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Bonding Geometry and Bandgap Changes of Carbon Nanotubes Under Uniaxial
and Torsional Strain

Liu Yang1, Jie Han, M. P. Anantram, and Richard L. Jaffe

Abstract: Bonding geometry and bandgap of carbon
nantotubes under uniaxial and torsional deformation are
studied computationally for nanotubes of various chiral-
ities and diameters. Bonding geometries are obtained
with Tersoff-Brenner potential from molecular mechan-
ics simulations. Bandgaps as function of strain are calcu-
lated from the molecular mechanics structures using one
(p) and four (2s and 2px, 2py, 2pz) orbital tight-binding
models. For small strains, the bandgap results are quali-
tatively consistent with those predicted by the one orbital
analytical model. Response of the electronic properties
of nanotubes to large strains is characterized by a change
in sign of d(bandgap)/d(strain). These originate from ei-
ther quantum number or bonding geometry effects, and
are strain-induced semiconductor-metal transitions. The
effect of variations in bonding geometries between con-
tinuum mechanics and molecular mechanics structures
on the electronic properties and differences between the
one and four orbital models are also presented.

1 Introduction

The interesting electronic and mechanical properties of
carbon nanotubes are due to their simple and elegant
relationships with their well-defined tube geometry. A
single-walled nanotube can be considered as a seamless
rolled graphene sheet. Its geometry is well defined by
a chiral vector (n1, n2) on the sheet (∆n = n1 - n2 > 0),
or equivalently the tube diameter and chiral angle (d, φ).
A tube is metallic if mod(∆n, 3) = 0 and semiconduct-
ing otherwise. The bandgap of a semiconducting tube
is 1/d dependent, and typically around 1 eV for a tube
with a diameter of 1 nm. These properties were predicted
by applying the one p-orbital tight-binding model of the
graphene sheet to nanotubes[Mintmire, Dunlap, White
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(1992); Hamada, Sawada, Oshiyama (1992); Saito, Fu-
jita, Dresselhaus, Dresselhaus (1992)], and confirmed by
first-principles, local density approximation (LDA) cal-
culations [Mintmire, White (1995); Louie (1996)] and
also experiments [Wildoer, Venema, Rinzler, Smalley,
Dekker (1998); Odom, Huang Kim, Lieber (1998)].

The mechanical properties of carbon nanotubes are char-
acterized by an extremely high Young’s modulus of ∼1
TPa [Robertson, Brenner, Mintmire (1992); Dai, Hafner,
Rinzler, Colbert, Smalley (1996); Lu (1997)]. A variety
of mechanical deformations, including stretching, com-
pressing, twisting, bending, and buckling, have been ob-
served and studied [Yakobsen, Brabec, Bernhoc (1996);
Falvo, et al. (1997)]. The nanotube stress-strain rela-
tions were found to follow the continuum mechanics of
column beams. The mechanical deformations were cor-
related to Young’s modulus and tube geometry (diam-
eter and length). Beyond the linear range, nanotubes
exhibit an extraordinary elastic response. For example,
nanotubes were found to respond elastically to strains
as high as 20 - 30% by undergoing buckling[Falvo, et
al. (1997)]. The elastic recovery from buckling dur-
ing nanotube tip based nanolithography was observed
experimentally [Dai, Franklin, Han (1998)] and studied
by molecular dynamics simulations [Garg, Harg, Sinnot
(1998)].

Theoretical efforts have been made to correlate elec-
tronic and mechanical properties of nanotubes under uni-
axial and torsional deformations. These two deforma-
tion modes correspond to the in-plane tension and shear
of graphene sheets. Their electronic responses can be
predicted analytically as was done for the perfect tubes.
Heyd et al. (1997) studied the effects of uniaxial stress
on bandgap of zig-zag tubes by applying hopping pa-
rameters scaled by bond lengths with one orbital tight-
binding model, and by assuming continuum mechanics
linear scaling to the bond lengths. Kane and Mele (1997)
predicted the effects of torsion on bandgaps of armchair
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tubes by an alternative approach which wraps a massless
two dimensional Dirac Hamitonian on a curved surface.

Recently, we developed a theoretical framework based
on a Huckel tight-binding model to explain the electronic
structure change of carbon nanotubes with arbitrary chi-
rality [Yang, Han (2000)]. A graphene sheet possesses
a hexagonal Brilloin zone in the reciprocal space (Fig.
1) because of its hexagonal lattice structure. Due to the
quasi-one dimensional nature of nanotubes, the allowed
electronic states for carbon nanotubes formed parallel k
lines in the reciprocal space. For an undeformed carbon
nanotube, the Fermi point kF is coincident with the vertex
of the hexagonal Brilloin zone. The chiral vector, more
specifically mod(∆n,3), determines if the Fermi point kF

sits on one of the k lines. The distance between parallel
k lines is proportional to 1/d. And the relative position
between kF and the k lines is critical to the electronic
structure of the tube. When mod(∆n,3)=0, kF sits on one
of the k lines, and the tube is conducting. Otherwise it is
semiconducting and kF sits in between two k lines. The
bandgap is proportional to the distance from the Fermi
point kF to the closest k line.
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Figure 1 : Graphite lattice and hexagonal central Bril-
louin zone with reciprocal vectors k 1 and k 2, and k par-
allel lines for allowed electronic states.

A uniform uniaxial or torsional deformation applied to a
nanotube causes the Fermi point kF to shift away from
the Brillion zone vertex. The amplitude of this shift is
proportional to the strain and the direction of this shift,
relative to the k lines, is determined by the deformation
mode and tube chirality. When kF shifts parallel to the

k lines, as in the case of an armchair tube under ten-
sion/compression, or a zigzag tube under torsion, the de-
formation does little to the band gap. On the other hand,
when the kF shift is not parallel to the k lines, it results in
substantial changes in the tube electronic properties, in-
cluding shifting, merging, and splitting of the Van Hove
singularities of the density of states, and a change in the
bandgap. When kF shifts towards the closest k line, for
instance, for a mod(∆n,3)=1 tube under compression, or a
mod(∆n,3)=-1 tube under tension, the bandgap increases
initially. For these tubes, the first pair of density of states
peaks moves towards each other. The other pairs of peaks
moves in alternate directions. When kF hits the closest k
line, the DOS peaks merge and the band gap disappears.
When kF moves further under an increased strain. The
bandgap appears again, as well as a pair of new DOS
Van Hove singularities peaks. For other combinations
of tube chirality and deformation mode, similar changes
in electronic properties occur. How much the electronic
properties change with deformation is determined by the
angle of the kF shift direction and the k lines.

This analysis was based on the assumption that the tube
geometry scales linearly with the strain, and that only
the first order effects are important. Thus, the results
are only expected to be valid for small strains. How-
ever, one of the important properties of nanotubes is their
elastic response to large mechanical deformations. It is
of interest to extend the previous work to large deforma-
tions. The electronic response to large strains can be as
extraordinary as the mechanical response. For example,
it was predicted that a semiconductor-to-metal transition
[Hyed, Charlier, McRae (1997)] and a sudden change in
bandgap [Yang, Han (2000)] could be induced by large
strains. The one p-orbital tight-binding approach and
continuum mechanics are good methods to predict the
electronic and mechanical properties of nanotubes, re-
spectively. However, they need to be verified when ap-
plied to highly deformed nanotubes. Continuum me-
chanics enables linear scaling of the bonding geometries
of slightly strained nanotubes. But its linear scalability
is questionable for largely deformed nanotubes. In addi-
tion, the effect of curvature induced s− p hybridization
in largely deformed tubes may need to be considered.

Solution to these problems is to obtain the relaxed atomic
structures and testing their effects on the electronic prop-
erties. We employ molecular mechanics simulations and
one and four orbital tight-binding calculations here. De-
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tails of our approach are in described in Section 2 Sec.
3 contains molecular mechanics results for bonding ge-
ometries changes of nanotubes under large uniaxial and
torsional deformations. These results are used to bridge
mechanical and electronic properties of deformed tubes.
In Sec. 4, the tight-binding methods are applied to mod-
eling the electronic properties of the deformed carbon
nanotubes based on the molecular mechanics relaxed
structures. Extraordinary electronic responses, includ-
ing metal - semiconductor transitions, are revealed and
related to changes in quantum numbers and bonding ge-
ometries. Conclusions are presented in Sec. 5.

2 Methods

The simulation of nanotube deformation is a two step
process. First, the perfect nanotube is deformed to the
desired strain by scaling as described below, and then
molecular mechanics simulation is used to allow the nan-
otube to relax under the strain. The Tersoff-Brenner
many body potential is used for the molacular mechanics
simulation. This potential describes the atomic interac-
tions through the stretch, bend and torsion of chemical
bonds in carbon systems, including C-C bond breaking
and fraction. It has been widely employed in studying
atomic structures and mechanical properties of nanotubes
due to its success in reliable and efficient computation
of large carbon systems [Robertson, Brenner, Mintmire
(1992); Yakobsen, Brabec, Bernhoc (1996); Garg, Han,
Sinnot (1998)].

The simulations start with a rolled graphene sheet. For
uniaxial deformation, all the atom positions and tube
length are linearly scaled by the given amount of strain
along the tube axis. For torsional deformation, all the
atom positions rotate around the tube axis by an angle de-
termined by the given strain along the circumference. To
eliminate the end effects, periodic boundary conditions
are applied in the axial direction. This is straightforward
for uniaxial deformation, but involves a two step opera-
tion for torsional deformation: a translation by the tube
length followed by a rotation by the torsional angle. For
the torsional case, the length is properly chosen so that
when the periodic boundary condition is applied to the
system, the atoms can stack smoothly across the bound-
ary.

To characterize the bonding geometries, we denote three
bonds associated with an atom as a,b, and c in the or-
der from the closest to the tube axis to the closest to the

tube circumference (see Fig. 2). The average of the dis-
tance from all the atoms to the tube center is taken as
the tube diameter. The uniaxial strain is defined as the
tube length change divided by the tube length. The pos-
itive and negative values are chosen to represent the ten-
sile and compressive strains, respectively. The torsional
strain is expressed as the conventional shear strain, a ra-
tio of the rotating distance along the circumference to
the tube length. The positive and negative values are ar-
bitrarily chosen to represent the clockwise and counter-
clockwise torsional deformations.

a
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c

b b

a a
c c

= -0.14  = 0.00                        = +0.14
   1.365Å=b<a<c=1.463Å   1.416Å=a<b<c=1.428Å   1.368Å=c<a<b=1.482Å

 = 114.2°  = 120.4°  = 118.6°

Figure 2 : Molecular models of a (10, 1) nanotube unit
under clockwise (.14 strain), zero, and counter-clockwise
strains (-.14 strain), obtained from molecular mechanics
simulations.

We employ one and four orbital tight-binding approaches
to examine the electronic responses to the mechani-
cal deformation of nanotubes. The four orbital model
includes the effects of tube curvature and distortions
to the sandp states that are ignored in the one or-
bital model. A minimum basis of atomic s and p va-
lence orbitals (2s,2px,2py,2pz) is utilized in the one
and four orbital model. Values for the on-site and hop-
ping matrix elements are taken from Mintmire and White
(1995). They were calibrated by fitting to first-principles
electronic structures of fullerenes, nanotubes and other
hydrocarbon-based materials. The effects of variation
in bonding geometries on electronic properties of de-
formed tubes are included in the one and four orbital
calculations. This is done by using Harrison’s approach
[Harrison (1980)] to scale hopping parameters by (r0/r)2

whereris the bond length with r 0 = 1.42 Å. This scal-
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ing method was also employed in studying electronic re-
sponse to mechanical deformations by other researchers
[Hyed, Charlier, McRae (1997)] and us [Yang, Han
(2000)].

Model nanotubes used in this work are listed in Table
1. Tube diameter varies from 0.7 to 1.1 nm. Repeat
units determined by tube chiral and translation vectors
are used for tight-binding calculations. Several repeat
units are employed in molecular mechanics simulations
to ensure that the tube length is larger than the potential
cutoff (∼0.2 nm).

3 Bonding Geometries of Deformed Carbon Nan-
otubes

Under compression and torsion, the stress - strain (σ−ε)
curves of nanotubes exhibit a linear behavior followed
by a series of nonlinear responses with varied buckles
[Yakobsen, Brabec, Bernhoc (1996)]. In contrast, nan-
otubes under tension do not buckle, and continue the
elastic deformation until bonds break. In this work, de-
formations are limited to a strain range with no buckle
or singularity in the stress - strain curves. In this strain
range, nanotubes have a stable atomic structure and a
smooth cylindrical shapes. The bonding geometries and
tube diameter are uniform.

The strain at which compression buckling starts depends
on the tube diameter and chirality. It also depends on
the time allowed for the tube to relax and the length of
the tube repeat unit. We also systematically examined
the buckling strain of single-walled carbon nanotubes in
other publications. Since it is not the focus of this pub-
lication, we discuss in general what the bonding geom-
etry would be for the tube to keep a uniform configura-
tion up to 12-14% of compressive strain. The maximum
strain during elongation is taken as 25%, smaller than
the 40% beyond which the tight-binding model no longer
describes atomic interactions. Similar situations exist
for the buckling strain under torsion. The two buckling
strains in clockwise and counter-clockwise rotational
deformations are equivalent for symmetric (zigzag and
armchair) tubes, but different for unsymmetrical (chiral)
tubes. We examine the uniform torsional strain up to 14
∼ 18% for nanotubes listed in Table 1. Shown in Fig. 2
are molecular mechanics structures of a (10, 1) nanotube
at clockwise torsion (- 0.14), zero, and counter-clockwise
torsion (+0.14) strains. In this range, the stable structures
exhibit well defined tube and bonding geometries. That

is, bond lengths (a, b, c) and angle and tube radius keep
the same value for each atom.

As an example, the variation in bonding geometry of
(10,1) nanotube under uniaxial and torsional deforma-
tions are shown in Fig. 3 and Fig. 4. It is easy to see
that a = b = c (1.42 Å) for a graphene sheet, but the
a,bandcbonds are not equivalent for a rolled-up sheet, i.e.
a nanotube. All the bonds could keep the same length if
one argues, for example, the rolled-up sheet is a polyg-
onal geometry with bonds laying on the surface. How-
ever, we find after relaxation a < b < c (ε = 0), with
a = b < c for armchair tubes, a < b = c for zigzag tubes,
and a < b < c for chiral tubes including the (10, 1) tube
in Fig. 2. This can be explained as follows: the strain in
the rolled-up sheet is concentrated on the tube circumfer-
ence, and originates from the crowded atomic packing in
this direction. Energy minimization with the tube length
constraint will maximally increase bond c to compensate
both the bond shortening and curvature effect. This leads
to a < b < c. It must be noted however, that this relation-
ship may vary among different energy minimization and
constraint approaches. For example, a short tube with-
out tube length constraint could exhibit the largest bond
length along the tube axis, leading to a > c.

When subjected to uniaxial deformations, it can be ex-
pected that da/dε > db/dε > dc/dε as bonds a,b, and c
are defined in the order from the closest to the tube axis
(uniaxial stress direction) to the closest to the tube cir-
cumference. This leads to a change from a < b < c (ε
= 0) to a = b = c ε ∼ 1% in Fig. 3), and to a > b > c,
and is driven by tension. In contrast, compression can
cause a change from a > c to a = c, and to a < c. Fig.
3 also shows that d(a− c)/dε changes from positive to
negative at a large tensile strain (18%). This is due to
an increase in energy from the minumum at the equilib-
rium bond length to the position of the barrier for bond
breaking during bond stretching in tension. When the
strain approaches the barrier for bond breaking, the a/dε
will decrease to zero unless a much higher energy is pro-
vided to break the bond. In contrast, the dc/dε will in-
crease because bond c is still far away from the barrier.
In the compression side, we could not observe this due to
the limited strain. For all the model nanotubes in Table
1, we find that a = b = c at 1 - 2% tensile strains and
d(a−c)/dε changes sign at 17 - 18% tensile strains. We
will see that these variations in bonding geometries are
strongly related to electronic response to strains.
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Table 1 : Model Nanotubes
chirality (n1, n2) mod(∆n, 3) m (= ∆n - 3q) type

(5, 5), (7, 7) (9, 0), (10, 1) 0 0 metal I (MI) (n1 = n2) metal II (MII) (n1 n2)
(6, 5), (10, 0), (8, 1) 1 1 semiconductor I (SI)
(7, 5), (8, 0), (9, 1) 2 -1 semiconductor II (SII)
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Figure 3 : Bond lengths, angle and tube radius as functions of tension (> 0) and compression (< 0) strain for (10,
1) nanotube shown in Fig. 2. They are scaled, respectively, by 1.42Å, 120◦, and the tube radius at zero strain.

In contrast to the uniaxial deformation, torsional de-
formation presents complicated variations in bonding
geometries as this deformation breaks both tube and
bonding symmetry. In uniaxial deformation, da/dε >

db/dε > dc/dε > 0, leading to a change from a < b <
c(ε = 0) to a = b = c(ε = 1%), and to a > b > c. In
torsional deformation, as shown in Fig. 4, db/dε > 0 but
da/dε < dc/dε < 0, and consequently that b = c or a = b
or a = c at some strains, but never a = b = c. Owing to
similar changes in bond lengths of other nanotubes, the
condition a = b = c is impossible under torsional defor-
mation. It also can be seen from Fig. 4 that the tube
diameter and the angle between bonds b and c decreases
due to torsional strain along the tube circumference.

The simulations show that the maximum bond strain,
qualitatively, is (1 − n2/n1) and n2/n1 dependent, re-
spectively, under uniaxial and torsional deformations.
This is because the stress on the bond, and therefore the
bond strain, is proportional to cosφ (∼ 1-n 2/n1) and sinφ
(∼n2/n1) for these two cases. These dependences can be
understood from Fig. 2 with the chiral angle φ between
the tube circumference (torsion stress direction) and the
vector perpendicular to bond a, or equivalently between
the tube axis (tensile stress direction) and bond a. We
also can take bond a and c as representatives of bonds of
zigzag and armchair tube (n2/n1=0 and 1, φ= 0 and 30◦),
respectively. Thus, the da > dc in Fig. 3 and |dc|> |da|
in Fig. 4 illustrate the dependence of the bond strain
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Figure 4 : Bond length, angle, and tube radius as functions of counter-clockwise (> 0) and clockwise (< 0) torsional
strain for (10, 1) nanotube shown in Fig. 2. They are scaled, respectively, by 1.42 Å, 120◦, and the tube radius at
zero strain.

on tube chirality under tensile and torsion deformations.
From a series of simulations for zigzag (9, 0) to armchair
(5, 5) tubes, the maximum bond strain changes from 0.11
to 0.07 under tensile, but from .01 to .05 under torsion at
10% tube strains as n2/n1 increases from 0 to 1.

We now turn to the nonsymmetrical change during ten-
sile and compression strain in Fig. 3. An increase in tube
diameter during compression is favored by energy mini-
mization. But a decrease in tube diameter during tension
is not. This leads to the observation that tube diameter
changes more in compression, and less in tension. The
nonsymmetrical aspects and the scalability of continuum
mechanics to bonding geometries and tube diameter are
further validated in Fig. 5. The scaling relations of con-
tinuum elastic mechanics are represented by two dashed
lines, respectively, for the tube axial component in bond
lengths and the tube cross section area. The continuum
model deviates from the results of the molecular me-

chanics (solid lines) especially for bonding geometries
in compression (ε < 0) and for tube diameter in tension
(ε > 0). It appears that conservation of volume on which
the continuum elastic mechanics model is based, is not
generally found for deformed nanotubes.

It can be expected that variations in bonding geometries
and tube diameter under mechanical deformations will
determine response behavior of electronic properties of
nanotubes to the deformations. This is explored in the
following section.

4 Bandgap Changes of Deformed Carbon Nan-
otubes

We first compare the one and four orbital tight-binding
calculations for a molecular mechanics relaxed (9, 0)
nanotube. The computed bandgap Eg versus uniaxial
strain curves are shown in Fig. 6. The (9, 0) tube
has a small bandgap at zero strain while the one orbital
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Figure 5 : Comparision in strains of bond lengths and tube cross section between continuum mechanics (dashed
lines) and molecular mechanics (solid lines) structures for a (8, 0) nanotube under compression (< 0) and tensile
(> 0) deformations.

model based on graphene sheet with equal bond lengths
predicted a zero bandgap. Our four orbital model of
the unrelaxed structure predicts a small gap of 0.1 eV
for (9,0) tube, in agreement with results obtained from
LDA and first-principle calculations nanotubes with un-
relaxed structure [Louie (1996); Wildoer, Venema, Rin-
zler, Smalley, Dekker (1998)]. In those papers, the non-
zero bandgap was attributed to curvature induced s− p
hybridization (or simply, the curvature effect). In addi-
tion, the relaxed bonding geometry (i.e. a c) causes
an extra gap of 0.1 eV by the one orbital model of the
relaxed structure. It seems that the bandgap (0.2 eV) ob-
tained from the four orbital model of the relaxed structure
can be estimated by a sum of that (0.1 eV) of one orbital
model of the relaxed structure (the bonding geometry ef-
fect) and that (0.1 eV) of the four orbital model of the
unrelaxed structure (the curvature effect).

Under tensile strain (ε > 0), the bonding geometries
change from a = b < c to a = b = c, and consequently
the bandgap decreases to zero at ε = 1%, as shown by the
one orbital model of the relaxed structure. In contrast,
this also can be reached by a compression in that bond-
ing geometries change from a = b > c to a = b = c, as
Heyd et al showed (1997). A measurement shows that
|dEg/dε| is larger in tension than in compression (about
0.07 vs. 0.04 eV) in the one orbital model calculations.
This is indicative of a tube diameter effect on bandgap
(∼d−1), because the tube diameter increases significantly
in compression, and decreases slightly in tension (Fig.2).
As a result, the bandgap increase is more slowly with
increase in compression strain rather than tensile strain.
The rate of bandgap change for compression is slightly
higher in one orbital model than in four orbital model be-
cause of an extra curvature effect caused by changes in
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Figure 6 : Bandgaps of a (9, 0) nanotube as functions of compression (< 0) and tensile (> 0) strain, calculated from
one and four obital models.

tube diameter. However, over a wide range of strains,
the bandgap from four orbital model can be obtained ap-
proximately by shifting one orbital model with 2% higher
strain. With continue increase in tensile strain, we see a
decrease in the band gap, or dEg/dε change its sign at
18% strain, for both the one and four orbital models. The
observed change in sign of d(a−c)/dε at 18% strain for
the molecular mechanics structure is responsible for the
change in the bandgap.

By taking the (9, 0) tube under uniaxial deformation as
an example, we illustrated three effects of geometry re-
laxation on bandgap. They include three effects. One is
the curvature effect (s-p hybridization) revealed by four
orbital model. It contributes a 0.1 eV gap with a slight
change as a function of the tube curvature or strain. The
other two are the diameter effect related to the number
of atoms along the tube circumference, and geometry re-
laxation effect. They are included in both one and four
orbital models. The bandgap results based from the four

orbital model can be approximated by those of the one
orbital model with a correction for the curvature effect.
In the following discussion, we will focus on results ob-
tained from the one orbital model for relaxed molecular
mechanics structures keeping in mind of the effects of
curvature.

The results obtained from one orbital tight-binding calcu-
lations are shown in Fig. 7 and 8, respectively, for model
tubes in Table 1 under uniaxial and torsional strain. The
bandgap is scaled by the product of the unrelaxed tube
radius, a bond length (1.42 Å) and a hopping parameter
(2.64 eV). At small strains up to ±10%, the results based
on molecular mechanics structures are qualitatively con-
sistent with those based on continuum mechanics anal-
ysis. That is, dEg/dε is positive and negative, respec-
tively, for SI and SII types of semiconducting tubes (see
Table 1) under uniaxial deformation, and the opposite
is true under torsional deformations. For nanotubes un-
der uniaxial deformations |dEg/dε| is cos3φ dependent,
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Figure 7 : Bandgaps of various nanotubes as functions of compression (< 0) and tensile (> 0) strain, obtained from
one orbital tight-binding calcualtions of molecular mechancis structures. They are scaled by tube radius, bond length
(1.42Å) and hopping parameter (2.64 eV).

qualitatively, increasing from zero for armchair tubes
to a maximum for zigzag tubes. In contrast, |dEg/dε|
is sin3φ dependent, qualitatively, under torsional defor-
mation, reaching a minimum (zero) for zigzag tubes,
and maximum for armchair tubes. The dependence of
|dEg/dε| on tube chirality obviously follows the depen-
dence of the maximum bond strain on tube chirality, as
discussed in Sec. 3.

In addition, there are some interesting features that were
not addressed in the previous work. For example, the
small bandgap at zero strain for (9, 0), caused by c > a,
is eliminated by a 1% tensile strain (Fig. 7) at which
a = b = c, but, it cannot be eliminated by the bonding
geometry effect for torsional deformation because there
is no strain with a = b = c. However, the bandgap of (10,
1) tube reaches zero at 1% tensile strain (Fig. 7), and also
at -8% torsional strain (Fig. 8). The change in the sign of
dEg/dε at a large strain highlights a feature of the elec-

tronic properties of nanotubes under large deformations.

We now take a closer look at the strain, εc, at which
dEg/dε changes sign. There are various such strains in
Fig. 7 and 8 at large deformations. They represent an
extraordinary response of electronic properties of nan-
otubes to large deformation. We classify them into two
types. First, there exists and εc at which Eg is zero.
This strain defines a transition between semiconductor
and metal. It is zero for metallic or armchair tubes (MI
type), as illustrated by a (5, 5) tube under torsional strain
in Fig. 8. It is near zero (1% tensile strain) for zigzag
metallic (MII type) tubes such as (9, 0) and (10, 1) tubes
(Fig. 7). Semiconducting tubes also show this strain at a
large value, for example, around 16% and 18%, respec-
tively, for tubes (9, 1) and (8, 0) under tensile deforma-
tion (Fig. 7). These results confirm the our prediction for
the transition of SII type of tubes from semiconductor
to metal under tensile deformation [Yang, Han (2000)].
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Figure 8 : Bandgaps of various nanotubes as functions of clockwise (< 0) and counter-clockwise (> 0) strain,
obtained from one orbital tight-binding calcualtions of molecular mechancis structures. They are scaled by tube
radius (Å), bond length (1.42Å) and hopping parameter (2.64 eV).

However, the predicted transition for SI type tubes such
as (10, 0) and (8, 1) under compression cannot be ob-
served within the studied elastic deformation range. Be-
yond this range, unstable buckles appear and may pre-
vent the bandgap from reaching zero (see Fig. 7). For
convenience, we call this type of strain as metal - semi-
conductor transition strain.

The second type of εc includes those at which Eg > 0.
Semiconducting tubes (8, 0), (9, 1), (8, 1) and (10, 0)
in Fig. 7, and (6, 5) and (7, 5) in Fig. 8 exhibit this
strain at about ±10%. In contrast, tubes (9, 1), (8, 1),
(10, 0), (9, 0) and (10, 0) under tensile display this strain
around 18%. As mentioned in the discussion of Fig. 6,
the εc = 18% is attributed to the bonding geometry ef-
fects which cause d(a−c)/dε, and consequently dEg/dε
to change sign. A value of εc = 10% was reported for
tube (10, 0) under tensile deformation and attributed to
the quantum number effect [Yang, Han (2000)]. This ef-
fect can be understood by a crossover of quantum num-

ber q in a strain dependent dispersion relation E(q,k).
Strain drives kF shifting among the k lines in the recip-
rocal space. This leads to a change in quantum number
and dEg/dε. We carried out a one orbital calculation for
tube (10, 0) strained by continuum mechanics, and found
a sign change only at 10%, confirming that these two
strains, 10% and 18%, originate from quantum number
and bonding geometry effects, respectively.

5 Conclusion

Molecular mechanics simulations provide insights into
variations in bonding geometries and tube diameter of
nanotubes under uniaxial and torsional deformations.
They do not always follow the scaling relations of contin-
uum mechanics. The one and four orbital tight-binding
calculations of molecular mechanics structures confirm
the prediction of response of electronic properties of nan-
otubes to small deformations. That is, dEg/dε is positive
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and negative, respectively, for nanotubes with ∆n = 3q
+ 1 and 3q - 1 under uniaxial deformation. In contrast,
the opposite is true under torsional deformation. Quali-
tatively, The |dEg/dε| and the maximum bond strain are
cos3φ and sin3φ dependent, respectively, under uniax-
ial and torsional deformations. Response of electronic
properties of nanotubes to large deformations are char-
acterized by two other types of transition strains. One
signifies a strain induced metal - semiconductor transi-
tion at which Eg = 0, and the other is originated from
either quantum number effect or bonding geometry ef-
fect at which Eg > 0. The strain induced metal - semi-
conductor transitions can occur for various nanotubes un-
der both uniaxial and torsional deformations within one
orbital model. But, this occurs only for armchair tubes
under torsion as other tubes will remain a finite small
bandgap because of the intrinsic curvature effect.
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