seen to be more accurate. Figure 7 showsagood
agreement between the exact and approximate solutions
attimet = 8.

Table 4 : 2D parabolic PDE: Results by the IRBFN
method with second order TPS for the interior point
X1 =0.8and xo, = 0.8.

Time | TPSIIRBFN, At =0.25 | Analytic
6x6 11x11
0.25 | 0.127073 0.127075 | 0.127314
0.50 | 0.246100 0.246103 | 0.246712
0.75 | 0.349809 0.349813 | 0.350771
1.00 | 0431766 0.431772 | 0.433020
125 | 0.486877 0.486884 | 0.488347
150 | 0511717 0.511725 | 0.513310
1.75 | 0504741 0.504748 | 0.506358
2.00 | 0.466382 0.466389 | 0.467924
225 | 0399026 0.399032 | 0.400396
250 | 0.306861 0.306865 | 0.307973
275 | 0.195616 0.195619 | 0.196402
3.00 | 0.072209 0.072210 | 0.072620
3.25 | -0.055687 -0.055688 | -0.055677
3.50 | -0.180122 -0.180124 | -0.180512
3.75 | -0.293357 -0.293361 | -0.294125
4.00 | -0.388353 -0.388358 | -0.389450
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Table 5 : 2D parabolic PDE: Results by the IRBFN
method with second order TPS for the interior point
Xy =03andx, =0.7.

Time | TPSIIRBFN, 11 x 11 | Analytic
At=05 At=0.25
0.50 0.0904 0.0907 | 0.0912
1.00 0.1582 0.1591 | 0.1601
150 0.1872 0.1885 | 0.1899
2.00 0.1703 0.1717 | 0.1731
2.50 0.1118 0.1129 | 0.1139
3.00 0.0258 0.0264 | 0.0268
3.50 | -0.0663 -0.0664 | -0.0667
4.00 | -0.1424 -0.1431 | -0.1440
450 | -0.1835 -0.1847 | -0.1861
5.00 | -0.1797 -0.1811 | -0.1825
550 | -0.1319 -0.1332 | -0.1343
6.00 | -0.0518 -0.0526 | -0.0531
6.50 0.0409 0.0408 | 0.0409
7.00 0.1237 0.1243 | 0.1250
7.50 0.1762 0.1773 | 0.1785
8.00 0.1855 0.1869 | 0.1883

Figure7: Solution of Parabolic PDE by the IRBFN with
second order TPS using acentre density of 11 x 11: plots
of exact solution and approximate solution at the time
t=8.
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2.3.5 Examm 5 - 3Dlinear Poisson’s equation

The problem here is to determine a function u(x1, X2, X3)
satisfying the following PDE

DZU——<au + +6_u>
6x3

o
definedonthecube 0 <x; <1, 0<% <1, 0<x3<
1 subject to the Dirichlet condition u = exp(—x1) +
exp(—x2) + exp(—x3) on the whole boundary of the do-
main. The exact solutionis given by

Jdu

F (21)

Ue(X1, X2, X3) = €XP(—X1) + &Xp(—X2) +exp(—xa). (22)

Three centre densitiesof 3x 3x 3,5x5x5and7x7x7
are employed to verify the present method. Results for
the first order TPS-DRBFN are shown in Table 6 from
which it can be seen that the applicability of the TPS
R¥log(R) in 3D isaso verified and the method exhibits
excellent mesh-convergence.

Table 6 : 3D linear Poisson’s equation: Error norms Nes
of the solution obtained by the IRBFN method with first
order TPS.

| Density |
3x3x3
5x5x5
TxTxT

Ne \
1.301e—4
5.525e—6
9.405e—7

3 TPSIRBFN method in curvilinear coordinates
3.1 Numerical formulation

For problems on polar or cylindrical domains, it may be
more efficient to use curvilinear coordinates and the aim
here isto demonstrate the working of the present method
in such situations. For 2D problems, the first step is to
transform the rectangular coordinatesinto the convenient
polar or cylindrical coordinates. Consider the thin plate
splines
9V (x1,%) = Rlog(R),

where q is the order of the TPS and R is the Euclidean
distance between the ith centre ¢(") and the collocation
pointx, i.e. R=||c() —x]||o. Applying the polar coordi-
nate transformation, x; = r cos(8), xo = rsin(0), where

r = /X2 +x3% and 6 = arctan(xz/x1 ), then TPS becomes

gV(r.8) = { [(r cos(6) —r" cos(e(”)} ‘L

[rsin(@) ¥ sin(e®)] 2}q
log ({ [(r cos(6) — r(”cos(e(i))} g

[I‘Sin(e) _ r(”sin(e(i))} 2}1/2>

Similarly, this transformation can also be used to obtain
the new forms of the governing equations and the asso-
ciated boundary conditionsin polar coordinates. For ex-
ample, in polar coordinates, the Poisson’'s equation (5)
now takes theform

Pu 1ou 10
o2 ror r2oe2
The corresponding SSEwhich is employed in designing

the networks for obtaining numerical solution of (5), (6)
and (7) can be written in polar coordinates as follows

(i) ul) U(ie)e i i
| Ut + o+ s | =PV |+
(i)eQ r r

Z [u§‘>—ug>r+_z [up)—p(li)rJr
(HeQ (iYery

(i) 2
R N .
S +ng =S e | L (29)
(fet, ' r

where the term u; isobtained viau ;, and Ug viau ge.

(23)

p(r,8). (24)

SSE =

The second step, for the indirect RBFN methodology, is
tointegratethe TPS in (23) with respect tor and 6 to ob-
tain new basis functions for lower order derivatives and
the function itself. Unfortunately, only the integrations
of the TPS in (23) with respect to r can be found explic-
itly. On the other hand, the integrations of the TPS with
respect to 6 need to be performed numerically. The fol-
lowing isthe general scheme to compute new basisfunc-
tionsfor lower derivatives and function using numerical
integrations. Let k be the highest order of the derivative
of the function u in the DEs and t be the variable under
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consideration, then the function u and its derivatives are
expressed in terms of basisfunctions as

6tk le< (26)
6k—1u ak 1

Pt / gV (t)at, (27)
ak—Zu ak Zu

R / dt, / g0 (t)dt, (28)
au

X le(/dt“

t3dt2 % g(t)dt 29)
/a A

_iw(”/:dtk/;kdtk_l...
“dt, [ g(t)dt (30)
foee ],

where a and x are two reference collocation points, g is
the TPS basisfunction. Theiterated integrals of function
g over the finite interval between two collocation points
a and x can be simplified to [Abramowitz and Stegun
(1972)]

/axdtk/atkdtk_l.../atgdtz/;g(t)dt

(x—a)

= %D /Oltk‘lg(x—(x—a)t)dt.

(31)

Clearly, the integral on the RHS of (31) can be handled
easily by using numerical integration schemes. One of
the most popular numerical integration schemes is the
Gaussian quadrature one, whereby the integrand is sim-
ply evaluated at some discrete points. In the present
investigation, a Gaussian quadrature of 5 points is em-
ployed.

CMES, vol.4, no.1, pp.85-102, 2003

3.2 Numerical examples
3.2.1 Examm 1 - Pisson’s equation on unit disk

The problem formulation is given by

Pu=-1, xeQ, (32)
where Q is the unit disk, subject to the boundary con-
dition u = 0 on the boundary 0Q. The exact solutionis
given by

1-x2 x5

—

It is convenient to solve this problem in polar coordi-
nates. Three discretisation schemes for both the FEM
and IRBFN method are shownin Figure 8 wherethe RBF
centres are distributed uniformly in radial and tangential
directions. The representations for u and its derivatives
using the second order TPSin polar coordinates are sub-
stituted into (25) which is then collocated according to
the set of data points chosen resulting in a linear sys-
tem of equations. In order to evaluate the performance
of the present IRBFN method, FEM is also employed to
solve the same problem using nearly equal numbers of
DOF (Figure 8 and Table 7). Note that the FEM results
here are abtained using the PDE tool in MATLAB. The
IRBFN method achieves a higher accuracy than the FEM
(Table 7) and its convergence rate is also faster as shown
in Figure 9 where the IRBFN method converges as d3®
while the FEM only as d1'* where d is the number of
DOF

u=

Table 7 : Poisson’s equation on unit disk: Meshes and
resultsby FEM and the IRBFN method.

FEM IRBFN
Nodes | Triangles | N Centres | Ne
103 172 5.6653e-3 100 4.8712e—3
200 358 2.7711e-3 196 5.0875e—4
363 668 1.3985e-3 361 9.7398e—-5

3.2.2 Examm 2 - Jefery-Hamel flow

The IRBFN method in polar coordinates is verified fur-
ther with the ssimulation of the Jeffery-Hamel problem.
Thisproblem, which hasawide range of engineering and
environmental applications, poses a classical problem
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Figure 8 : Poisson’s equation on unit disk: Meshes and data densities used in the FEM (left) and IRBFN method

(right) respectively with nearly equal number of DOF between the two methods.
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10?
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10°

Ne
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N

10° 5 s
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Figure9: Poisson’sequation on unit disk: Convergence
rates by the FEM and IRBFN methods. Legends o: FEM
and O: IRBFN. The convergence rates are as d**! and
d3% for FEM and IRBFN respectively where d is the
number of DOF.

discussed in many textbooks [Batchelor (1967)]. The
two-dimensional steady convergent flow of aviscous, in-
compressible fluid between two semi-infinite planewalls
set at an angle 2a is considered here. The inward flow
is driven by a steady line sink of strength Q at the apex.
As pointed out by Bush and Tanner (1983), the Jeffery-
Hamel flow problem provides a means of testing numer-
ical solution schemes since it is a steady state flow in
which the inertiaterms do not vanish identically (as they
do in flow between infinite parallel plates or Poiseuille
flow) and an exact solution can be obtained for compari-
sonwith numerical results. For these reasonsthe Jeffery-
Hamel problem was used as a test example by Gartling,
Nickell and Tanner (1977) in finite element convergence
study, Bush and Tanner (1983) and Zheng, Phan-Thien
and Coleman (1991) in boundary element convergence
study. Here, thisproblem is also selected as arepresenta:
tive case to assessthe performance of the IRBFN method.
Consider a system of polar coordinates (r,8) centred at
the point of intersection of the walls. In this coordinates
system, the velocity components of the fluid are denoted
as Uy and ug respectively. The 2D domain of analysisis
shown in Figure 10 as a sector set at 6 = 0 = +11/6
withtheinlet asan arc at r; and the outlet asan arc at r 5.
The velocity distributionissymmetrical about the centre-
line ® = 0. Owing to symmetry, only one half domain is

CMES, vol.4, no.1, pp.85-102, 2003

Figure 10 : Jeffery-Hamel problem: geometry.

considered. It is convenient to use the streamfunction Y
defined by
1oy oy

W T T o
Then the vorticity can be written as
g=D% (33)
and for asteady, laminar and isothermal flow, the Navier-
Stokes equations reduce to the vorticity equation

(Lo, 1002)

= pO%, (34)

roeor ror o
where [ is the viscosity, p is the density and the Lapla
cian in cylindrical polar coordinates is (02 = 02/0r? +
(1/r)d/ar + (1/r?)8%/062. The no-dip conditionisim-
posed at the wall as

oy _
o

o B
0, %—0 at G—O(,

while the symmetry condition is enforced on the centre-
line, whichyields

W=0, £=0 a 6=0.

Attheinletr =rq andtheoutletr = r,, the boundary con-
ditionsoy/ar and 0y/06 can be chosen asfunctionsof 6
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in amanner consistent with the given flux Q. For conve-
nience, the variables are non-dimensionlised as follows

(35)

From here on, the primes are dropped for brevity. The
governing equations can be written as
E = Dzwv

(36)
(37)

10y 3¢
Re(“__ r or 98

r 00 or

where Re= Q/(2v) isthe Reynolds number andv = p/p
is the kinematic viscosity.

Closed form solution

In this case the domain is semi-infinite and it is not nec-
essary to use the boundary conditions at the inlet and the
outlet as defined by the finite size domain. Following Jef-
fery and Hamel [Batchelor (1967)], the flow is assumed
to be purely radial which yields self-similar vel ocity pro-
filesat all radii and, as a consequence, the streamfunction
Y depends only on 6. Then, equation (37) gives

d*y dyd®y

d*y
det ' dez _2R°de ez —

subject to boundary conditions

dy B
E(ia) =0

for the case of full domain or,

dy o2y
(o) =1, g (e) =0, Y(0) =0, and 7 (0) = 0 (40)
for the case of one half domain. For thisnonlinear fourth
order ODE, only the closed form solution corresponding
to zero or very large Reynolds numbers can be found an-
alytically and hence the solution corresponding to low
and medium Reynolds numbers must be solved numeri-
cally. Gartling, Nickell and Tanner (1977) used an iter-
ative numerical quadrature process to estimate the “ex-
act” solution of Jeffery-Hamel flow. The procedure pro-
vides updated approximations of the Reynolds number
until the computed flux matches the prescribed flux with
givenvaluesof a, p, pand the flow rate per unit length Q.
Here, the IRBFN method using second order TPS will be
employed for the numerical solution of (38) and (39) and

+4

0 (39)

Y(xa)=+1 and (39)

the results obtained will be compared with the exact so-
lution for two extreme cases of Reynolds humber. Note
that this computed IRBFN solution will be regarded as
the closed form solution of the Jeffery-Hamel flow in the
next section. Following are the two closed form solutions
corresponding to Re= 0 and Re— oo respectively. Inthe
case of creeping flow (zero Reynolds number), equation
(38) reducesto

d'y %y
el - = 41
do? ez ~° (41)
and the corresponding exact solutionis

_ 2cos(2a)6 —sin(20) 42)

~ 20cos(20) —sin(2a)

From (42), the ratio between the radial velocity u, and
the centrelineradial velocity ug, which isindependent of
radiusr and the flow rate Q, can be obtained as

cos(20) — cos(2a)
1—cos(2a)

U
Uo

(43)

In the case of large Reynolds number, the closed form
solution was derived by Batchelor (1967)

3—; = 3tanh? { (—%aRe) : (1— g) —tanh™! (:%) z} —2.
(44)

AUl p

where Reisthe Reynolds number defined as Re=
whose value is only dlightly different from the Reynoluds
number defined in thiswork. Numerical solution of the
second order ODE was obtained using the MQ-IRBFN
method [Mai-Duy and Tran-Cong (2001a)] where basis
functions for the first derivative and the function were
obtained by analytical integrations. Here, to solve higher
order ODE, numerical integrations are employed to con-
struct the design matrix A. In solving (38) and (39) with
the presence of fourth order derivative, k = {1,2,3,4}
in (31) are used here to obtain basis functions for the
third, second, first derivatives and the function respec-
tively. Figure 11 displays the result for u, /up obtained
by the present IRBFN method for the case of creep-
ing flow, which is in satisfactory agreement with the
exact solution. The achieved norm of the relative er-
ror of the solution is 7.48e— 8. Results obtained for
Re= 10,50, 100, 1000, 5000 are plotted in Figure 12 to-
gether with that by Batchelor (1967). Note that the lat-
ter which is only available for large Reis calculated at
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0.8

Ur /Uo

0.4

e (d%r%s) 10 20 30
Figure 11 : Jeffery-Hamel problem: closed form solu-
tion for the case of creeping flow. Legends solid line:
analytical solution and o: IRBFN solution. There is a
good agreement between the two solutions.

0.8 %o

Ur /Uo

0.4

" 0 (degrees) N B
Figure 12 : Jeffery-Hamel problem: closed form so-
lution by the present IRBFN method. Legends solid
line: Re= 5000; dashed line: Re= 1000, dashdot line:
Re= 100, -: Re=50 and o: Re= 10. Result by Batch-
elor (1967) at Re= 5000 is also plotted with the legend
+ showing a good agreement with IRBFN result at large
Reynolds number.
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Re= 5000 here. The IRBFN closed form result is in
good agreement with Batchelor’s result (1967) at large
Reynolds number. It can be seen that the velocity magni-
tude becomes nearly constant except near the plate walls
when the Reynolds number increases. On the other hand,
boundary layers appear at large Reynolds number.

Computed solution

Only afinite length of the wedge geometry can be mod-
elled with the IRBFN method and the boundary condi-
tions at the inlet and the outlet now have to be specified
for the problem. To provide a strong test for the method,
the velocity vector taken from the IRBFN closed form
solution is applied at the inlet while the exit condition
is enforced at the outlet, i.e. %—‘f and %—“e’ at the inlet;

%—‘ﬂ]’ = %—‘f =0and g—f] = g—f = 0 at the outlet where nisthe
coordinate direction of the unit outward normal vector at
the boundary. The flow is symmetric about the centre-
line ( = 0 and & = 0) and no-dlip conditions are pre-
scribed at the plate wall (3 = 0 and % = 0). Although
the outlet boundary condition g—f = O isincorrect, it can
be expected that if the domain of analysisislarge enough,
the disturbance introduced at the outlet is small and the
Jeffery-Hamel flow can be produced in the domain ex-
cept for a small region at the outlet. For this reason, rq
and r, are chosen to be 1 and 7 respectively (they were
chosen somewhat arbitrarily, but to give an aspect ratio

Density of 26 x 6

Figure 13 : Jeffery-Hamel problem: Three centre densi-
tiesfor each of which the distances between each centre
and its neighbouring centres are nearly equal .
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ro/r1 whichislarge enough for Jeffery-Hamel flow to be
observed and small enough to prevent the need for expen-
sive calculations). Three sets of centres are displayed in
Figure 13 where the discretisation is uniform in the cir-
cumferential direction and non-uniform in the radial di-
rection. Thelatter ischaracterised by the fact that the dis-
tances between each centre and its neighbouring centres
are nearly equal. Iterative procedure is employed to cope
with the nonlinear convectiveterm which issimilar to the
iterative procedure described in section 2.3.3. The con-
vective term is estimated using the result at the previous
iteration and hence this term becomes known at the cur-
rent iteration resulting in a linear least-squares problem.
Notethat by usingthisapproach the designmatrix A does
not change during iteration and hence the SVD agorithm
for A needsto be done only once. Furthermore, this de-
compoasition can be used for any Reynolds number dueto
thefact that A doesnot depend on the material properties.
For this problem, numerical experience shows that the
first order TPS achieves a better results than the second
order TPS and the results corresponding to the former
are presented. With three relatively coarse centre den-
sities employed, the IRBFN method can achieve moder-
ate Reynolds numbers. The solution is convergent up to
Reynolds numbers of 100, 150 and 200 with discretisa-
tionsin tangential direction only being 6, 9 and 12 points
(6, 3.75 and 2.5 degrees) respectively. It can be seen that
at the Reynolds number of 200 the profile of the radia
velocity is very steep near the wall. Higher Reynolds
number will produce the boundary layer and anumber of
discretisation points in the tangentia direction needs to
be increased resulting in relatively large matrices. In this
case it is better to use the domain decomposition tech-
nique rather than the single domain, which is to be re-
ported in future work. Theresultsincluding the variation
of the radia velocity along the centreline and the pro-
file of the radia velocity at r = 3.5 (roughly half way
between the inlet and the outlet) are displayed in Fig-
ures 14-19 from which it can be seen that the agreement
with the closed form solutionis satisfactory. The IRBFN
method can achieve Reynolds number up to Re = 200 us-
ing 12 pointsdistributed uniformly intangential direction
in comparison with Reup to 40 using 11 points achieved
by BEM [Zheng, Phan-Thien and Coleman (1991)] and
Reup to 1000 using 21 pointsby FEM [Gartling, Nickell
and Tanner (1977)].

161 — closed form
A IRBFN

Figure 14 : Jeffery-Hamel problem, centre density of
26 x 6: the radia velocity obtained along the centreline
at Re= 100

— closed form
O Re=10
+ Re=50
Vv__Re=100

0 e (d%r%) 20 25 30
Figure 15 : Jeffery-Hamel problem, centre density of

26 x 6: the profile of radial velocity at r ~ 3.5 for
Reynolds numbers of 10, 50 and 100.
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Figure 16 : Jeffery-Hamel problem, centre density of Figure 18 : Jeffery-Hamel problem, centre density of
32 x 9: the radial velocity obtained along the centreline 43 x 12: the radial velocity obtained along the centreline
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Figure 17 : Jeffery-Hamel problem, centre density of Figure 19 : Jeffery-Hamel problem, centre density of
32 x 9: the profile of radial velocity at r ~ 3.5 for 43 x 12: the profile of radial velocity at r ~ 3.5 for
Reynolds numbers of 10, 50, 100 and 150. Reynolds numbers of 10, 50, 100 and 200.
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4 Concluding remarks

In this paper, the Indirect RBFN method using first
and second order thin plate splines for numerical solu-
tion of DEs in rectangular and curvilinear coordinates
is developed and verified successfully. Special attention
here is given to the employment of numerical integra-
tion schemes in the IRBFN procedure where new basis
functionsfor lower derivatives and function could not be
found explicitly by analytical integrations. This scheme
alows the indirect RBFN method to be general in the
sense that the method can be employed with any kind
of radial basis function and also in any kind of coordi-
nates system. Furthermore, the scheme is also effective
in solving higher DEs, i.e. there are no added compu-
tational difficulties relative to the case of second order
DEs. Gaussian quadrature is employed throughout the
study and the results obtained are accurate. The TPS-
IRBFN is easy to implement and more automatic than
the MQ-IRBFN method and numerical examples show
that the TPS-IRBFN method achieves a high accuracy.
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