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A Green’s Function for Variable Density Elastodynamics under Plane Strain
Conditions by Hormander’s Method

George D. Manolis 1, Stavros Pavlou 2

Abstract: A free-space Green’s function for problems
involving time-harmonic elastic waves in variable den-
sity materials under plane strain conditions is developed
herein by means of Hormander’s method in the con-
text of matrix algebra formalism. The challenge when
solving problems involving inhomogenous media is that
the coefficients appearing in the governing equations of
motion are position-dependent. Furthermore, an addi-
tional difficulty stems from the fact that these govern-
ing equations are vectorial, which implies that coordinate
transformation techniques that have been successful with
scalar waves can no longer be used. Thus, the present
work aims at establishing the necessary background that
will allow for constructionof Green’s functions for a gen-
eral class of inhomogeneous media that is not necessar-
ily restricted to the variable density case. These func-
tions, besides being useful in their own right, are also
important within the context of boundary integral formu-
lations, where they appear as kernels in the underlying
integral equations. Finally, a numerical example serves
to illustrate the proposed methodology and to quantify
the influence of a variable density profile on the propaga-
tion of elastic waves.

keywords: Boundary integrals; Elastodynamics;
Green’s function; Hormander’s method; Inhomogeneous
media; Wave equation.

1 Introduction

The development of Green’s functions for elastic wave
propagation in solids is of engineering importance, be-
cause these functions represent fundamental solutions to
special types of disturbances (such as the point force
and the unit dislocation) and under rather broad bound-
ary conditions (such as the Sommerfeld radiation). At
the same time, they comprise an essential part (namely
the kernels) of any boundary integral equation method
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(BIEM) formulation (Cruse and Rizzo 1968; Cruse 1968)
and, of course, of its corresponding numerical solution
technique, the boundary element method (BEM) (Mano-
lis and Beskos 1988; Dominguez 1993). The latter
method has been very successful in solving boundary-
value problems of engineering importance in transient
elastodynamics, as can be deduced by consulting the ex-
tensive literature reviews by Beskos (1987; 1997) that
span the last fifteen years. Since the preferred formula-
tion is invariably a displacement-traction approach based
on Somigliana’s identity, the corresponding Green’s
functions must come from a solution of the equations
of elastodynamics for a point force and under radiation-
type boundary conditions. This can be done by a vari-
ety of ways, e.g., use of potentials (Helmholtz potentials,
Stokes potentials), displacement vector decomposition
into dilatational and rotational components (Miklowitz,
1978), use of the dynamic equivalent to Galerkin’s vec-
tor, integral transforms (Duffy, 1994), etc.

The major difficulty has been an extension of the afore-
mentioned methodologies to problems involving other
categories of materials, which go beyond the homoge-
neous, isotropic linear elastic continuum, such as those
exhibiting heterogeneity, anisotropy, layering, random-
ness, etc. (Ewing et al., 1957, Hanyga, 1985). Appli-
cations, however, are numerous and span various engi-
neering fields, including seismic prospecting, earthquake
engineering, acoustics, ocean engineering, signal trans-
mission, composite materials and non-destructive testing
evaluation to name a few. The most complicated struc-
ture to model is, of course, the earth itself (Helbig, 1994).

A recent, and rather extensive, literature review on wave
motion in non-homogeneous materials can be found in
Manolis and Shaw (2000). In order to add to this list
of efforts regarding solution of boundary-value problems
with the purpose of recovering Green’s functions for var-
ious types of inhomogeneities, we mention the work of
Selvadurai and Lan (1998) on a half-space under axisym-
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metric conditions with elastic parameters that are peri-
odic functions of the depth, of Vardoulakis and Geor-
giadis (1997) on the use of gradient elasticity theory in
modeling the microstructure of a half-space underSH
waves, of Muravskii and Operstein (1996) on time har-
monic vibrations of an incompressible half-space whose
shear modulus exhibits a linear variation with depth, and
of Hryniewicz and Filipkowski (1996) on the construc-
tion of dynamic stiffness matrices for in-plane motion in
a material with a shear modulus that is a random function
of the depth. Furthermore, Guzina and Pak (1996) com-
puted Green’s functions for point and ring loads sources
in a half-space with a smoothly varying material pro-
file, while Vrettos (1998) examined the case of a vertical
point load on the surface of a half-space with a non-zero
shear modulus at its surface that varies with depth but
remains bounded at infinite depth. The method of solu-
tion in all the above works is integral transforms, with
preference given to the Hankel transform. The excep-
tion to this is Hryniewicz and Filipkowski (1996), whose
problem has to do with random vibrations and therefore
requires a different technique, namely one that hinges on
the solution of a system of first-order differential equa-
tions. Recently, Melnikov and Melnikov (2001) intro-
duced the concept of modified potentials, which are used
for computing Green’s functions for biharmonic equa-
tions defined in 2D regions with complex configurations.
It is thus possible to model materials consisting of ar-
bitrary shaped regions with different material properties.
Finally, Gragg (1998) used an energy conservation ap-
proach to examine Helmholtz’s equation for a weakly
non-uniform material, i.e., a material with a slowly vary-
ing density profile. The interesting thing about this last
case is the possibility of forward-moving 1D wave mo-
tion only, with very little backscattering.

As previously mentioned, the aforementioned Green’s
functions, besides being useful in their own right, are
also used as kernels in BEM formulations for the pur-
pose of solving complex problems numerically. Specifi-
cally, recent work on BEM formulations is that of Ang
et al. (1996) and of Clements (1998) for the general
second order, elliptic partial differential operator with
non-constant coefficients that are functions of two spa-
tial variables, of Xu and Kamiya (1998) on the inhomo-
geneous Poisson equation whose linear part is governed
by Laplace’ operator and of Itagaki (2000), who used
the dual reciprocity BEM to handle Helmholtz’s equa-

tion with a spatially-dependent source term.

As far as applications are concerned, we have the con-
struction of compliance matrices for a rigid punch in the
elastic half-plane, whose coefficients are exponentially
decaying functions of two spatial coordinates (Bakir-
tas, 1984), the use of a 1D inhomogeneous shear beam
to model the earthquake response of hill-shaped land-
fills (Gunturi and Elgamal, 1998), the computation of
synthetic seismograms for both laterally and vertically
heterogeneous geological deposits (Geller and Ohmi-
nate, 1994), the evaluation of dispersion curves for wave
motion guided through anisotropic beams with vari-
able cross-section geometry (Volovoi et al., 1998) and
the computation of eigenvalues for continuously non-
homogeneous membranes of variable density (Wang,
1998). Also, Hazanov (1999) used Huet’s method for
determining the effective material properties of heteroge-
neous elastic materials with imperfect interfaces, while
Muravskii (2000) used earlier solutions to interpret ex-
perimental results for waves propagating across the sur-
face of a half-space so as to deduce the degree of inho-
mogeneity in its material properties, i.e., an inverse-type
of problem.

Finding other, simpler methods of solution to problems
involving continuous media with non-constant material
parameters is difficult. In this respect, we briefly mention
some recent activity in the area of time harmonic acoustic
waves in heterogeneous media using a coordinate trans-
formation method based on conformal mapping (Shaw
and Manolis, 2000a). While this approach is limited to
2D problems and is “inverse” in its form, i.e., a given
mapping will lead to a particular type of heterogeneity,
it represents a step forward in the development of fun-
damental solutions in the form required by the BEM. In
the case of elastic waves (Shaw and Manolis, 2000b) that
are governed by vector differential equations, the class
of solvable problems by this method is limited to vari-
able (i.e., position dependent) density and constant elas-
tic parameters. Even then, an additional assumption re-
garding decomposition of the displacement vector into
pseudo-dilatational and pseudo-rotational parts is neces-
sary in order to achieve a closed-form solution through
reduction to the anti-plane strain case. The reason is
that for a vector wave equation, the underlying coordi-
nate transformation affects the base vectors of the gra-
dient operator. Thus, the governing equations recovered
in the transformed coordinate system are not necessar-
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ily simpler when compared to their original form. It is
always possible, however, to construct a fine layer ap-
proximation for a heterogeneous medium, provided ro-
bust analytic solutions are available that remain stable at
high frequencies of vibration (Tadeu and Antonio, 2001).

In order to overcome these difficulties, we employ Hor-
mander’s (1994) method, which uses matrix algebra for-
malism for the solution of systems of partial differential
equations, as a more general approach for solving prob-
lems in elastic wave propagation through heterogeneous
media under plane-strain conditions. An advantage of
this method is that a key step in the solution procedure for
these specific types of problems involves a biharmonic
equation. If conditions of radial symmetry hold in the
sense that material properties vary with respect to dis-
tance from the source of the disturbance (i.e., the origin
of the coordinate system), then the biharmonic is a func-
tion of a single variable and becomes amenable to closed-
form solution. Specifically, we focus on variable den-
sity profiles, but it is also possible to consider position-
dependent elastic parameters (e.g., the Lam´e constants).
Furthermore, extension to 3D cases is rather straightfor-
ward. Briefly, the paper is structured as follows: Follow-
ing development of the methodology for the 2D vector
wave equation, some basic results are recovered for clas-
sical elastostatics and elastodynamics. Next, new results
are derived for wave motion in medium with a variable
density profile that approaches a constant (background)
value at a distance comparable to a single wave length
from the source of the disturbance. Finally, a numerical
example serves to illustrate the present methodology and
to highlight the differences observed in elastic waves as
they propagate through a continuous medium that is no
longer homogeneous.

2 Methodology

Consider a differential equation in the standard form

L(u) = f (1)

whereL is the differential operator,u is the dependent
variable andf is the forcing function, which from now on
will be identified with the generalized Dirac delta func-
tion δ. At the same time, we will focus on the unbounded
continuum (the elastic full-space), where the Sommer-
feld radiation boundary condition is assumed to hold.

Both u andδ are functions of the spatial variablex and,
since time-harmonic conditions will be imposed, of the
frequency parameterω. Note that because of this last
assumption, initial conditions are irrelevant. In terms of
notation, we will interchangeably use bold symbols, in-
dex notation and brackets as a way of indicating vectorial
quantities. It is obvious that any solution to eqn (1) as de-
fined above can be viewed as a Green’s function.

Following Hormander (1994) and using matrix notation,
the solution for the dependent variableu can be written
as

fug= [L]�1fδg = ad j [L]fδg
det[L]

= ad j [L]fφg (2)

whereadj anddet respectively denote adjoint matrix and
determinant. The intermediate scalar functionφ is de-
fined through the following equation:

det[L(x)]φ(x) =�δ(x) (3)

In mechanics, the delta function is viewed as a unit im-
pulse to the system (here the continuous medium) at
source pointx. If the impulse is applied in all three prin-
cipal directions atx, then a set of three displacement vec-
tors results, which can be grouped column-wise to yield
Green’s tensorG. Physically speaking, componentGi j is
the displacement (although, depending on the definition
of the dependent variable, it might be a force or any other
type of reaction) at the receiver point in thei thdirection
due to the aforementioned unit impulse placed at the
source and in thejthdirection. The complete displace-
ment solutionui can therefore be synthesized in terms of
Green’s tensor asfug= [G]feg, whereei is the unit base
vector for the three principal directions.

Since we will restrict the present development to 2D (i.e.,
plane strain) conditions, eqn (1) corresponds to the fol-
lowing 2x2 system of differential equations:

�
L11 L12

L21 L22

��
G11 G12

G21 G22

�
=

�
1 0
0 1

�
(δ) (4)

whereL has been decomposed intoLi j . Following eqs
(2) and (3), the solution is
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�
G11 G12

G21 G22

�
=

�
L11 �L12

�L21 L22

�
(φ) (5)

where

(L11L22� L12L21)(ϕ) = �δ(x) (6)

In what follows, the above method will be validated
against the 2D elastostatic operator.

2.1 Example: Elastostatics

The Green’s function for 2D elastostatics using Horman-
der’s method is evaluated here as a check. The governing
equation of equilibrium in indicial notation is

(λ+µ)ui;i j +µu j;ii +δ(x)e j = 0 (7)

whereui is the displacement vector, while the Lam´e con-
stantsλ and µ are related through Poisson’s ratioν as
λ =

�
2ν
Æ
(1�2ν)

	
µ. Furthermore, commas indicate

differentiation with respect to the spatial coordinates and
the summation convention is implied for repeated indices
that range asi,j = 1,2. Next, theGi j tensor components
are grouped as shown below

[L]

�
G11

G21

�
=�
�

1
0

�
δ(x) and[L]

�
G12

G22

�
=�
�

0
1

�
δ(x) (8)

and the differential operatorL in eqn (7) is decomposed
as follows:

L11 = µ∇ 2+(λ+µ)
∂2

∂x2 ;L12 = L21 = (λ+µ)
∂2

∂x∂y
;

L22 = µ∇ 2+(λ+µ)
∂2

∂y2 (9)

The intermediate step in eqn (6) requires solving the fol-
lowing biharmonic equation

µ(λ+2µ) ∇ 4φ= �δ(x) (10)

Under conditions of radial symmetry, the Laplacian is
∇ 2 = 1

r

�
d
dr

�
r d

dr

��
, so the biharmonic∇ 4φ reads as

∇ 4φ=
d4φ
dr4 +

2
r

d3φ
dr3 �

1
r2

d2φ
dr2 +

1
r3

dφ
dr

(11)

The solution to the homogeneous part of eqn (10) is

φ(r) =C0+C1r2+C2`n
�
r
Æ

r0
�
+C3r2`n

�
r
Æ

r0
�

(12)

from which the last term also corresponds to the solution
for a unit impulse atr = 0: The integration constantC 3

can be found by replacing this particular solution in eqn
(10) and integrating both left and right hand sides around
a disc centered at the origin whose radius in the limit
tends to zero (Panc, 1975). The result (ignoring reference
distancer0) is

φ(r) =� 1
8π

1
µ(λ+2µ)

r2`nr (13)

Direct substitution ofφ in eqn (5) yields

[G] = � 1
8πµ(1�ν)

� (14)

�
(3�4ν)`nr� (x=r)2+C �xy=r2

�xy=r2 (3�4ν)`nr� (y=r)2+C

�

which is identical to the solution recovered by Rizzo
(1967) with the exception of the constant termC=(3.5-
4ν) along the diagonal that signifies rigid body motion
and can therefore be neglected. Finally, the two displace-
ment components are reconstituted from the Green’s ten-
sorGi j asu1 = G11e1+G12e2andu2 = G21e1+G22e2.

3 Governing equations of dynamic equilibrium

The governing equations for time harmonic elastody-
namics in terms of the displacement vector (Navier’s
equations) are as follows (Achenbach, 1973):

(λ+2µ) ∇∇ �u�µ∇ x∇ xu+ρω2u = �ρf (15)

This particular form requires constant elastic parame-
tersλ andµ, but allows for a position-dependent density,
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namelyρ(x,y). Also, u is the displacement vector andf
is the body force vector per unit mass, taken here to be
the unit impulse acting at source(x0;y0) and in both di-
rections. Parenthetically, this implies that the reference
value of densityρ is that registered at the source, since
this is the only point where the body force is non-zero.
Also, ω is the frequency at which the elastic wave prop-
agates.

In solving the above equations for a variable density,
the more standard forms obtained by the use of poten-
tials are not useful, because of the need to differentiate
Navier’s equations at some point in order to form the
two Helmholtz equations, whose fundamental solutions
are easier to obtain (Manolis and Shaw, 2000). An alter-
native is to use dilatational and rotational displacement
components, but again the two key vector operators in
eqn (15) involving the gradient(∇ �) and the curl(∇ �)
still have to be dealt with. Finally, conformal mapping
techniques (Shaw and Manolis, 2000a) which hinge on
producing simpler forms of eqn (15) in the new coor-
dinate system also run into problems, because the base
vectors underlying the gradient operator undergo a trans-
formation in the new space and are responsible for the
emergence of dispersive (i.e., velocity-dependent) terms
that were originally absent.

For the homogeneous material case, fundamental solu-
tions for eqn (15) under plane strain conditions can easily
be found in the literature (Kobayashi, 1987). The basic
structure of such a solution isu i = Gi je j, with i; j = 1;2,
whereGi j is given below as follows:

Gi j =
i

4µ

n
G1δi j �G2

∂r
∂xi

∂r
∂x j

o

G1 = H(1)
0 (ksr)� 1

ksr H(1)
1 (ksr)+

�
k2

p

Æ
k2

s

�
1

kpr H(1)
1 (kpr)

G2 = �H(1)
2 (ksr)+

�
kp
Æ

ks
�2

H(1)
2 (kpr)

(16)

The above form is in terms of Hankel functions of
the first kind, H (1)

n ;which represent outgoing waves.
Also, the radial distance between receiver(x;y) and
source(x0;y0) points isr =

p
(x�x0)2+(y�y0)2. The

two wave numbers for pressure and shear waves are
kp=ω/cp and ks=ω/cs;respectively, whilec2

p=(λ+2µ)/ρ
andc2

s =µ/ρ are the corresponding wave velocities. An
alternative form to that shown above can be obtained in

terms of the modified Bessel functionsK0 for a complex
argument (i.e., circular frequencyω is replaced byiω,
i=
p

-1) based on the following relation:

K0 (kr) =
πi
2

H(1)
0 (ikr) (17)

3.1 Example: Constant density elastodynamics

As before, in order to recover the elastodynamic Green’s
function using Hormander’s method, we first write the
Navier equations using indicial notation as

(λ+µ)ui;i j +µu j;ii +ρω2u j = �ρδ(x)e j (18)

Then, Green’s tensorGi j is computed as follows:

[Gi j] =
�
1
Æ

α
�� g11 g12

g21 g22

�
= [L]φ=

"
µ∇ 2+(λ+µ) ∂2

∂y2 +ω2ρ �(λ+µ) ∂2

∂x∂y

�(λ+µ) ∂2

∂x∂y µ∇ 2+(λ+µ) ∂2

∂x2 +ω2ρ

#
�

(φp (r)+φs (r))

(19)

We note thatα is a constant to be determined and that
intermediate functionφ is decomposed into a pressure
wave componentφp and a shear wave componentφs. The
determinant of the above 2x2 matrix is computed as

det[L(x)] = µ(λ+2µ) ∇ 4+ρω2 (λ+3µ) ∇ 2+ρ2ω4

(20)

Expanding the above determinant and rearranging terms
yields a biharmonic equation

∇ 4φ+
�
k2

p +k2
s

�
∇ 2φ+k2

pk2
s φ=� 1

µ(λ+2µ)
ρδ(r) (21)

which can be factored into two Helmholtz-type equations
as follows:
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�
∇ 2+k2

p

��
∇ 2+k2

s

�
φ(r) = � 1

µ(λ+2µ)
ρδ(r) (22)

We seek solutions to the homogeneous form of eqn (22),
so that each Helmholtz equation can independently go to
zero. Furthermore, if radial symmetry can be invoked,
then each of these two equations is a zero-order Bessel
equation, i.e.,

d2φ(r)
dr2 +

1
r

dφ(r)
dr

+k2φ(r) = 0 (23)

wherek corresponds to eitherks or kp (and similarlyφ is
eitherφp or φs). The solution follows a scaling ofr askr
(which brings about the standard form without any factor
in front of φ(r)) and is given below as

φ(r) = AJ0 (kr)+BY0 (kr) =CH(1)
0 (kr)+DH(2)

0 (kr)

(24)

with J0;Y0 the Bessel functions andH (1)
0 ;H(2)

0 the Hankel
functions, all of order zero. The latter are related to the
former as

H(1;2)
0 (z) = J0 (z)� iY0 (z) (25)

It is well known (Miklowitz, 1978) that the solution cor-
responding to outgoing waves generated by a unit im-
pulse at the source can be recovered from the full homo-
geneous solution asCH (1)

0 ;with C being an integration
constant.

By substituting the Hankel function solution of zero or-
der, first kind (withC = 1) for φ(r) in eqn (19), we obtain
the following results for thegi jdisplacement tensor com-
ponents:

g11 =
�
ρω2�k2µ

�
H(1)

0 (kr)+

(λ+µ)

�
�k2H(1)

0 (kr)+
k
r

H(1)
1 (kr)� k2x2

r2 H(1)
2 (kr)

�
(26)

g22 =
�
ρω2�k2µ

�
H(1)

0 (kr)+

(λ+µ)

�
�k2H(1)

0 (kr)+
k
r

H(1)
1 (kr)� k2y2

r2 H(1)
2 (kr)

�
(27)

and

g12 =�(λ+µ)
x
r

y
r

k2H(1)
2 (kr) (28)

We note here that the symbolic mathematics package
Mathematica (1999), which was used in obtaining the
above results, retains only the lowest order Bessel func-
tions. In order to introduceH (1)

2 so as to bring forth a
form that can be compared with existing solutions, it is
necessary to use the following Bessel function identity:

H(1)
2 (kr) =

2
kr

H(1)
1 (kr)+H(1)

0 (kr) (29)

Synthesis of both pressure and shear wave components
yields

αG11 = gP
11+gS

11 =

H(1)
0 (kpr)

�
ρω2�k2

pµ�k2
p (λ+µ)

	
+

H(1)
1 (kpr)

kp (λ+µ)

r
�H(1)

2 (kpr)
(λ+µ)k2

px2

r2 +

H(1)
0 (ksr)

�
ρω2�k2

s µ�k2
s (λ+µ)

	
+

H(1)
1 (ksr)

ks (λ+µ)
r

�H(1)
2 (ksr)

(λ+µ)k2
s x2

r2 =

�k2
s (λ+µ)

�
H(1)

0 (ksr)+
1

ksr

�
H(1)

1 (ksr)+
kp

ks
H(1)

1 (kpr)

�
+

x2

r2

 
H(1)

2 (ksr)+
k2

p

k2
s

H(1)
2 (kpr)

!)
(30)

and



A Green’s Function for variable density elastodynamics under plane strain conditions by Hormander’s Method 405

αG12 = gP
12+gS

12 (31)

=�(λ+µ)
x
r

y
r

n
k2

pH(1)
2 (kpr)+k2

s H(1)
2 (ksr)

o

= �(λ+µ)k2
s

x
r

y
r

(
H(1)

2 (ksr)+
c2

s

c2
p

H(1)
2 (kpr)

)

while theG22 component can be obtained fromG11 by
interchangingx andy. By comparing with the standard
form of the solution as given by Kobayashi (1987) in eqn
(16), constantα is determined as follows:

1
α

=
i

4µ
1

(λ+µ)k2
s

(32)

More specifically, the presence ofα is a consequence of
the fact that the solution to eqn (22) was recovered from
the homogeneous one given in eqn (24). Thus, two points
have to be checked with respect to the Green’s function,
namely that: (a) it contains the correct singularity at the
point of application of the point impulse (i.e., the origin),
and (b) has the appropriate magnitude. The second point
is rather mute, since there is certain latitude in the defi-
nition of the magnitude of the external impulse. For in-
stance, Green’s functions for Helmholtz’s equation may
correspond to factors of4π, of 2π, or of unity in the right-
hand side (Morse and Feshbach, 1953). Furthermore, it
does not change the formulation of a BIEM statement
(Cruse and Rizzo, 1968), since this involves the convolu-
tion of two distinct elastodynamic states, namely one cor-
responding to the actual boundary-value problem whose
solution is sought, plus another involving the Green’s
function solution: obviously, the actual “strength” of this
second state is unimportant.

3.1 The Green’s function singularity

The singularity exhibited by Green’s function around a
disc of exclusionSε centered at the point of application
of the impulse is now examined. Specifically,ϕ(r) is as-
sumed regular in the outer regionS, while its singular
part ϕsi(r) is computed by substituting back in the 2D
Helmholtz equation (see eqn (23), but with -δ(r) as the
right-hand side), integrating both sides around a disc of
radiusr = ε centered at the origin and finally taking the
limit as ε !0 (Morse and Feshbach, 1953). Since the

singularity of the Laplacian ofϕ si(r) is obviously higher
than the singularity ofϕ si(r) itself, the second term in the
left-hand side of Helmholtz’s equation is ignored. We
therefore have that

Z Z
∇ 2ϕsi(r)dSε+0=�

Z Z
δ(r�0)dSε (33)

The integral of the delta function is simply equal to 1:0,
since discSε includes the point of application of the im-
pulse. For the other integral, we use Gauss’ divergence
theorem to get

I
∇ �ϕsi(r)dΓε = �1 (34)

whereΓε is the disc’s perimeter. Given thatϕ si(r) is a
function of the radius and that the gradient is normal to
the disc’s perimeter, the above integral is simply equal to

�
∂ϕsi(r)

Æ
∂r
�
=�1 (35)

Thus, integration givesϕ si(r) = -(1/2π) ln(r) for r � ε,
which is identical to the singular term in the Hankel func-
tion expansions for small argument.

4 Variable density elastodynamics

For this case we express the density, which is assumed to
be dependent on the radial distance, in terms of a constant
(or background) value denoted by subscript 0 plus a non-
dimensional functionb(r) as

ρ(r) = ρ0b(r) (36)

Similarly, k(r) = k0
p

b(r) is the expression for the
generic wave number understood to represent bothP and
S waves.

Hormander’s method, as previously developed, is ap-
plicable here as well. Specifically, the determinant of
system matrixL(u) acting on intermediate functionφ(x)
yields the following equation:

µ(λ+2µ) ∇ 4ϕ+(λ+3µ)ω2ρ∇ 2ϕ+(λ+3µ)ω2∇ρ � ∇ϕ +

+

�
ρ2ω2+

1
2
(λ+3µ)ω2∇ 2ρ

�
ϕ = �δ(x) (37)
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By comparing with the standard form given in eqn (20),
we note the presence of two additional terms, namely one
involving the gradient of the density (i.e.,∇ρ ) and an-
other involving its Laplacian (i.e.,∇ 2ρ). At this stage,
the solution will proceed ignoring these terms and their
relative importance will be gauged once the correspond-
ing density profile is recovered. Thus, it is still possible
to factor the biharmonic equation for the variable den-
sity case into two Helmhotz equations, which however
are no longer zero-order Bessel equations. Instead, they
become Bessel equations of arbitrary ordern, wheren
is not necessarily an integer. The reason is that we now
have a variable wave number in eqn (23). Therefore, eqn
(23) assumes the more general form given in Gradshteyn
and Ryzhik (1980), which is given below as

1
z

d
dz

�
zu0
�
+

"�
βγzγ�1�2�

�
nγ
z

�2
#

u = 0 (38)

In the above,u andz are the dependent and independent
variables, respectively, whileβ andγ are constants. The
solution to eqn (38) is

u = Zn (βzγ) (39)

whereZn stands for any of the Bessel functionsJn;Yn or
the Hankel functionsH (1)

n ;H(2)
n . Going back to the bihar-

monic equation, the obvious choice forφ(r) to represent
outgoing waves is

φ(r) =CH(1)
n (krγ) (40)

whereCis the usual integration constant. As such, this
new solution is a more general version of the basic solu-
tion used for constant density and reduces to it ifn = 0
andγ=1. By comparing eqs (23) and (38), the new wave
number profile is

k2 = k2
0

��
γ rγ�1�2� n2γ2

k2
0r2

�
(41)

For simplicity, we adoptγ=1 and thusφ=H (1)
n (kr), while

the corresponding two material profiles now simplify as

ρ = ρ0

�
1� n2

k2
0r2

�
andk = k0

s
1�
�

n
k0r

�2

(42)

In reference to eqn (37), it is easy to show thatρ(x) is
an analytic function, which implies that∇ 2ρ(x)=0. Fur-
thermore, the density gradient with respect to radial dis-
tancer is equal to∇ rρ(r) = �2(n2

Æ
k2

0r3)er. Despite the
fact that this gradient is not equal to zero, it is a rapidly
decreasing function ofr, especially in the region where
the density profile approaches the constant value ofρ0.
Therefore, for all practical purposes, the gradient term
does not influence the solution for the Green’s function
in the region where the density profile is positive. In any
case, this term indicates dispersion, which can always be
accounted for through the use of complex-valued wave
numbers. In sum, the solution obtained here is approxi-
mate, and valid everywhere except in a small disc (whose
radius is less than 10% of the value of the dominant wave
length) in which the density profile assumes physically
unreasonable negative values.

As before, substitution ofφ(r) in eqn (19) with a
variable density yields the following results for the
gi jcomponents:

g11 =
1
4

�
4ρω2H(1)

n +
µx2+(λ+2µ)y2

r2 �

k2
0

�
H(1)

n�2�2H(1)
n +H(1)

n+2

�
+ (43)

+2
(λ+2µ)x2+µy2

r3 k0

�
H(1)

n�1�H(1)
n+1

��

g12 = �1
4

nxy
r3 (λ+µ)k0

h
2H(1)

n+1�2H(1)
n�1 (44)

+rk0

�
H(1)

n�2�2H(1)
n +H(1)

n+2

�io

g22 =
1
4

�
4ρω2H(1)

n +
(λ+2µ)x2+µy2

r2 �
n

k2
0

�
H(1)

n�2�2H(1)
n +H(1)

n+2

�
+ (45)

+2
µx2+(λ+2µ)y2

r3 k0

�
H(1)

n�1�H(1)
n+1

��
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In sum, the Green’s function tensor is synthesized as
follows: First, the components corresponding to the
shear wave aregs

11;g
s
12;g

s
22 and are derived from the

H(1)
n ((k0 = ks0)r) Hankel function. Next, the process

is repeated for the pressure wave componentsg p
11;g

p
12,

gp
22 coming from theH (1)

m ((k0 = kp0)r) Hankel function,
where indexm 6= n, as will be explained in the next
section. Finally, the two solutions are superimposed as
gi j = gp

i j + gs
i j and factorα that accounts for integration

constantC is introduced; so as to yield the final form of
the Gi j tensor. A cursory look at the biharmonic (i.e.,
eqn (22)) indicates thatα can no longer have the same
value as that given in eqn (32), because densityρ in the
right-hand side is not constant and it’s value at the origin
does not coincide with the background value ofρ0. This
last step will be carried out in the next section, where
the density profile is examined in more detail. Finally,
since the impulse that triggers wave motion derives from
a force per unit volume, the resulting displacement field
represented byGi j is measured in units of length.

5 Numerical example

In order to investigate the effect of inhomogeneity de-
rived from a position-dependent density on elastic waves
propagating under time-harmonic conditions, we exam-
ine the case shown in Fig. 1 for a signal emanat-
ing from the origin outwards and restricted to travel on
the x � y plane. The geological medium in question
(competent soft rock) is characterized by wave speeds
cp=0.20 km/sec,cs=0.10 km/sec and by a Poisson’s ra-
tio ν=0.33. Also, the “background” density isρ0=2,500
kg/m3. These values give the Lam´e constants asλ=5.0
109 andµ=2.50 109 kN/m2.Furthermore, we consider a
low to intermediate frequency of transmissionf=2.0 Hz,
for which the following reference values for the pressure
and shear wave numbers and their corresponding wave
lengths are obtained:

kp0 = 6:28km�1; λp0 = 2π=kp = 1:0 km
ks0 = 12:57km�1; λs0 = 2π=ks = 0:5 km

(46)

5.1 The Density Profile

The variable density profile is gauged with respect to the
shear wave solution, i.e.,ρ(r)=ρ0f1-(n/ks0r)2g. Obvi-
ously, the valuen = 0 corresponds to the homogeneous

Figure 1 : Problem geometry with source at the origin
and elastic wave polarization in thex�y plane.

case, while forn = 1 we obtain a profile that is singular
at the source (here the origin of the coordinate system)
but rapidly approaches the background valueρ0. Specif-
ically, Fig. 2 plots these two cases, and for the latter one
we observe that the density dips to negative values in an
interval which is smaller thanr = 0:0795 (i.e., for the
first 7.95% of the pressure wave length). Atr=λ p0, the
material density has attained99.4% of the background
valueρ0. We mention in passing that the same profile
is obtained for a negative value of the index, namely for
n =�1. Finally, higher values ofn yield density profiles
which are less sharp than that previously mentioned. For
instance, ifn = 2; the density crosses to positive values
at r = 0:1591 km from the source, while 97.4% ofρ0 is
obtained atr= λ p0.

Since the density profile is unique for a given material,
the following condition having to do with the presence
of both pressure and shear waves in the continuum must
hold true:

ρ(r) = ρ0

n
1��nÆks0r

�2
o
= ρ0

n
1��mÆks0r

�2o
(47)

From the above,m=kp0 = n=ks0 and solving for the for-
mer index gives

m =
q

(1�2ν)
Æ
(2�2ν) �n (48)
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Figure 2 : Densityρ profiles as functions of indexn = 0,
1, 2 versus radial distance from the source.

Thus, for a Poisson’s ratio ofν=0.333, m = 1=2 when
n = 1. Other values of Poisson’s ratio, such asν=0.25
andν=0.5, respectively yieldm = 0:577 andm = 0 with
n = 1.

At this point, we wish to investigate the singularity ex-
hibited by the density profileρ(r) as a necessary step in
computing factorα and thus complete the Green’s func-
tion derivation given in section 4:As shown in Fig. 3,
we take a disc of exclusionSε centered at the origin and
define two points,x andξ, which span the necessary dis-
tancer. The former is located on the perimeter of the
disc, namely at distanceε from 0, while the latter is taken
inside the disc at a distancea < ε, so as to avoid an un-
necessary second singularity. Thus, we compute the limit
asε!0 of the following integral:

Figure 3 : Disc Sε of infinitesimal radiusε around the
singularity in the densityρ profile.

Iε (x;ξ) = Iε (r) =
Z Z

cr�2 (x;ξ)dSε =

= c

2πZ

0

εZ

0

εdε
r2 dθ = c

2πZ

0

I1(ε)dθ (49)

Constantc = (n=ks0)2 is bounded and does not affect the
integration. Carrying out the first integral with respect to
ε (where the law of cosines is used to expressr in terms
of ε) yields

I1(ε) =
εZ

0

εdε
a2+ε2�2aεcosθ

=

=
1
2
`n
�
a2+ε2�2aεcosθ

�����
ε

0
+ (50)

2acosθ
2

�
2

2asinθ
arctan

�
2ε�2acosθ

2asinθ

������
ε

0

Substituting the upper and lower limits of integration re-
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sults in the following expression:

I1(ε) = `n

r
1+
� ε

a

�2
�2
� ε

a

�
cosθ+

cotθ arctan

�
sinθ

(a=ε)�consθ

�
(51)

If we let b=ε/a, then we need to evaluate

Iε = lim
b!0

c

2πZ

0

�
`n
p

1+b2�2bcosθ (52)

+ cotθarctan
sinθ

b�cosθ

�
dθ

This last step is carried out using the Mathematica (1999)
symbolic mathematics package, and results inIε= –
cπ(`n4), where we note that the contribution of the loga-
rithmic term in eqn (52) is actually zero. Thus, the singu-
larity exhibited by the density at the point of application
of the impulse function is a bounded one.

Factorα that was used in scaling the constant density
Green’s tensor in section 3 needs to be recomputed here.
Specifically, the right-hand side of the biharmonic (eqn
(22)) is now integrated over the disc of exclusionS εas
follows:

�
Z Z

1
µ(λ+2µ)

ρ(r)δ(r�0)dSε =

� 1
µ(λ+2µ)

Z Z
ρ0

n
1��nÆks0r

�2oδ(r)dSε (53)

The first term in the above integral is the one that yielded
the value ofα given by eqn (32), while the second part
furnishes a correction due to variability in the density
profile. In order to compute this correction, we resort
to the basic definition of the generalized delta function
as a limiting process, since we are integrating over an
infinitesimal disc centered at the origin whose radiusε
is collapsing to zero. Specifically, the delta function is
the limit of two Heaviside functions superimposed so as
to produce a value of unity over the disc and zero else-
where, as the disc radius goes to zero. Thus, the second
part of the integrand in eqn (53) becomes

ρ0

µ(λ+2µ)

��
n
Æ

ks0
�2
Z Z �

1
Æ

r
�2

dSε

�
(54)

and the expression inside the brackets is non other than
Iε that was previously evaluated. Thus, the corrected fac-
tor for variable density is simplyα cor= αf1.0+(n/ks0)

2

π(`n4)g.

5.2 The Green’s Function

In reference to eqs (43) to (45), thegs
i j components

are synthesized by using theH (1)
0 , H(1)

1 and H(1)
2 Han-

kel functions, while for theg p
i jcomponents we employ

the fractional order Hankel functionsH (1)
(�1=2), H(1)

(1=2) and

H(1)
(3=2), as a consequence of eqn (48). In the latter case,

the expansions used in computing of Bessel functions
of fractional orders that are increments of an integer
plus one-half are actually quite simple (Gradshteyn and
Ryzhik, 1980). Specifically,

H
(1)
(1=2)(kr) =

r
2

πkr
exp(ikr)

i
(55)

H(1)
(�1=2)(kr) =

r
2

πkr
exp(ikr)

and the standard recursion formula can be used for evalu-
ating the necessary increments in order for the remaining
Hankel functions. Finally, scaling theg i j components by
the correctedαcor yields the final form of the Green’s
tensorGi j for variable density elastodynamics in 2D.

5.3 Discussion of the Numerical Results

The Green’s tensor componentsG11;G12 and G22 are
given in Figs. 4-6 for the homogeneous case(n = 0)
and in Figs. 7-9 for the variable density(n = 1) case of
eqn (47). In all cases, the graphs show both amplitude
and phase angle for the particular displacement field that
these tensor components represent. With respect to the
former group of plots, we first observe the classical ra-
diation decay in the amplitude, whereby the influence of
the unit impulse at the origin decays rapidly by a fac-
tor of about ten as a distance equal to the pressure wave
length is covered. Next, the phase angle plots are consis-
tent with the fact that one cycle of vibration is anticipated
across a distance of a single wave length.
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As expected, variability in the density profile affects both
the Green’s function’s amplitudes and phase angles. To
that purpose, separate plots are provided in the form
of Fig. 10 to help spot the differences, which are ex-
pressed asf(jGheter

i j j� jGhomog
i j j) / jGhomog

i j j gx 100. We
observe that in all cases, these fluctuations are more pro-
nounced in the region close to the source, which is ex-
actly where the density profile diverges the most from
its background value. Both normal (G11;G22) as well
as transverse (G12 = G21) components exhibit the same
amount of maximum fluctuation, which is roughly20-
25%. The phase angle plots are also quite revealing,
since the dip in the density profile seen in Fig. 2 influ-
ences the phase in the immediate vicinity of the source.
In general, the variable density material examined herein,
if the immediate neighborhood around the origin con-
taining the unit impulse source is excluded, can proba-
bly be classified as weakly non-homogenous (Miklow-
icz, 1978), since it exhibits wave motion patterns that do
not differ significantly from the ones expected in the case
where the same material is homogeneous.

The final series of plots, Figs. 11-13, depict the usual
Green’s tensor components (G11;G12 and G22, respec-
tively) for the variable density(n = 1) case, but at a
higher frequency of transmissionf=20.0 Hz. In this case,
bothP andS wave numbers increase ten-fold compared
to the values given by eqn (43), while their correspond-
ing wave lengths are at one-tenth of their previous val-
ues. By observing these plots, we see (with difficulty)
that they are not exactly scaled versions of the motions
observed at the low frequency (f=2.0 Hz) end and given
in Figs 7-9, because scaling factorα cor is itself a function
of frequency. Thus, the effect of a variable density profile
of the type examined here is somewhat more noticeable
at higher frequencies of vibration; this is in contrast to
the standard homogeneous material, where obviously no
such effect can be discerned.

In closing, we mention that the present Green’s func-
tion is built on outgoing waves only, because of physical
reasons. This implies that in more complex situations,
where wave motions comprise both incoming and out-
going waves, plus the usual scattering phenomena asso-
ciated with boundaries and interfaces, the effect of vari-
able density will be more pronounced. The same com-
ment holds true for higher-order Green’s functions, such
asFi j;which corresponds to tractions at the receiver due
to the same unit impulse at the source, since they derive

from spatial integration ofGi j.

Figure 4 : Displacement componentG11 vs. distance
from source as function of indexn = 0 and at frequency
f=2.0 Hz: (a) amplitude and (b) phase angle.

5.4 General Comments on the Solution Procedure

There are some additional, and interesting from a mathe-
matical viewpoint, comments with regards to the solution
procedure used herein. Specifically, the final expression
for the differential operator that results from an evalua-
tion of the determinant of system matrixL(u) is depen-
dent on the order by which the differentials are taken.
This implies loss of symmetry, which can be explained
using the following physical consideration: In a hetero-
geneous medium, the order of application of the point
forces at the source influences the computation of the
displacement signals at the receiver. To overcome this
problem, we first apply forces of half magnitude using
one order (x-direction first,y-direction second) and then
the remaining magnitude using reverse order. This pro-
cess is equivalent to a symmetrization of the differential
operator given in eqn (1).

The solution for the differential operator given in eqn
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Figure 5 : Displacement componentG12 vs. distance from source as function of indexn = 0 and at frequencyf=2.0
Hz: (a) amplitude and (b) phase angle.

Figure 6 : Displacement componentG22 vs. distance from source as function of indexn = 0 and at frequencyf=2.0
Hz: (a) amplitude and (b) phase angle.

Figure 7 : Displacement componentG11 vs. distance from source as function of indexn = 1 and at frequencyf=2.0
Hz: (a) amplitude and (b) phase angle.
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Figure 8 : Displacement componentG12 vs. distance
from source as function of indexn = 1 and at frequency
f=2.0 Hz: (a) amplitude and (b) phase angle.

Figure 9 : Displacement componentG22 vs. distance
from source as function of indexn = 1 and at frequency
f=2.0 Hz: (a) amplitude and (b) phase angle.

Figure 10 : Difference (as %) in the displacement com-
ponent amplitudes (a)G11;(b)G21 and (c) G22 for the
heterogeneous case compared to the equivalent homoge-
neous material at a frequencyf=2.0 Hz
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Figure 11 : Displacement componentG11 vs. distance
from source as function of indexn = 1 and at frequency
f=20.0 Hz: (a) amplitude and (b) phase angle.

Figure 12 : Displacement componentG12 vs. distance
from source as function of indexn = 1 and at frequency
f=20.0 Hz: (a) amplitude and (b) phase angle.

(37) was obtained in what might seem a mathematically
inconsistent way, despite the fact that it was checked af-
terwards. It turns out, however, that Hormander’s method
can be applied in a consistent way to variable density
elastodynamics if the density term is convoluted with the
dependent variable in the Navier-Cauchy equations, i.e.,

(λ+2µ) ∇∇ �u�µ∇ � ∇ � u+ω2ρ�u = �ρ� f (56)

Figure 13 : Displacement componentG22vs. distance
from source as function of indexn = 1 and at frequency
f=20.0 Hz: (a) amplitude and (b) phase angle.

where

ρ�u =
Z

ρ(r� s)u(s;ω)ds (57)

This was recently examined in Rangelov and Manolis
(2002) by using the double Fourier integral transforma-
tion with respect to the spatial variables, and a closed
form transformed solution was obtained. It was then pos-
sible to show that the constant and variable density pro-
files such as those examined here can all be recovered
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as special cases from the general solution in the trans-
formed domain. Of course, the inverse transformation
for the general solution requires contour integration over
the complex plane which is extremely difficult to do an-
alytically, although in principle it is always possible to
compute it numerically.

6 Conclusions

Although elastic wave propagation phenomena in inho-
mogeneous media are difficult to analyze, they have im-
portant applications to problems involving both man-
made (e.g., composites) and naturally occurring (e.g.,
geological deposits) materials. In this work, we pre-
sented Hormander’s method, which is based on matrix
algebra formalism, for solving the governing partial dif-
ferential equations of equilibrium in 2D elastodynamics.
Subsequently, this method was applied to the variable
density case, which is generally viewed as the simplest
type of inhomogeneity. The methodology can, however,
be extended to cover more general cases where all elas-
tic constants become position-dependent. If these mate-
rial parameters are functions of the radial distance from
the source of the disturbance, then the underlying bihar-
monic equation is solvable in closed-form by a number
of standard techniques. If, on the other hand, material
parameter dependence is arbitrary in both planar direc-
tions, then the mathematical complexity increases sub-
stantially, because the biharmonic equation becomes a
function of two independent variables. Finally, exten-
sion of the methodology presented herein to 3D prob-
lems is straightforward, since (a) the system matrix that
yields the free-space Green’s function is of size 3 (versus
2 before), and (b) if spherical symmetry applies to the
variation of the material parameters, then the biharmonic
equation remains a function of the radial distance and is,
in principle, solvable.
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