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Combining Lumped Parameter Bond Graphs with Finite Element Shafts in a
Gearbox Model

J. Choi1 and M.D. Bryant2

Abstract: This paper presents an updated bond graph
model of a gearbox, which now includes bending of
shafts. The gearbox system has an input shaft, layshaft,
output shaft, spur gears, bearings, and housing. The bond
graph model integrates separate sub-models into a com-
posite model. Sub-modules include tooth-to-tooth con-
tact, rotor dynamics of shafts, global dynamics of the
gearbox housing structure, and shaft bending modeled
by finite element modeling. The tooth-to-tooth model
includes tooth bending; shaft torsion; gear inertia; con-
version of gear torque into tooth forces; tooth contact
mechanics; and multiple tooth contact. To analyze shaft
dynamics more precisely, elementary finite element the-
ory was adopted into the shaft bending module. The
complete dynamics model was simulated, combining nu-
merical methods for lumped elements and finite element
techniques into a single code.

We will briefly review the gearbox bond graph model,
present equations and numerical methods, explain simu-
lation algorithms, and then present simulation results.

keyword: Gear, Gearbox, Bond graphs, Newmark’s
method, Finite element method (FEM).

1 Introduction

In this article, an existing model of a layshaft gear-
box will be updated with bending of shafts. The gear-
box system has input shaft, layshaft, output shaft, gears,
bearings, gear tooth contacts, and gearbox housing.
Our model employs bond graphs, an abstraction of the
lumped parameter equivalent circuit analysis technique
of electro-mechanics. Bond graphs can describe the
dynamics of any physical system: mechanical, electri-
cal, fluidic, thermodynamic, etc [Paynter (1960)]. Bond
graphs map how and where power flows through, and en-
ergy is stored in, a physical system. Bond graphs are sim-
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ilar to circuit analysis techniques, applying Kirchoff like
conservation laws to balance the physical effects of gen-
eralized sources, resistances, capacitances, inertances,
transformers, and other elements. Bond graphs usually
employ lumped parameter approximations. Bond graphs
are also modular: an overall system model can be created
by linking together models of individual components or
sub-systems. State equations representative of the system
dynamics can then be extracted from the bond graph for
simulations [Karnopp, Margolis and Rosenberg (2000)].

Prior gear and gearbox models were piecemeal: these
models examined certain facets of gear systems or gear
tooth contacts separately [Özgüven and Houser (1988)].
Interactions were neglected. In this article, we have inte-
grated whole gearbox physics into a composite model.
Lumped parameter techniques – bond graphs – com-
prise most elements of this model. The model was aug-
mented with finite elements, to account for multiple crit-
ical speeds of shafts. This presents special problems,
combining the seemingly incompatible numerical meth-
ods of state equations with the second order matrix or-
dinary differential equations from FEM. This article for-
mulates the aforementioned model, derives the mixed set
of differential equations, generates a mixed numerical
method for the gearbox system, and then presents solu-
tions.

2 Layshaft gearbox model

An early bond graph model of a typical manual trans-
mission layshaft gearbox for rear wheel drive vehicles
was developed by Hrovat and Tobler [Hrovat and Tobler
(1991)]. Utilizing a gear tooth contact sub-model [Kim
and Bryant (1999)] and Hrovat and Tobler’s bond graph
model, a more detailed rotary model of a layshaft gear-
box was assembled [Kim (1999)]. A schematic is pre-
sented in Fig. 1.

The system is composed of two pairs of gears, an input
shaft, a layshaft, an output shaft, and a box which houses
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all gears and shafts. The box is mounted to the foun-
dation with stiffness kb and damping Rb. The angular
velocities of input shaft, layshaft and output shaft are ω i,
ω23 and ωo respectively. Each of gears is numbered and
has a velocity ω1, ω2, ω3, and ω4. Due to the differ-
ence in torque on input and output shafts, the box can
rotate around axis A-A� with velocity ωβ. Relative ve-
locities with respect to a coordinate frame attached to the
box, and reaction forces acting on bearings attached to
the box, are also shown in Fig. 1. Because the bearings
are attached to the box, these reaction forces will be ap-
plied to the box and will generate torques on the box.
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Figure 1 : Typical manual transmission layshaft gearbox
[Hrovat and Tobler (1991)]

Fig. 2 contains a bond graph model updated from Hrovat
and Tobler [Hrovat and Tobler (1991)] of the overall sys-
tem shown in Fig. 1. All Inertance (I) elements are ro-
tational mass moments of inertia associated with shafts,
gears, or the gearbox housing. Likewise, all compli-
ances (C) are torsional springs, and all resistances (R)
are losses from bearings, except for the resistance at the
bottom center of the bond graph which represents box
to foundation damping Rb. The resistance next to the
source ‘MSf’ located on the far left represents the losses
of the bearing that supports the input shaft. The adja-
cent ‘C’ element represents the torsional compliance of
the input shaft, and the accompanying ‘I’ element rep-
resents the rotational mass moment of inertia of the in-
put shaft and first gear. The dashed boxes include gear
teeth contact sub-models (shown as ellipses) and resis-
tances that model losses of layshaft bearings. The power
bonds extending from the bottom 1-junction in the gear-
box housing and foundation section that form the ‘tri-
angular structure’, model the reaction torque applied to
the box by the shaft, bearings, and gears. The two in-

ertias and one capacitance between the two dashed rect-
angles represent the inertia of the second gear plus the
inertia of the left half of the layshaft, the inertia of the
third gear plus the inertia of the right half of the layshaft,
and the torsional compliance of the layshaft. The fourth
gear inertia, the output shaft compliance, and the bear-
ing resistance are to the far right. The two ellipses inside
the dashed rectangles each have the bond graph structure
shown in Fig. 3, which represents dynamics of meshing
gears. Returning to Fig. 2, the bearing resistances related
to the layshaft rotation are shown as two ‘R’ elements
off the 0-junctions directly below and between the two
dashed rectangles. Because these bearings are mounted
to the box, the velocities for these bearings are the differ-
ences between the shaft angular velocity and the angular
velocity of the gearbox’s rigid body motion. These ve-
locity differences are constructed by the 0-junctions.

Figure 2 : Bond graph model of layshaft gearbox in Fig.
1[Kim (1999)]

3 Meshing gear teeth sub-model

Fig. 3, taken from reference [Kim and Bryant (1999)],
is a bond graph model of tooth contact. This bond graph
has symmetric upper and bottom parts, and symmetric
right and left parts. The symmetry of upper and bottom
parts represent the distribution of transmitted force be-
tween two pairs of teeth. In the case of low contact ratio
(1 � contact ratio � 2), the load on a given tooth is not
constant, but is shared by another pair of teeth in contact.
The tooth forces transmitted across a particular tooth pair
depends on the angular position θ1 of the pinion. These
forces vanish when teeth separate. The signal from the
ON/OFF switching signal element in the middle of the
bond graph model conveys this information.

The right and left parts of the bond graph of Fig. 3,
respectively describe the dynamic behavior of contact-
ing teeth between driving and driven gears. Parame-
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Figure 3 : Bond graph of a pair of meshing gears [Kim
and Bryant (1999)]

ters C1 through C4 and I1 through I4 represent bending
compliances (from beam theory) and equivalent masses
of the two pairs of contacting gear teeth. Compliances
C5 and C6 associated with surface contact between con-
tacting gear teeth incorporate a nonlinear Hertzian con-
tact stiffness that changes with angle θ1 as the contact
progresses over the tooth faces, consistent with the in-
volute tooth profile. The MR resistance elements lo-
cated on the vertical centerline represent the sliding fric-
tion losses between contacting gear teeth. The friction
model is Coulomb, with normal force arising from the
(Hertzian) contact compliance elements C5 and C6, and
friction coefficient dependent on sliding speed. The two
transformers (TF) on the left hand side convert the in-
put torque from the pinion into normal forces between
teeth, transmitted along the line of action. The two trans-
formers (TF) on the right hand side act oppositely for the
gear. Each modulated transformer (MTF) located on top
and bottom left, converts pinion rotational velocity ω1

into linear velocity tangential to tooth surfaces. Coun-
terpart modulated transformers (MTF) to the right con-
vert tangential velocities to rotational velocities ω 2. The
0-junctions in between the modulated transformers con-
structs the instantaneous sliding (slip) velocities associ-
ated with friction between contacting gear teeth.

4 Force onto shafts

To model energy storage due to bending of shafts gener-
ated from tooth contact forces, power bonds were added
to Fig. 3. These groups of bonds and elements are shown
in Fig. 4-(a), to the immediate right and left of the verti-
cal centerline. For two meshing gears, power is transmit-
ted to both shafts from both pairs of teeth via the gear at-
tached to the shaft. Since the shafts are assumed linearly
elastic, the applied forces and vibration motions separate
into x and y components, shown in each group as ‘shaft:
x’ and ‘shaft: y’.

Normal and friction forces between teeth transfer to the
gear bodies, and then to the shafts. The normal loads
Fn are directed along the pressure line of action between
contacting teeth, and the friction forces Ft are perpendic-
ular to the normal forces Fn. The multi-port transform-
ers contained in the new group of elements in Fig. 4-(a)
perform coordinate system rotations φ from the n-t tooth
system to the x-y shaft system shown in Fig. 4-(b). The
forces and velocities transform according to

�
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�
�

�
cosφ�sinφ
sinφ cosφ

��
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�
�

�
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�
�

�
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��
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�

(1)

where the angle φ is the pressure angle for the gears.

5 Finite element bending of shafts in bond graphs

5.1 Layshaft

To analyze dynamics of distributed shafts, concepts of
finite elements will be adopted. Since the shafts were
assumed linearly elastic, the bond graph module derived
here for x directed bending motions apply to y directed
bending motions also. In Fig. 5, the layshaft is consid-
ered composed of four beam bending elements, giving
five nodes each with a linear displacement transverse to
the shaft, and an out of plane rotation.

The bending displacement for the uniform element in
Fig. 5-(a) is expressed using the standard beam shape
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(a)

(b)
Figure 4 : Teeth sub model with the power flow path to
the shafts.

functions, Li�x� as
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With these displacements, the element kinetic co-energy
and potential energy are

(a) uniform beam element

(b) 4 elements for the layshaft with two gears
Figure 5 : Finite element model of layshaft and notation
of nodal displacement
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2�ẇ�t��T �m��ẇ�t��
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where the element mass and stiffness matrices are
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ρAl
420

�
���

156 22l 54 �13l
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�
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�
���

12 6l �12 6l
6l 4l2 �6l 2l2

�12 �6l 12 �6l
6l 2l2 �6l 4l2

�
��	 (5)

For assembly, we introduce an extended element nodal
displacement vector �W�i, equal to vector �w�i with as
many zero components appended to make the dimension
equal to N, the total number of nodal displacements of
the complete system [Meirovitch (1986)]. Similarly, we
extend the element mass matrix �M�i and element stiff-
ness matrix �K�i. The total kinetic co-energy and poten-
tial energy of the complete system is
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where �M� �
n
∑

i�1
�M�iand �K� �

n
∑

i�1
�K�i are the 10�10

symmetric mass and stiffness matrices for the complete
4-element system. The kinetic co-energy given in equa-
tion (6) is a function of the velocity (or flow) variables

f �



Ẇ�t�
�

(7)

Bond graph inertances in integral causality have constitu-
tive laws fi � fi�p� wherein the flows f � � f i� depend on
the momentum variables p � �p j� where i, j = 1, 2,. . . , n.
To obtain this constitutive law, we require the kinetic en-
ergy T�� T

�
�p�. From the Legendre transform [Kreyszig

(1988)], the kinetic energy T� � T��p� and the kinetic co-
energy T � T � f � are related via

T��p��T � f � � p � f (8)

Partial derivatives of equation (8) with respect to flow
vector components fi gives

pi �
∂�p � f �

∂ fi
�

∂T � f �

∂ fi
� P� f� (9)

In general, for application to bond graphs, equation (9)
must be inverted, i.e.

f � P�1�pi� (10)

Substitutions of equations (4) and (6) into equation (9)
gives

p � �M�



Ẇ�t�
�
� �M� f (11)

Equation (11) presents the momenta p as a linear func-
tion of flow f . Inversion of equation (11) gives

f � f �p� � �M��1p (12)

as the constitutive law for the inertance of the finite ele-
ment shaft in the bond graph.

The gear-attached layshaft system which has inertance
and compliance can be expressed in bond graph form us-
ing multi port I and C elements. This bond graph, shown
in Fig. 6, accounts for only x-motions. Another identi-
cal model was introduced into the complete system for
y-motions. In Fig. 6, the flows on each 1-junction are
time derivatives of the respective modal displacements.
Odd numbered 1-junctions represent translations, even
numbered 1-junctions represent rotations. Because the
transverse displacements of the first and the last elements
are influenced by the bearing stiffness, two power bonds
are connected to the 1st and 9th nodal displacement 1-
junctions. Likewise, gear forces generated from the tooth
contacts are applied to the 2nd and 4th nodes in Fig. 5,
shown as the power bonds on the 3 rd and 7th 1-junctions.

Although only 4 elements were used, important natu-
ral frequencies and vibration modes can be estimated.
Higher order frequencies and modes can be analyzed by
incorporating more elements. Using the material and ge-
ometrical properties of the two gears and layshaft shown
in Tab. 1, the mass and stiffness matrices were calcu-
lated.

The structure of Fig. 6, a multiport C interacting with a
multiport I through 1-junctions, instills the FEM model
into a bond graph. Each 1-junction can be associated
with the time derivative of a nodal displacement of Fig. 5.
These 1-junctions also program into the bond graph dy-
namic equilibrium between moments and forces at each
node, provided by gear forces, bearing reactions, and
the multiport I and C, which involve the mass and stiff-
ness matrices. The bond graph of Fig. 6 shows how
these effects interact with the rest of the physical system,
and how motion equations should be derived. From this
structure was derived the matrix differential equations of
equation (17), and the interaction terms of equation (13).
These will be presented later.

5.2 Input and output shafts

Bending of input and output shafts can be modeled in a
similar manner. For the input shaft, only one reaction
force arises from gear 1. Likewise, one reaction force
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Figure 6 : Finite element, multi port model of gear-
attached layshaft system

Table 1 : Material and geometrical properties of two
gears and layshaft
Mass [kg] 1.920 4.184
Ixx- Mass Moment of Inertia [kg] 0.001969 0.004291
Izz- Mass Moment of Inertia [kg] 0.003811 0.01810
Density of carbon steel or
alloy steel [kg/m3] 7.70E+03
Young’s modulus of carbon
steel or alloy steel [Pa] 2.10E+11
Lay shaft length [m] 0.1+0.2+0.2+0.1
Lay shaft radius [m] 0.01
Layshaft area moment of
inertia [m4] 7.85E-09
Layshaft cross sectional
area [m2] 3.14E-04

arises from gear 4 on the output shaft. Each shaft is sup-
ported by two bearings, and bonds that transfer power
from shaft to bearing should be attached to each bond
graph/FEM shaft sub-model. As in the layshaft model,
only four finite elements were considered.

5.3 Combining sub-models into a complete model

Utilizing the modular characteristics of bond graphs,
sub-models can be linked. The complete gearbox model
shown in Fig. 7 is the model of Fig. 1 with two teeth con-
tact sub-models, two layshaft bending sub-models (for x
and y motions), two input shaft bending sub-models, and
two output shaft bending sub-models. State equations
were extracted from the entire gearbox model in Fig. 7.
These equations are presented in Appendix A. The state
variables are defined in the nomenclature.

g

Figure 7 : Complete gearbox model, including all sub
models

6 Numerical methods

6.1 1st order state equations from bond graph

State equations from the lumped parameter section of the
bond graph can be expressed in the matrix equation form,

Ẋ � BX �PḊ�F (13)

Here, the state vector X consists of all the state variables
of Appendix A, matrix P incorporates the effects of the
(FEM) shaft bending onto the other components in the
gearbox system, and F is the vector of input excitations
(the velocity source). In equation (13), nodal velocities
Ḋ appear instead of nodal displacements D, because the
relevant equations arose from kinematics of velocities,
rather than displacements. These kinematics are equiv-
alent, since velocities are time derivatives of displace-
ments.

At time t j�1, the state equations can be written as

Ẋ j�1 � BXj�1�PḊ j�1 �Fj�1

� BXj�1�P
�
Ḋ j �∆Ḋ j


�Fj�1

(14)

where,

Ẋ j�1 �
�Xj�1�Xj�

∆t
(15)

was approximated by backward difference, and ∆Ḋ j, the
vector of nodal velocity increments over time steps ∆t,
derived from Newmark’s method, is explained in Ap-
pendix B. Term Ḋ j is the vector of nodal velocities at
time t j.
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Now substitute equations (B.10) from the Appendix B
and (15) into the state equations of motion, (14) to obtain

�Xj�1�Xj�

∆t
� BXj�1�PḊ j �

γ
β∆t

P∆D j�PR̂ j �Fj�1�

Here, β and γ are numerical parameters of Newmark’s
method and ∆D j is the vector of nodal displacement in-
crements.

Collecting terms,

�
γ

β∆t
P∆D j �

�
1
∆t

I�B

�
Xj�1

� P
�
Ḋ j� R̂ j


�

1
∆t

Xj �Fj�1

(16)

In this case, the unknowns ∆D j and Xj�1 are grouped on
the left hand side of equation (16).

6.2 2nd order matrix equations from finite elements

Second order matrix ordinary differential equations were
extracted from the 1-junctions between interacting mul-
tiport I and C’s, as in Fig. 6.

From the inertance bonds arose equation

Ṗ ��KD�A

and from capacitance bonds arose

Ḋ � M�1P�

By differentiating the second of these equations, and sub-
stituting the second into the first, we obtain a matrix dif-
ferential system in displacement variable D,

MD̈�KD � A � a�QX (17)

where, a is the input force vector to the finite element part
and Q is the matrix which relates the finite element to the
lumped parameter bond graph part. We chose to use sec-
ond order matrix differential equations, rather than state
equations normally extracted from bond graphs, to avoid
calculating the inverse of the mass matrix, implied by

equation (12). This would destroy the sparseness of the
mass matrix, key to quick and efficient solution of finite
elements.

Equation (17) reduces to

K̂∆Dj � ∆Â j (18)

via Newmark’s algorithm, where

∆Â j � ∆A j �MQ̂ j

� �∆a j �Q j�1Xj�1 �Q jXj��MQ̂ j
(19)

Substitution of equation (19) into equation (18), and ar-
ranging terms, gives

K̂∆Dj�Q j�1Xj�1 � ∆a j �Q jXj �MQ̂ j (20)

The unknowns ∆D j and Xj�1 are on left hand side of
equation (20).

6.3 Combined system

Assembling from equations (16) and (20) into matrix
form gives

�
K̂ �Qj�1

� γ
β∆t P 1

∆t I�B

��
∆D j

Xj�1

�

�

�
∆a j�Q jXj �MQ̂ j

P
�
Ḋ j� R̂ j


� 1

∆t X j �Fj�1

�
(21)

At each step of the calculation, we can solve the un-
knowns ∆D j and Xj�1; then D j�1, Ḋ j�1, and D̈ j�1 can
be solved by equations (B.16), (B.17), and (B.18) from
the Appendix B during an auxiliary step. Before the next
step of calculation,

Q̂ jand R̂ j also must be updated using equations (B.11)
and (B.12) from the Appendix B.

6.4 Simple example of Combination of 1st and 2nd or-
der systems

Fig. 8 is a schematic of a system and its bond graph
which has finite element shaft bending, and lumped pa-
rameter elements (mass ma and stiffness ka, kbr1, and
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(a) Example physical modelg ( )

(b) Bond graph expression of (a)
Figure 8 : Example model and the bond graph

kbr2�. F is the input force. The same material, geometri-
cal properties, and the finite element model as in Kim’s
thesis were applied. The results obtained using equation
(21) coded and solved in MATLAB R� are represented in
Fig. 9-(a) and Fig. 10-(a) (Time step = 0.000005, γ� 1�2
and β � 1�4�. For the purpose of comparison, the same
example was solved by ANSYS R� and plotted in Fig. 9-
(b) and Fig. 10-(b).

7 Simulation of a layshaft gearbox

7.1 Formulation for gearbox model

By extending the formulation to a finite element shaft
bending model with many elements, the layshaft gearbox
model in Fig. 7 can be simulated.

As in equation (13), state equations from the bond graph
part can be represented as

Ẋ � BX �F �P1Ḋin x �P2Ḋin y

�P3Ḋlay x �P4Ḋlay y �P5Ḋout x �P6Ḋout y (22)

where, P1, P2, P3, P4, P5, and P6 are matrices which relate
the lumped parameter bond graph parts of the system to

(a) Equation (21) and Newmark’s algorithm

(b) ANSYS R�

Figure 9 : Displacement of nodes

the finite element model part, Input shaft-X (in x), Input
shaft-Y (in y), Layshaft-X (lay x), Layshaft-Y (lay y),
Output shaft-X (out x), and Output shaft-Y (out y), re-
spectively.

Versions of equation (17) describe each finite element
matrix model for the input, lay, and output shaft bend-
ings in the x and y directions.

By applying Newmark’s procedures, equation (22) can
be rearranged as
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(a) Equation (21) and Newmark’s algorithm

(b) ANSYS R�

Figure 10 : Angles of nodes

� γ
β∆t �P1∆Din x
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1
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�
Ḋin x
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�P2

�
Ḋin y

j �R̂in y
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�
�P3

�
Ḋlay x
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j

�
�P4

�
Ḋlay y
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j

�
�P5

�
Ḋout x

j �R̂out x
j

�
�P6

�
Ḋout y

j �R̂out y
j

�
(23)

and equations (17) for the various shaft bendings become

K̂∆Din x
j �Qin x

j�1Xj�1 � ∆ain x
j �Qin x

j Xj �MQ̂in x
j

K̂∆Din y
j �Qin y

j�1Xj�1 � ∆ain y
j �Qin y

j Xj �MQ̂in y
j

K̂∆Dlay x
j �Qlay x

j�1 Xj�1 � ∆alay x
j �Qlay x

j Xj �MQ̂lay x
j

K̂∆Dlay y
j �Qlay y

j�1 Xj�1 � ∆alay y
j �Qlay y

j Xj �MQ̂lay y
j

K̂∆Dout x
j �Qout x

j�1 Xj�1 � ∆aout x
j �Qout x

j Xj �MQ̂out x
j

K̂∆Dout y
j �Qout y

j�1 Xj�1 � ∆aout y
j �Qout y

j Xj �MQ̂out y
j

(24)

Converting equations (23) and (24) into matrix form
gives,

�
��������������

K̂ �0� �0� �0� �0� �0� �Qin x
j�1

�0� K̂ �0� �0� �0� �0� �Qin y
j�1

�0� �0� K̂ �0� �0� �0� �Qlay x
j�1

�0� �0� �0� K̂ �0� �0� �Qlay y
j�1

�0� �0� �0� �0� K̂ �0� �Qout x
j�1

�0� �0� �0� �0� �0� K̂ �Qout y
j�1

�
γ

β∆t P1 �
γ

β∆t P2 �
γ

β∆t P3 �
γ

β∆t P4 �
γ

β∆t P5 �
γ

β∆t P6
1
∆t I�B

�
��������������

�
��������������

∆Din x
j

∆Din y
j

∆Dlay x
j

∆Dlay y
j

∆Dout x
j

∆Dout y
j

Xj�1

�
��������������

�

�
��������������������

�∆ain x
j �Qin x

j Xj �MQ̂in x
j �

�∆ain y
j �Qin y

j Xj �MQ̂in y
j �

�∆alay x
j �Qlay x

j Xj �MQ̂lay x
j �

�∆alay y
j �Qlay y

j Xj �MQ̂lay y
j �

�∆aout x
j �Qout x

j Xj �MQ̂out x
j �

�∆aout y
j �Qout y

j Xj �MQ̂out y
j ��

����
P1

�
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Ḋout x

j � R̂out x
j

�
�P6

�
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(25)

By solving equation (25) and applying Newmark’s algo-
rithm, the layshaft gearbox model can be simulated.

7.2 Simulation results

Based on the bond graph model presented in Fig. 7, a
simulation was performed in MATLAB R� with a time
step of 10�5 and the values of system parameters shown
in Tab. 2 applied to both gear pairs.

The input to the flow source on the far left of Fig. 7 was
a cycloidal step function from 0 to 50 rad/sec, starting at
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Table 2 : Geometrical, material properties of spur gears,
standard full depth tooth system

Parameter Pinion Gear
Module [mm] 6

Number of teeth 21 31
Pressure Angle [degree] 20 ˚

Circular Pitch [mm] (=pi*module) 18.85
[pb] Base Pitch [mm] 17.713

[rp] Pitch Circle radius [mm] 63 93
[rb] Base Circle radius [mm] (=Pitch
Circle radius*cos(Pressure Angle)) 59.2 87.4

Center Distance [mm] 156
Addendum [mm] (=module) 6

Deddendum [mm] (=1.25*module) 7.5
�mc= (ua+ur�/ pb� Contact Ratio 1.615

Face width [mm] 20
Izz– Mass Moment of Inertia [kg] 0.00381 0.0181

Density of carbon steel or
alloy steel [kg/m3] 7.70E+03

Young’s modulus of carbon steel or
alloy steel [Pa] 2.10E+11

Friction coefficient between teeth 0.005

ts=0 sec and ending at te=0.5 sec. A mathematical de-
scription of this signal is

∆t �
2π�t� ts�

te� ts
(26)

Ωout �

��
�

ΩMin ;∆t � 0

ΩMin ��ΩMax�ΩMin�
∆t�sin�∆t�

2π ;0� ∆t � 2π
ΩMax ;∆t � 2π

(27)

where
ΩMin Starting value of the output signal. (0 rad/sec)
ΩMax End value of the output signal. (50 rad/sec)
ts Start time of the cycloid. (0 sec)
te End time of the cycloid. (0.5 sec)

This cycloidal function is smoother and physically more
reasonable than a step input, which will generate enor-
mous forces at the step change. The input cycloidal angu-
lar velocity and load sharing ratio are represented in Fig.
11. The angular velocity ratio between input and output
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shaft must be (21/31)2 + (transmission errors) in accor-
dance with the teeth number ratio or pitch circle radii ra-
tio for two pairs of mating gears. The simulation results
shown in Fig. 12 reflect this ratio of input and output
shaft velocities, and transmission errors.
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In this simulation, the angular velocity input is a flow
source with a cycloidal step function having 50 rad/s am-
plitude. The average power transmitted across the gear-
box is 825 W with average steady state input torque 16.5
N�m. If all components are rigid bodies, the expected
output velocity is 50*(21/31) 2 = 22.945 rad/s. To com-
pare this value with the simulation results, a portion of
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Fig. 12-(a) was magnified in Fig. 12-(b). The actual
output velocity in Fig. 12-(b) oscillates between 22.92
rad/s and 22.97 rad/s due to transmission errors caused by
tooth bending compliances, compliances of shafts, and
contact mechanisms. These transmission errors will not
decay, because the number of pairs of teeth in contact
fluctuates between 1 and 2. This creates impact loads
which activate oscillations. Moreover, the effective stiff-
ness of teeth bending and teeth in contact will increase
whenever teeth are in contact. The forces between con-
tacting teeth of meshing gears are represented in Fig. 13.
Here gears meshing in sequence with the load sharing
ratio act like impact sources.

Fig. 14 shows the response of each node (1-junction)
of the finite element shafts. The x-direction movements
of each shaft in Fig. 7 were plotted. The y-direction
movements had similar tendencies. We can see that the
center of each shaft has the largest translational displace-
ment (w5�, but the smallest value of angular displacement
(w6�. Both ends of each shaft have the smallest transla-
tional displacement (w1 and w9�, but the largest angular
displacement (w2 and w10� because the bearings at both
ends restrain the shaft displacements. Each shaft bends
in a bow shape with high frequency bending vibrations.

8 Summary and conclusions

We presented an updated bond graph model of a gearbox,
which now includes bending of shafts. To analyze shaft
dynamics more precisely, elementary finite element the-
ory was adopted. The complete model was simulated, us-
ing numerical methods derived via state equations from
bond graph model, and Newmark-β method for lumped
and finite element techniques.

The updated model can simulate the dynamic behavior
of gear teeth, shafts, gearbox housing, and interactions.
This gearbox model will be used in such fields as fault
diagnosis and control, which need detailed descriptions
of dynamics.
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Appendix A: Bond graph models with index and state
equations

A.1 Bond graph models with index

A.1.1 Gear teeth contact sub-model
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A.1.2 Parameters of gear teeth contact sub-model

Parameters Description Value
I1, I2, I3, I4 Equivalent mass of 0.001587

gear [kg]

C1, C2, C3, C4 Bending compliance of 9.203e-9
gear [m/N]

C5, C6 Compliace of gear teeth 2.76e-10
contact [m/N]

TF1, TF2 Transformer (rotational to 0.0592
translational)

TF3, TF4 Transformer (translational to 11.4416
rotational)

A.1.3 Layshaft gearbox model
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A.1.4 Parameters of gearbox housing and shafts

Parameters Description Value
I1, I2, I3, I4 Rotational inertia of 0.03

shaft [kg�m2]
I5 Rotational inertia of 0.3

gearbox [kg�m2]
C1, C4, C9 Torsional compliance of 2e-7

shaft [rad/N�m]
C10 Torsional compliance of 5e-8

gearbox [rad/N�m]
R1, R2, R3�

R4, R5, R6 Rotational resistance of 0.1
bearing [N�m�sec]

R7 Gearbox damping 0.1
[N�m�sec]

C2-1�C2-2�C3-1�C3-2 Compliance of bearing
C5-1�C5-2�C6-1�C6-2 at shaft [m/N] 5.7e-9
C7-1�C7-2�C8-1�C8-2

A.2 State equations

The subscripts g1 and g2 represent gear teeth contact sub-
models (oval shape) of the left and right hand side in
layshaft gearbox model, respectively.

A.2.1 Gear teeth contact sub-model: left hand side
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A.2.2 Gear teeth contact sub-model: right hand side
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Appendix B: Newmark-β method

This section explains the Newmark-β method [Weaver
and Johnston (1987)] to simulate dynamics of finite ele-
ment shaft bending. For a general many degree of free-
dom system, the damped equation model is

MD̈�BḊ�KD � A�t� (B.1)
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where M is the mass matrix, B is the damping matrix, K
is the stiffness matrix, A�t� is an external force vector,
and D is the displacement vector.

At time t j, equation (B.1) can be represented as

MD̈ j �BḊ j �KDj � A j (B.2)

Similarly, at the next time t j�1 � t j �∆t j, equation (B.2)
becomes

M�D̈ j�∆D̈ j��B�Ḋ j�∆Ḋ j��K�Dj�∆D j� � A j�∆A j

(B.3)

Subtraction of equation (B.2) from equation (B.3) pro-
duces the incremental equation of motion as

M∆D̈ j �B∆Ḋ j �K ∆Dj � ∆A j (B.4)

where, ∆D̈ j, ∆Ḋ j, and ∆D j are the incremental acceler-
ation, velocity, and displacement vectors, respectively;
∆A j is the increment in load between times t j and t j�1.

To numerically solve these equations, Newmark approx-
imated the velocity and displacement of a single degree
of freedom system at time t j�1, as follows.

u̇ j�1 � u̇ j ���1�γ� ü j �γü j�1� ∆t j (B.5)

u j�1 � u j � u̇ j∆t j ���1�2�β� ü j �β ü j�1� �∆t j�
2 (B.6)

where ∆t j is the time step, and β and γ are numerical
parameters chosen by the user to expedite stability and
speed. The parameter β is generally between 0 and 1/4,
and γ is often 1/2.

When we consider a many degree of freedom structure
and cast the Newmark-β method into matrix form, equa-
tions (B.5) and (B.6) can be written in the incremental
matrix form.

∆Ḋ j � ��1�γ�D̈ j �γD̈ j�1�∆t j � D̈ j∆t j �γ∆D̈ j∆t j (B.7)

∆D j � Ḋ j∆t j �
��

1
2 �β


D̈ j �βD̈ j�1

�
�∆t j�2

� Ḋ j∆t j �
1
2D̈ j�∆t j�2 �β∆D̈ j�∆t j�2 (B.8)

Solving for ∆D̈ j and ∆Ḋ j, we get

∆D̈ j �
1

β�∆t j�2 ∆D j� Q̂ j (B.9)

∆Ḋ j �
γ

β∆t j
∆D j� R̂ j (B.10)

where,

Q̂ j �
1

β∆t j
Ḋ j �

1
2β

D̈ j (B.11)

R̂ j �
γ
β

Ḋ j �

�
γ

2β
�1

�
∆t jD̈ j (B.12)

If we substitute equations (B.9) and (B.10) into the incre-
mental equations of motion (B.4), then we have

K̂∆Dj � ∆Â j (B.13)

where,

K̂ � K �
1

β�∆t j�2 M�
γ

β∆t j
C (B.14)

∆Â j � ∆A j �MQ̂ j �CR̂ j (B.15)

From equations (B.13), the unknown incremental dis-
placements ∆D j are obtained. Finally, the values of D j,
Ḋ j, and D̈ j at the next time t j�1 are

D j�1 � D j �∆D j (B.16)

Ḋ j�1 � Ḋ j �∆Ḋ j (B.17)

D̈ j�1 � D̈ j �∆D̈ j (B.18)

Appendix C: Nomenclature

β, γ Parameters of Newmark’s method
φ Pressure angle
ρ density
µ friction coefficient
A�t�, A external force vector in

Newmark’s method
a input force vector to a finite

element part
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B damping matrix in Newmark method,
state pace matrix

D displacement vector
∆D, ∆A incremental displacement vector

and increment in load
F input source vector applied to a bond

graph part
Fn, Ft normal and tangential forces at

contact surface of gear teeth
f � p vector of flows and momentum variables
M, K mass and stiffness matrices in

Newmark’s method
�m], [k] mass and stiffness matrices of an element
�M]i, [K]i extended mass and stiffness matrices

of elements
P matrix which relates a bond graph part

to a finite element part
Q matrix which relates a finite element part

to a bond graph part
u displacement of single degree of freedom
vn, vt normal and tangential velocities at

contact surface of gear teeth
�W�i extended nodal displacement vector

of elements
�w�i nodal displacement vector of an element
X state vector of a bond graph part
θg1�θg2 rotational angles in gear contact

sub-models, g1 and g2

hI5 angular momentum of gearbox housing in
gearbox model

hI1 �hI2� angular momenta of shafts
hI3 �hI4 in gearbox model

Pg1 i1 �Pg1 i2 �
Pg1 i3 �Pg1 i4 � momenta of gear teeth by gear tooth
Pg2 i1 �Pg2 i2 � inertia in contact sub-models,
Pg2 i3 �Pg2 i4 g1 and g2

qg1 c1�qg1 c2�

qg1 c3�qg1 c4� bending deflections of gear teeth
qg2 c1�qg2 c2� in contact sub-models, g1 and g2

qg2 c3�qg2 c4

qg1 c5�qg1 c6� deformations of gear teeth flank by
qg2 c5�qg2 c6 contact in contact sub-models, g1 and g2.

qc2 1�qc2 2�

qc3 1�qc3 2�
qc5 1�qc5 2� deflections of bearings at both ends
qc6 1�qc6 2� of shaft in finite element
qc7 1�qc7 2� shaft sub-model
qc8 1�qc8 2

qC1 �qC4�qC9 angular displacements of each shaft by
torsion in gearbox model

qC10 angular displacement of gearbox
housing in gearbox model


