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FE/BE Analysis of Structural Dynamics and Sound Radiation from Rolling
Wheels

L. Gaul, M. Fischer1 and U. Nackenhorst2

Abstract: A sequential FEM–BEM approach is em-
ployed to calculate the dynamic behavior and sound radi-
ation of rotating wheels. The equations of motion for the
wheel are developed in the frame of an Arbitrary Eulerian
Lagrangian description with a time-independent formu-
lation for steady state rolling and a spatial description of
vibrations. The noise radiation caused by the vibration
modes is computed by the symmetric hybrid boundary
element method.
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1 Introduction

With increasing traffic density the reduction of traf-
fic noise becomes more and more important. Signifi-
cant success in reducing sound sources in cars has been
achieved. This holds for example for the main engine
noise. Thus, nowadays the rolling tires are a dominating
noise source and offer large potential for further reducing
noise radiation from cars.

The rolling noise is mainly caused by the vibrations of
the tires. These vibrations are excited by the physical
contact of the rolling tires with the road surface. As a
result airborne sound is generated. One step to overcome
the noise problem is to optimize the tire tread design in
an acoustical sense. Modern treads are designed with un-
even spacing generating a broader and lower excitation
spectrum. However, this technique has been tested to the
extent of its limits. Further reduction techniques may in-
clude the following:

• The structural dynamic behavior of the wheel or the
tires needs to be improved acoustically. In this con-
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text it has to be ensured that other important tire
characteristics, including security or economical as-
pects will not be negatively influenced.

• The whole tire–road system needs to be optimized
because the characteristic quality of the road surface
implies a great potential for noise reduction as well.

Due to the complicated structure of pneumatic tires
with strongly non-linear mechanical response, the exact
mechanisms of all noise sources are not well understood
yet. Numerical simulation methods are a promising ap-
proach to investigate the sound origins and to get more
insight in the radiation mechanisms. Besides, the numer-
ical simulation enables the observation of single design–
parameter influences on the noise radiation as well as of
safety and economy aspects.

Classical half-space approximations for linear-elastic
rolling contact as summarised in the book by Kalkar
(1990) can be used as foundation for boundary element
contact formulations [Gonzalez and Abascal (2000)].
However, they come to their limits when applied to
rolling tires. Therefore, in the last decade a wide range
of finite element techniques were developed to simulate
the structural dynamics of tires. The non-linear material
behavior [Hellnwein, Liu, Meschke, and Mang (1997);
Nasdala, Kaliske, Becker, and Rothert (1998)] and the
dynamic effects of the rotation and the rolling contact
[Faria, Oden, Yavari, Twordzydlo, Bass, and Becker
(1992); Nackenhorst (1999)] are the main focus of re-
search. The important influence of tire dynamics on the
sound radiation is discussed in only few papers [Takagi
and Takanari (1991), Kroop (1999)]. Nackenhorst and
von Estorff (2001) give a state of the art review of nu-
merical analysis of noise radiation from rolling tires.

Structural-acoustics problems are favorably modeled by
a coupled FEM/BEM scheme. The idea was laid out by
Everstine and Henderson (1990) and since then used suc-
cessfully in many applications in frequency [Chen, Hof-
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stetter, and Mang (1998)] as well as in time domain [Lie,
Yu, and Zhao (2001)]. In this paper, a new sequential
FEM–BEM simulation strategy for sound radiation from
rolling tires is introduced. In the first section, the compu-
tation of the dynamic behavior of rotating wheels in an
Arbitrary Lagrangian Eulerian (ALE) formulation is out-
lined. For the description of the vibration behavior of the
tire, a modal approach is employed in the configuration
of steady state rolling. Following the structural section,
a hybrid boundary element method for acoustics is de-
rived. Finally, the numerical results for a simple model
wheel are presented.

2 Dynamic behavior of rolling wheels

2.1 The ALE-description of rolling bodies

The dynamics of rolling bodies undergoing large elas-
tic deflections is described efficiently by a so called Ar-
bitrary Lagrangian Eulerian (ALE) formulation. This is
the introduction of a reference configuration moving ar-
bitrarily which is neither fixed in space nor connected to
the material picture, see Fig. 1. In this special case the
reference configuration describes the rigid body motion
χχχ of the rolling wheel, whereasϕϕϕ = φ̂(χχχ, t) represents a
mapping of the displacement field.
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Figure 1 : ALE-Decomposition of motion.

Thus, the velocity of a material particle,

vvv(ϕϕϕ, t) = v̂vv+ccc (1)

is decomposed into the relative velocity

v̂vv :=
∂ϕϕϕ
∂t

∣∣∣∣
χ

(2)

and into the convective velocity

ccc := Gradϕϕϕ ·www , (3)

where here

www :=
∂χχχ
∂t

∣∣∣∣
X

(4)

is the guiding velocity due to the rigid body motion.

In contrast to a pure Lagrangian description the follow-
ing advantages result from the ALE description of rolling
wheels:

• Steady state rolling is described time-independent,
thus no expensive integration with respect to time
has to be performed.

• The fine mesh, which is necessary for a detailed
contact analysis, can be concentrated in the contact
region resulting in a moderate number of unknowns.

• For adaptive mesh refinement, only the spatial dis-
cretization error has to be taken into account.

• The vibrations of rolling wheels, enforced by the
tread impact and by the roughness of the road sur-
face, are described in a spatial picture and can be
immediately used as input data for the sound radia-
tion analysis.

But nevertheless, there is a shortcoming in this formula-
tion: Because the history of the material particles is not
collected directly, special techniques for the treatment of
history dependent material behavior and also the tangen-
tial contact problem with friction are required. For details
it is referred to Nackenhorst (2000).

The weak form of the equations of motion is written as∫
χ(B)

ρ
dvvv
dt

·ηηη dv +
∫

χ(B)

PPP · ·Gradηηη dv =
∫

χ(B)

ρbbb ·ηηη dv

+
∫

∂t χ(B)

ttt ·ηηη da +δ
∫

∂cφ(B)

(pdn +τττ ·sss)da , (5)

where the first integral describes the inertia term, with
the mass densityρ measured in the reference configura-
tion, andηηη is a test function (virtual displacement). The
second integral represents the virtual work of the inter-
nal forces expressed in the reference configuration,PPP are
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the related Piola–Kirchhoff stresses. The third and fourth
integral describe the virtual work of the applied external
loads, i.e. the body load densitybbb and the surface trac-
tionsttt. The contact variables are taken into account by
the last term.

The inertia term in the ALE frame of reference is derived
as

∫
χ(B)

ρ
dvvv
dt

·ηηη dv =
∫

χ(B)

ρ

(
∂vvv
∂t

∣∣∣∣
χ
+Gradvvv ·www

)
·ηηη dv (6)

=
∫

χ(B)

ρ

(
∂2ϕϕϕ
∂t2

∣∣∣∣
χ
+2Grad

∂ϕϕϕ
∂t

∣∣∣∣
χ
·www

+ Grad(Gradϕϕϕ ·www) ·www
)
·ηηη dv . (7)

In this expression higher order gradients of the displace-
ment field are present, which require special finite ele-
ment techniques. But an alternative formulation can be
developed by reformulation of the last term in equation
(6) which leads to an almost symmetric form,

∫
χ(B)

ρ
dvvv
dt

·ηηη dv =
∫

χ(B)

ρ

(
∂2ϕϕϕ
∂t2

∣∣∣∣
χ
·ηηη

+ηηη ·Grad
∂ϕϕϕ
∂t

∣∣∣∣
χ
·www− ∂ϕϕϕ

∂t

∣∣∣∣
χ
·Gradηηη ·www

− (Gradϕϕϕ ·www) · (Gradηηη ·www)

)
dv

+
∫

∂χ(B)

ρηηη ·
(

∂ϕϕϕ
∂t

∣∣∣∣
χ
+Gradϕϕϕ ·www

)
www · n̂nnda . (8)

The first term is related to the relative acceleration and
the second and third term represent the gyroscopic in-
fluence. The fourth term is due to the convective mo-
tion and the last term describes the impulse flux over the
boundary. This expression vanishes identically at natural
boundaries of the system, because the guiding velocitywww
is always perpendicular to the outward unit normaln̂nn. But
it has to be taken into account, when artificial boundaries
are introduced, e.g. symmetry conditions.

In the steady state case the relative velocity vanishes.

Then the inertia term from Eq. (8) simplifies to

∫
χ(B)

ρ
dvvv
dt

·ηηη dv = −
∫

χ(B)

ρ(Gradϕϕϕ ·www) · (Gradηηη ·www) dv

+
∫

∂χ(B)

ρηηη ·Gradϕϕϕ ·wwwwww · n̂nnda . (9)

Now, steady state rolling is described time-independent,
the time derivatives are substituted by spatial gradients.

2.2 Steady state rolling

It should be mentioned that the steady state rolling case
is highly nonlinear: Besides the contact problem itself,
large deflections and nonlinear material behavior have to
be taken into account. Therefore, an incremental itera-
tive numerical strategy has to be involved. For simplic-
ity we restrict ourself to an elastic–rigid contact formula-
tion which is suitable for tire–road contact, whereas for
wheel–rail contact an elastic–elastic two body theory has
to be applied. For the latter case and for the formula-
tion and computation of the rolling contact in detail it is
referred to Nackenhorst (2000).

From Eq. (5) in combination with Eq. (9) by a standard
approach, i.e. consistent linearization and finite element
approximation,

ϕϕϕ = Nϕ̂ϕϕ , (10)

the incremental finite element equations of steady state
motion are obtained,

[tK−W+Kc
]
[∆ϕ̂ϕϕ] =

[t+∆tfe+ tfi− t fσ − t fc
]

, (11)
t+∆tϕ̂ϕϕ = tϕ̂ϕϕ +∆ϕ̂ϕϕ . (12)

HereintK is the displacement dependent structural stiff-
ness matrix and

W=
∫

χ(B)

ρAT Adv (13)

is the ALE–inertia matrix resulting from equation (9),
with the matrix

A=


 Nk

,ι wι 0 0
0 Nk

,ι wι 0
0 0 Nk

,ι wι


 ,

summation over
ι = 1,2,3 ,

(14)
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which relates the convective velocity and the nodal dis-
placements from equation (3). The matrixKc is the con-
tact tangent. The right hand side describes the equilib-
rium of the equivalent nodal forces, i.e.fe are the ex-
ternally applied loads,f i are the inertia loads,fσ repre-
sents the internal stress state andf c are the contact forces.
Equation (11) is solved iteratively within a Newton–
Raphson scheme until the displacement rate∆ϕ̂ϕϕ vanishes,
i.e. the equilibrium of the nodal forces is found. The
pointert describes the iteration progress.

2.3 Transient rolling phenomena — a modal super-
position approach

Transient vibrations of rolling tires are enforced by the
tread impact and by the roughness of the road surface.
From experiments it is known that in practice there is
a much greater potential of noise reduction in optimiz-
ing the road–tire interface than in further optimization of
the tread pattern. The tread impact leads to nonlinear re-
actions at least in the contact patch, and for this reason
direct integration schemes have to be used. Otherwise,
the wavelength of the excitation spectra from the surface
roughness is very short with respect to the contact pat-
tern, and therefore, this problem can be approximated by
a superpositionapproach, where small vibrationsφφφ(t) are
superimposed onto the steady state solutiontϕϕϕ, i.e.

ϕϕϕ(t) = tϕϕϕ +φφφ(t)

This behavior is modeled efficiently by modal superpo-
sition. From equation (5) in combination with equation
(8), the free vibrations are described by the homogeneous
finite element equation

M ¨̂φφφ+G ˙̂φφφ+ tK∗φ̂φφ= 0 . (15)

Herein M is the mass matrix andG is the gyroscopic
matrix, which in the formulation of equation (8) reads

G =
∫

χ(B)

ρ
(
NT A− AT N

)
dv . (16)

The effective stiffness matrix is computed in the de-
formed state of steady state rolling,

tK∗ = K(tϕϕϕ)−W+K∗
c(

tϕϕϕ)

where the contact conditions are frozen, which is indi-
cated by the matrixK∗

c(
tϕϕϕ).

The corresponding eigenvalue–problem is now written as

{
λi

[
M 0
0 I

]
+
[

G tK∗

−I 0

]}{ ˙̂φφφ
φ̂φφ

}
= 0 . (17)

In this context it is worth to notice, that the vibrational
behavior is influenced significantly by the gyroscopic
term. Due to the skew–symmetric gyroscopic matrix
the eigenvectors are complex, and therefore, the vibra-
tional behavior of rotating bodies can not be interpreted
as the superposition of waves with opposite wavespeed
to standing vibrations. Now the corresponding waves
are traveling with different speed, where the difference
is proportional to the rotating speed. It can be shown by
simple experiments that this behavior is of significant in-
fluence on the sound radiated from rotating bodies, see
Nackehorst (2000).

3 Hybrid boundary element method

The Hybrid Boundary Element Method (HBEM) was
originally proposed by Dumont (1987) in elastostat-
ics. For acoustics, a time-harmonic formulation of the
HBEM can be derived from the Hellinger-Reissner prin-
ciple. As field variable, the velocity potentialU(x, t) =
Re{Û(x)ejωt} is introduced where only the real part of
the complex ansatz has a physical meaning. Acoustic
pressure and particle velocity can be obtained from the
velocity potential by the relationsp = ρU̇ andvi = −U,i,
respectively.

The Hellinger-Reissner principle is a complementary en-
ergy functional and the derived field variable, i.e. the
gradient of the velocity potential̂U,i is considered as an
independent field. On the boundary, the flux is denoted
by V̂ = Û,ini, whereni are the components of the out-
ward normal vector. Neumann boundary conditions are
enforced in a weak sense on the sectionΓV of the bound-
ary where the flux̂V is prescribed.

The velocity potential in the domain which depends on
Û,i is denoted byÛ ∇ = Û ∇ (Û,i). The velocity poten-
tial on the boundaryÛ is interpolated independently.
Compatibility of the two potential fields is achieved by
weighting with a Lagrange multiplier.

With these definitions, the weak statement of the
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Hellinger-Reissner functional reads

∫
Ω

ρ
(

Û ∇
,ii +κ2Û ∇

)
δÛ ∇ ∗dΩ−

∫
Γ

ρ
(

Û −Û ∇
)

δV̂ ∗dΓ

−
∫
ΓV

ρ
(

V̂ −V̂
)

δÛ∗dΓ = 0, (18)

where()∗ denotes complex conjugate variables. The first
term in Eq. (18) requires the velocity potentialÛ ∇ to ful-
fill Helmholtz equation in the domain. The following
terms guarantee – as already mentioned – compatibility
of the velocity potentialŝU ∇ andÛ and Neumann bound-
ary conditions, respectively.

For a numerical solution, proper approximation functions
have to be applied. The key idea of the derivation of
the HBEM is the approximation of the velocity potential
field Û ∇ and the fluxV̂ by fundamental solutionsUUU and
VVV weighted with a generalized loads vectorγγγ

Û ∇ (x) = UUUTγγγ and V̂(x) = VVV T γγγ. (19)

It should be mentioned that the HBEM is not based on a
boundary integral equation and thus the field point eval-
uation (19) does not require a surface integration. The
field Û on the boundary is discretized by the product of
polynomial shape functions in the matrixN with nodal
valuesǓ.

Modification of the domain such that small spheres with
radii ε – centered at the load points collocated with the
nodes where the fundamental solutions are singular – are
subtracted, the modified domainΩ′ with boundaryΓ ′ is
introduced. The properties of the Dirac loads acting at
points located outside of the considered domain lead to a
vanishing domain integral in the limitΩ ′ → Ω. Inserting
the approximations in the weak statement (18) yields

lim
ε→∞

{
δγγγH

(∫
Γ′

VVV ∗UUUTdΓ︸ ︷︷ ︸
F

γγγ−
∫

Γ′
VVV ∗NTdΓ︸ ︷︷ ︸

H

ǓUU

)

+δǓUU
H

(∫
Γ′

N∗VVVdΓ︸ ︷︷ ︸
f

−
∫

Γ′
N∗VVV TdΓ︸ ︷︷ ︸
HH

γγγ

)}
= 0, (20)

where()H denotes the complex conjugate transpose. In
contrary to Galerkin BEM methods (see for example Sir-
tori, Maier Novati, and Miccoli (1992)), no double sur-
face integration is required to set up the system matrices.

However, when building the matrixF, all possible com-
binations of Dirichlet and Neumann load points have to
be taken into account.

Applying the fundamental lemma, one can write Eq. (20)
in matrix form[ −F H

HH 0

][
γγγ
ǓUU

]
=
[

0
f

]
. (21)

For further details on the hybrid boundary element
method for acoustics, it is referred to the works of Wag-
ner (2000) and Gaul, Wagner, and Wenzel (2000).

Particularly, the second equation of Eq. (21) yields

γγγ=
(
HH)−1

f . (22)

In a Neumann-problem, the vector of equivalent nodal
forcesf is given completely by the normal particle veloc-
ity VVV on the boundary. Thus, by Eq. (22) the weighting
parametersγγγ can be obtained and then inserted in the do-
main approximation Eq. (19) yielding the complete field
solution. For this, only the complex conjugate transpose
of the matrixH needs to be calculated and no further
boundary integrations are necessary [Gaul, Wagner, and
Wenzel (1998)].

3.1 Mirror technique for reflecting surface

For the calculation of noise radiation from rolling tires,
the influence of the road impedance has to be taken
into account. When – as approximation of the actual
impedance boundary condition – the road surface can be
modeled as hard-walled, boundary element methods of-
fer an efficient approach: the so-called mirroring tech-
nique of the fundamental solution. This idea of using a
modified Green’s function is widely used in boundary el-
ement methods. In underwater acoustics, for example,
the free surface and the seabed can be modeled elegantly
[Santiago and Wrobel (2000)].

The fundamental solution for the Helmholtz equation in
full space is given by

U =
1

4πr
e−ikr . (23)

Herein, r is the Euclidean distance between the field
pointx and the load pointξξξ. By the use of the modified
test function

Uh(r, r′) =
1

4π

(
1
r

e−ikr +
1
r′

e−ikr′
)

, (24)
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a hard–walled surface of the road is implemented with-
out discretization of the road surface.r ′ is the distance
between the field point and the mirror image of the load
point on the hard–walled surface as shown in Fig. 2. The
mirror technique can be visualized as a superposition of
two sound fields, the actual sound field generated by the
radiator and a reflected wave from the road surface. In
conclusion only the surface of the tire has to be dis-
cretized. The Sommerfeld radiation condition is fulfilled
a priori by the fundamental solution, thus no waves are
reflected from the boundaryΓ∞ at infinity.
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Figure 2 : Mirror technique for fundamental solution.

4 Numerical example: a simple model wheel

As an example for the proposed method, the sound radi-
ation from a simple model wheel with radiusa0 = 0.3m
is studied. The configuration of steady state rolling at
40 km/h is computed in the framework of the ALE for-
mulation described in the first section. The subsequent
eigenanalysis is carried out in the deformed state with
frozen contact conditions under the simplification of van-
ishing gyroscopic terms. Fig. 3 shows two eigenmodes of
the rolling wheel at 1280 Hz and 1424 Hz, respectively.
Lower eigenmodes are not shown, since below a limit
frequency, no far-field sound radiation occurs.

Noise radiation from the wheel is computed for each
eigenmode separately. The normal velocities on the
wheel surface obtained in the FEM eigenanalysis yield
the Neumann boundary conditions for the acoustic do-
main. In this paper, sound pressure is scaled to the mass-
normalized structural eigenmodes, thus the sound pres-

1280 Hz 1424 Hz
Figure 3 : Eigenmodes of rolling wheel.
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Figure 4 : Comparison of sound pressure level on field
point circle (a = 0.42m) at 1280 Hz. Sysnoise / hyBEM.

sure levels do not indicate absolute values in operating
conditions.

To validate the proposed hybrid boundary element
method with direct evaluation of the field data, results
from hyBEM and the commercial BEM code Sysnoise
are compared in Fig. 4. In this example, the sound radi-
ation from the structural eigenmode at 1280 Hz in free
space is computed. Sound pressure levels are evaluated
on a circle with radiusa = 0.42m, i.e. approximately one
element-length away from the surface to avoid boundary-
layer effects. The results correspond nicely, with differ-
ences of about 2 dB. Both simulations predict the same
very low radiation straight up or down.

From now on, all results are calculated with the bound-
ary element code hyBEM using the HBEM and direct
evaluation of field points, i.e. without building theF ma-
trix and computing the unknown boundary data. Fig. 5
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Figure 5 : Sound radiation of eigenmode at 1280 Hz in
free space. hyBEM.

shows the radiated pressure pattern of the eigenmode at
1280 Hz in free space, i. e. neglecting the influence of
the road surface. The plot shows the sound radiation in
the plane perpendicular to the tire axis.

In the following, the influence of the road surface is mod-
elled as hard-walled boundary using the mirror technique
as described in the previous section. Fig. 6 compares the
sound pressure levels evaluated on a circle segment with
radiusa = 0.42m. Taking into account the hard-walled
road surface by the modified test function (24), the ra-
diation characteristics change significantly. One notices
that the overall pressure level increases slightly. How-
ever, there are points where the pressure level decreases
due to the superposition of the reflected sound waves.

In Fig. 7 the radiated sound field calculated with the mir-
ror technique is shown on the plane perpendicular to the
wheel axis. One notices the changed radiation character-
istic and the increase of sound pressure level compared to
the full space solution in Fig. 5. The non-symmetric pres-
sure pattern due to the rotation of the wheel is empha-
sized by the reflection on the hard-walled surface. The
sound-radiation parallel to the wheel axis (Fig. 8) is sig-
nificantly lower than the pressure level perpendicular to
the wheel axis.

Next, sound radiation from another structural eigenmode
at 1424 Hz is examined. Again, the road surface is mod-
elled hard-walled. Fig. 9 and Fig. 10 show the sound
pressure level pattern on planes perpendicular and paral-
lel to the wheel axis, respectively. The sound radiation
parallel to the axis is dominating the mode at 1424 Hz.
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Figure 6 : Comparison of full space solution vs. model
with hard-walled road surface. Sound pressure level eval-
uated on circle segment (a = 0.42m).
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Figure 7 : Sound radiation of eigenmode at 1280 Hz.
Road surface is modelled hard-walled using mirror tech-
nique.
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Figure 8 : Sound radiation of eigenmode at 1280 Hz.
Hard-walled surface. Plane parallel to wheel axis.
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Figure 9 : Sound radiation of eigenmode at 1424 Hz.
Hard-walled surface. Plane perpendicular to wheel axis.
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Figure 10 : Sound radiation of eigenmode at 1424 Hz.
Hard-walled surface. Plane parallel to wheel axis.

The pressure in the plane perpendicular to the wheel axis
is one order of magnitude below the values that were cal-
culated for the structural eigenmode at 1280 Hz.

5 Conclusions

Based on eigenmodes, which are determined in the de-
formed state of a stationary rolling wheel by finite ele-
ment techniques, sound radiation analysis is carried out
by the hybrid boundary element method. This allows the
simulation of the radiation characteristics of single mode
shapes.

The ALE description of the dynamics of the rolling
wheel allows the time-independent description of steady
state rolling. An eigenanalysis in this frozen configura-
tion yields directly the input data for the HBEM compu-
tation of noise radiation from the rolling tire. For acous-
tic far-field problems, boundary element formulations of-
fer the advantage that the problem dimension is reduced

by one and the Sommerfeld radiation condition is ful-
filled inherently. Furthermore, a hard–walled road sur-
face can be modeled by mirroring technique without dis-
cretization. For the Neumann problem of sound radiation
from a tire, the HBEM in particular allows a numerically
very efficient field point evaluation.
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