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A Green’sFunction for Variable Density Elastodynamicsunder Plane Strain
Conditions by Hormander’'sMethod

George D. Manolis?, Stavros Pavlou 2

Abstract: A free-space Green’s function for problem&IEM) formulation (Cruse and Rizzo 1968; Cruse 1968)
involving time-harmonic elastic waves in variable derand, of course, of its corresponding humerical solution
sity materials under plane strain conditions is develop&ethnique, the boundary element method (BEM) (Mano-
herein by means of Hormander's method in the colis and Beskos 1988; Dominguez 1993). The latter
text of matrix algebra formalism. The challenge whemethod has been very successful in solving boundary-
solving problems involving inhomogenous media is thalue problems of engineering importance in transient
the coefficients appearing in the governing equations @fstodynamics, as can be deduced by consulting the ex-
motion are position-dependent. Furthermore, an adtinsive literature reviews by Beskos (1987; 1997) that
tional difficulty stems from the fact that these goverrspan the last fifteen years. Since the preferred formula-
ing equations are vectorial, which implies that coordinatien is invariably a displacement-traction approach based
transformation techniques that have been successful vath Somigliana’s identity, the corresponding Green’s
scalar waves can no longer be used. Thus, the predanttions must come from a solution of the equations
work aims at establishing the necessary background tb&elastodynamics for a point force and under radiation-
will allow for construction of Green'’s functions for a gentype boundary conditions. This can be done by a vari-
eral class of inhomogeneous media that is not necessdy-of ways, e.g., use of potentials (Helmholtz potentials,
ily restricted to the variable density case. These funBtokes potentials), displacement vector decomposition
tions, besides being useful in their own right, are alsoto dilatational and rotational components (Miklowitz,
important within the context of boundary integral formu1978), use of the dynamic equivalent to Galerkin's vec-
lations, where they appear as kernels in the underlyitay, integral transforms (Duffy, 1994), etc.

integral equations. Finally, a numerical example servefe major difficulty has been an extension of the afore-
to illustrate the proposed methodology and to quantifjentioned methodologies to problems involving other
the influence of a variable density profile on the propaggategories of materials, which go beyond the homoge-
tion of elastic waves. neous, isotropic linear elastic continuum, such as those
keywor ds: Boundary integrals; Elastodynamicsexhibiting heterogeneity, anisotropy, layering, random-
Green’s function; Hormander’s method; Inhomogeneounsss, etc. (Ewing et al., 1957, Hanyga, 1985). Appli-

media; Wave equation. cations, however, are numerous and span various engi-
neering fields, including seismic prospecting, earthquake
1 Introduction engineering, acoustics, ocean engineering, signal trans-

_ _ mission, composite materials and non-destructive testing
The development of Green's functions for elastic waygajuation to name a few. The most complicated struc-

propagation in solids is of engineering importance, bgyye to model is, of course, the earth itself (Helbig, 1994).

cause these functions represent fundamental solutionito . : .
. . ) recent, and rather extensive, literature review on wave
special types of disturbances (such as the point force

o . otion in non-homogeneous materials can be found in
and the unit dislocation) and under rather broad bou g

. . anolis and Shaw (2000). In order to add to this list

ary conditions (such as the Sommerfeld radiation). : :
. . : of efforts regarding solution of boundary-value problems
the same time, they comprise an essential part (name ) , :
, . with the purpose of recovering Green’s functions for var-
the kernels) of any boundary integral equation metho . " )
ious types of inhomogeneities, we mention the work of

L Aristotle University of Thessaloniki, Greece Selvadurai and Lan (1998) on a half-space under axisym-
2University of Patras, Greece
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metric conditions with elastic parameters that are petion with a spatially-dependent source term.

odic functions of the depth, of Vardoulakis and Geols far as applications are concerned, we have the con-
giadis (1997) on the use of gradient elasticity theory &yyction of compliance matrices for a rigid punch in the
modeling the microstructure of a half-space un8er e|astic half-plane, whose coefficients are exponentially
waves, of Muravskii and Operstein (1996) on time hagecaying functions of two spatial coordinates (Bakir-
monic vibrations of an incompressible half-space Whoggs, 1984), the use of aDlinhomogeneous shear beam
shear modulus exhibits a linear variation with depth, aRg model the earthquake response of hill-shaped land-
of Hryniewicz and Filipkowski (1996) on the construcfills (Gunturi and Elgamal, 1998), the computation of
tion of dynamic stiffness matrices for in-plane motion iynthetic seismograms for both laterally and vertically
a material with a shear modulus that is a random funCtiHBterogeneous geological deposits (Geller and Ohmi-
of the depth. Furthermore, Guzina and Pak (1996) Cofte, 1994), the evaluation of dispersion curves for wave
puted Green'’s functions for point and ring loads sourcgsotion guided through anisotropic beams with vari-
in a half-space with a smoothly varying material progple cross-section geometry (Volovoi et al., 1998) and
file, while Vrettos (1998) examined the case of a verticge computation of eigenvalues for continuously non-
point load on the surface of a half-space with a non-zekemogeneous membranes of variable density (Wang,
shear modulus at its surface that varies with depth qggg)_ Also, Hazanov (1999) used Huet's method for
remains bounded at infinite depth. The method of Solgetermining the effective material properties of heteroge-
tion in all the above works is integral transforms, witheous elastic materials with imperfect interfaces, while
preference given to the Hankel transform. The excefyravskii (2000) used earlier solutions to interpret ex-
tion to this is Hryniewicz and Filipkowski (1996), whoseyerimental results for waves propagating across the sur-
problem has to do with random vibrations and therefofgce of a half-space so as to deduce the degree of inho-

requires a different technique, namely one that hinges @ggeneity in its material properties, i.e., an inverse-type
the solution of a system of first-order differential equasf proplem.

tions. Recently, Melnikov and Melnikov (2001) Intro-Finding other, simpler methods of solution to problems

]Ejuced the i:_oncgpt of ,mc;d|f|(?d pOtfn“E.lﬁ’ Wh'Ch. are usﬁg/olving continuous media with non-constant material
or computing Loreen's functions 1or bINAMMONIC €qUas, o 1 aters is difficult. In this respect, we briefly mention

tIO.I’lS defined n 2D regions with complex con_flguranong.ome recent activity in the area of time harmonic acoustic
It. Is thus p055|ble_to quel _materlals con_S|st|ng of Avaves in heterogeneous media using a coordinate trans-
bl_trary shaped regions with different material prop_ertle Brmation method based on conformal mapping (Shaw
Finally, Gragg (;998) used an energy conservation a§ﬁd Manolis, 2000a). While this approach is limited to
proach to examine Helmholtz’'s equation for a weak

i terial. | terial with a slowl D problems and is “inverse” in its form, i.e., a given
non-uniform materiaj, 1.€., a maerial with a s 0Wyv"’lryr'napping will lead to a particular type of heterogeneity,

ing de_:nsity profilg.. _The interesting thi_ng about this Ia%t represents a step forward in the development of fun-
case Is the_ p055|b|l_|ty of forward-mpvmg)lwave MO Jamental solutions in the form required by the BEM. In
tion only, with very little backscattering. the case of elastic waves (Shaw and Manolis, 2000b) that
As previously mentioned, the aforementioned Greemyge governed by vector differential equations, the class
functions, besides being useful in their own right, args solvable problems by this method is limited to vari-
also used as kernels in BEM formulations for the pugple (j.e., position dependent) density and constant elas-
pose of solving complex problems numerically. Specifiz parameters. Even then, an additional assumption re-
cally, recent work on BEM formulations is that of Angyarding decomposition of the displacement vector into
et al. (1996) and of Clements (1998) for the genergkeudo-dilatational and pseudo-rotational parts is neces-
second order, elliptic partial differential operator witRary in order to achieve a closed-form solution through
non-constant coefficients that are functions of two spgsquction to the anti-plane strain case. The reason is
tial variables, of Xu and Kamiya (1998) on the inhomanat for a vector wave equation, the underlying coordi-
geneous Poisson equation whose linear part is goverpggle transformation affects the base vectors of the gra-
by Laplace’ operator and of Itagaki (2000), who useglent operator. Thus, the governing equations recovered
the dual reciprocity BEM to handle Helmholtz’s equan the transformed coordinate system are not necessar-
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ily simpler when compared to their original form. It iBothu andd are functions of the spatial variabteand,

always possible, however, to construct a fine layer agince time-harmonic conditions will be imposed, of the
proximation for a heterogeneous medium, provided riyequency parameten. Note that because of this last
bust analytic solutions are available that remain stableasumption, initial conditions are irrelevant. In terms of
high frequencies of vibration (Tadeu and Antonio, 2001otation, we will interchangeably use bold symbols, in-

In order to overcome these difficulties, we employ Hofl€x notation and brackets as a way of indicating vectorial
mander’s (1994) method, which uses matrix algebra féfuantities. Itis obvious that any solutionto eqn (1) as de-
malism for the solution of systems of partial differentidfned above can be viewed as a Green's function.
eqguations, as a more general approach for solving préiollowing Hormander (1994) and using matrix notation,
lems in elastic wave propagation through heterogenedhs solution for the dependent variahleean be written
media under plane-strain conditions. An advantage ad

this method is that a key step in the solution procedure for

these specific types of problems involves a biharmonic

equation. If conditions of radial symmetry hold in the u} = L8} = adj[L]{d} _ adj L] {0} @
sense that material properties vary with respect to dis- det[L]

tance from the source of the disturbance (i.e., the origin

of the coordinate system), then the biharmonic is a funghereadj anddet respectively denote adjoint matrix and
tion of a single variable and becomes amenable to closddterminant. The intermediate scalar functipis de-
form solution. Specifically, we focus on variable derfined through the following equation:

sity profiles, but it is also possible to consider position-

dependent elastic parameters (e.g., the & @aristants).

Furthermore, extension {dBcases is rather straightfor-geq| (x)] @(x) = —8(x) 3)
ward. Briefly, the paper is structured as follows: Follow-

ing development of the methodology for th® Zector |In mechanics, the delta function is viewed as a unit im-

wave equation, some basic results are recovered forc&a—se to the system (here the continuous medium) at

sical elgstostatlcs and eIa_stonnamg:s. Next, new _reS%I(t)%rce poink. If the impulse is applied in all three prin-
are derived for wave motion in medium with a variable.

density profile that roach nstant (back rour(?l al directions ax, then a set of three displacement vec-
ensity protrie that approaches a cons'a (backg tdés results, which can be grouped column-wise to yield
value at a distance comparable to a single wave len

) ) . Green’s tensoG. Physically speaking, componeai; is
from the source of the disturbance. Finally, a numeri i y ysp g P t

| w0 illustrate th t methodol displacement (although, depending on the definition
examp'e Serves 1o ustrate the present methodology afjg, dependent variable, it might be a force or any other

to highlight the differences obs_erved n eIa;tlc Waves fhe of reaction) at the receiver point in tH&direction
Itgﬁgeprrﬁg;fggntggzigh a continuous medium that is te to the gforementiongd unit impulse plac_ed at the
' source and in thg'"direction. The complete displace-
ment solutioru; can therefore be synthesized in terms of
Green's tensor afu} = [G]{e}, whereg is the unit base
Consider a differential equation in the standard form Vvector for the three principal directions.
Since we will restrict the present developmentib(Re.,
plane strain) conditions, eqn (1) corresponds to the fol-
lowing 2x2 system of differential equations:

2 Methodology

L(u)=f

wherel is the differential operaton is the dependent

variable and is the forcing function, which from now on{ L1z Li2 ] [ Gu1 G2 ] _ [ 1 0] (8) @)
will be identified with the generalized Dirac delta func{ L21 L22 | | Ga1 G2z 01

tion d. Atthe same time, we will focus on the unbounded

continuum (the elastic full-space), where the SommaevhereL has been decomposed irtg . Following eqgs
feld radiation boundary condition is assumed to hol@) and (3), the solution is
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Under conditions of radial symmetry, the Laplacian is
02=1(4(rd)), sothe biharmoni€*greads as

Gu1 Gi2 ] [ Lz —Li2 ]
= 5
[ G Gp —Lo1 Lo @ ®) . , ,
d*e 2d°¢@ 1d9@ 1do
o= —F - F S X ¥ 11
where e dr4 + rdrd3 r2dr? + r3dr (11)
The solution to the homogeneous part of egn (10) is
(L11loo — Liolo1)(9) = —8(x) (6)
_ _ g(r) =Co+Cir?+Coln(r/ro) +Car?in(r/ro)  (12)
In what follows, the above method will be validate
against the P elastostatic operator. from which the last term also corresponds to the solution
. for a unit impulse at = 0. The integration constai@s
2.1 Example: Elastostatics can be found by replacing this particular solution in eqn

The Green's function forD elastostatics using Horman-(10) and integrating both left and right hand sides around

der's method is evaluated here as a check. The goverrfingiSC centered at the origin whose radius in the limit
equation of equilibrium in indicial notation is tends to zero (Panc, 1975). The result (ignoring reference

distance) is

(A1) Ui+ Hujii +0(x)gj =0 (7 R
o(r)= _8”H()\+2H)r inr (13)

wherev; is the displacement vector, while the Lamon- o _ _

stantsh and i are related through Poisson’s raticas Direct substitution ofpin eqn (5) yields

A= {2v/(1-2v)}n Furthermore, commas indicate

differentiation with respect to the spatial coordinates and

the summation convention is implied for repeated indicks] = — 5 i (14)
that range asj = 1,2. Next, theG;; tensor components TU(1-v)
are grouped as shown below (3—4v)nr — (x/r)24+C —xy/r2

[ —xy/r? (3—4v)(inr — (y/r)?+C

[L]{gll}:_{cl)}é(x) and[L]{ 212}:_{(1)}6(x) (8) which is identical to the solution recovered by Rizzo
21 22 (1967) with the exception of the constant te@n (3.5-
4v) along the diagonal that signifies rigid body motion

and the differential operatarin eqn (7) is decomposedand can therefore be neglected. Finally, the two displace-

as follows: ment components are reconstituted from the Green'’s ten-
sorGij asuy = G181 + Groeandiz = Goie1 + Gz
2 2 _ . . _—
Ly = W2+ A+H) %7 Liz=Lor = (A +p) 6i6y’ 3 Governing equations of dynamic equilibrium
2 The governing equations for time harmonic elastody-
Lop = 0%+ (N -1 Y (9) namics in terms of the displacement vector (Navier's

equations) are as follows (Achenbach, 1973):
The intermediate step in eqn (6) requires solving the fol-
lowing biharmonic equation (A 2w @ -u— pOXOxu+ pofu = —pf (15)

This particular form requires constant elastic parame-
H(A+2p) O%p= —0(x) (10) tersA andy, but allows for a position-dependent density,
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namelyp(x,y). Also, u is the displacement vector afd terms of the modified Bessel functiolg for a complex
is the body force vector per unit mass, taken here to &egyument (i.e., circular frequenay is replaced byiw,

the unit impulse acting at sour¢go, o) and in both di- i=,/-1) based on the following relation:

rections. Parenthetically, this implies that the reference

value of densityp is that registered at the source, since _

this is the only point where the body force is non-zerg (kr) = EH((Jl) (ikr) (17)

Also, wis the frequency at which the elastic wave prop- 2

agates. _ 3.1 Example: Constant density elastodynamics
In solving the above equations for a variable density,

the more standard forms obtained by the use of potéﬁ before, in order to recover the elastodynamic Green’s
tials are not useful, because of the need to differentid¢iCtion using Hormander's method, we first write the
Navier's equations at some point in order to form thi@vier equations using indicial notation as

two Helmholtz equations, whose fundamental solutions

are easier to obtain (Manolis and Shaw, 2000). An alter-

native is to use dilatational and rotational displacemeft+ H) Uiij + HUjii +puruj = —pd(x) € (18)
components, but again the two key vector operators in

eqn (15) involving the gradierff] ») and the cur(Ox) Then, Green's tens@;; is computed as follows:
still have to be dealt with. Finally, conformal mapping

techniques (Shaw and Manolis, 2000a) which hinge on

producing simpler forms of egn (15) in the new coor- Gi] = (1/0() [911 912] —[L]o=
dinate system also run into problems, because the base : 021 922

vectors underlying the gradient operator undergo a trans-

formation in the new space and are responsible for theut® + (A + ) % +wp — (AW %
emergence of dispersive (i.e., velocity-dependent) terms —()\—I—u)% pD2—|-()\—|-u)a"722—|-w2p
that were originally absent.

For the homogeneous material case, fundamental solu- (@ (1) 4+ (r))

tions for eqn (15) under plane strain conditions can easily (19)
be found in the literature (Kobayashi, 1987). The basic

structure of such a solutionig = Gjjej, withi, j = 1,2,

whereGij is given below as follows: We note thatr is a constant to be determined and that

intermediate functiorp is decomposed into a pressure
} wave componenpP and a shear wave compongfit The

determinant of the abovex2 matrix is computed as

N G, dr o
G'J — 4 {Glé'l GZaxi 0xj

G = Hél) (ket') — k_irHil) (kef) + (k%/ksz) k_irHil) (Kor)
1 2,,(1 detL (x)] = p(A+ 2w 0*+ pa (A 4 3u) O+ p?w*
Gz = —H;" (ket) + (kp/ k) “H3” (ko) (20)
(16)

L . xpanding the above determinant and rearranging terms
The above form is in terms of Hankel functions ole P 9 ging

: . ) ields a biharmonic equation
the first kind, Hr(ll),WhICh represent outgoing Wavesy q

Also, the radial distance between receiery) and

source(Xo,Yo) points ist = /(x—X)2+ (y—Yo)2 The _, 5 oo 5 2 1

two wave numbers for pressure and shear waves &+ <kp+k5> otkpkse= (A +2p) pa(r) (21)
kp=wlcp and ks=w/csrespectively, whilec2=(A+2u)/p

and c2=wp are the corresponding wave velocities. Awhich can be factored into two Helmholtz-type equations
alternative form to that shown above can be obtainedas follows:
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1

_ (1)
Mpé(r) (22) g22= (p(ﬂz— kz“) Hy™ (kr)+

(0P +kp) (D2 +K) @(r) = —
2,2

We seek solutions to the homogeneous form of egn (22)’(7\+H){—k2Hc()1) d<r)-|-l—<H£1)(kr) _ k_g

so that each Helmholtz equation can independently go to r

zero. Furthermore, if radial symmetry can be invoked,

then each of these two equations is a zero-order Besued

Hé”(kr)} @7)

equation, i.e.,
X
) g12= — (A-+1) 22 KHL (kr) (28)
d<o(r) 1do(r
0 2990 | gy = 0 23) | |
dr rodr We note here that the symbolic mathematics package

) o ~ Mathematica (1999), which was used in obtaining the
wherek corresponds to eithd or k, (and similarly@is — ,,5ye results, retains only the lowest order Bessel func-
either@® or ¢°). The solution follows a scaling afaskr . (1) .

which brinas about the standard form without any 1 ttlons In order to introducel,~ so as to bring forth a
(whic gs aboutihe standard o outany 1actbrm that can be compared with existing solutions, it is

in front of ¢(r)) and is given below as necessary to use the following Bessel function identity:

@(r) = AJo (kr) +BYo (kr) = CHEY (kn) +-DHE” (k1) 1i® (lery = ZHY (k) + HLY (k) (29)
(24) kr
Synthesis of both pressure and shear wave components
with Jo, Yo the Bessel functions anﬂio H0 ?) the Hankel yields
functions, all of order zero. The latter are related to the
former as

aGi = gh1+ 051 =

(12) N i
Hy"? (2) = Jo (2) £iYo (2) (25) HY (ko) {pe? — k-2 A+ 1)} +

It is well known (Miklowitz, 1978) that the solution cor-

2,2

responding to outgoing waves generated by a unit im-H£1) (Kol koA +W) Hél) (Kor) w+

pulse at the source can be recovered from the full homo- r rz
eneous solution a6H Y ,with C being an integration

gonstant. 0 g g Hc()l) (ksr) {pooz - kszp'_ kSZ ()\ + p’)} +

By substituting the Hankel function solution of zero or- k(A4 1) (A1) kB2
der, first kind (withC = 1) for o(r) in eqn (19), we obtain  H{Y (ker) SATH _ 1) o) ATHIXT
the following results for theg;;displacement tensor com- r r

ponents: 1 k
RO )+ (HL )+ 2 o+
X2 k3

011 = (pe — k) Hg" (k) + r—Z(HS)(ksr) e er >)} (30)

2
e ko) Bk - S 0l 26) ang
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singularity of the Laplacian as (r) is obviously higher
than the singularity o ¥ (r) itself, the second term in the
aGi2= g+ 0%, (31) left-hand side of Helmholtz's equation is ignored. We
therefore have that
Xy 1 1
= (v =2 {8 kor)+1EHS ke }
// qu)s‘(r)dse—l—0:—//6(r—0)d8£ (33)
_ 2XY | ) G
= -tk T {HZ (ksr) + C_SHZ (kpr) } The integral of the delta function is simply equal t®,1
P since discS; includes the point of application of the im-

. . ulse. For the other integral, w ' divergen
while the G,, component can be obtained fraBy; by Itoheorem 0 get tegral, we use Gauss' divergence

interchanging andy. By comparing with the standard
form of the solution as given by Kobayashi (1987) in egn

(16), constantr is determined as follows: %D.q,si (Ndre=—1 (34)
1 i 1 wherel; is the disc’s perimeter. Given th (r) is a
T MRInR (32) function of the radius and that the gradient is normal to

the disc’s perimeter, the above integral is simply equal to
More specifically, the presence ofis a consequence of
the fact that the solution to eqn (22) was recovered from
the homogeneous one given in egn (24). Thus, two poir@s‘1> (r)/ar) =-1 (35)
have to be checked with respect to the Green's functiofhs, integration giveds (r) = -(U2m) In(r) forr <
namely that: (a) it contains the correct singularity at thgnich is identical to the singular term in the Hankel func-

point of application of the pointimpulse (i.e., the origin)ion expansions for small argument.
and (b) has the appropriate magnitude. The second point

i; _rather mute, sinpe there is certain Iaj[itude in the d.ejfi- Variable density elastodynamics

nition of the magnitude of the external impulse. For in- _ _ o

stance, Green’s functions for Helmholtz's equation mdyPr this case we express the density, which is assumed to
correspond to factors dfit, of 21, or of unity in the right- b€ dependenton the radial distance, in terms of a constant
hand side (Morse and Feshbach, 1953). Furthermord0itbackground) value denoted by subscript 0 plus a non-
does not change the formulation of a BIEM stateme@iimensional functiom(r) as
(Cruse and Rizzo, 1968), since this involves the convolu-

tion of two distinct elastodynamic states, namely one cor-

responding to the actual boundary-value problem WhO%g) = Pob(r) (36)

solution is sought, plus another involving the Green'§imilarly, k(r) = koy/b(r) is the expression for the

funCtiOI’l SOIUtion: ObViOUSIy, the aCtuaI “Strength” Of thi%eneric wave number understood to represent B(ahd
second state is unimportant. Swaves.

3.1 The Green's function singularity Hormander's method, as previously developed, is ap-
The singularity exhibited by Green’s function around plicable here as well. Specifically, the determinant of
disc of exclusiors; centered at the point of applicatiorsystem matriX_(u) acting on intermediate functiap(x)

of the impulse is now examined. Specificalf(r) is as- yields the following equation:

sumed regular in the outer regi@ while its singular

part $S(r) is computed by substituting back in th®2

Helmholtz equation (see eqn (23), but wili{r) as the H(A+2u) 0%+ (A+3u) w’p0%0+ (A + 3w W’ - +
right-hand side), integrating both sides around a disc of

radiusr = € centered at the origin and finally taking the 5 o 1 > >
limit as € —0 (Morse and Feshbach, 1953). Since the + (p W+ 2 (A+3u) 000l p) ¢=-3(x) (37)
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By comparing with the standard form given in egn (20),
we note the presence of two additional terms, namely one ) >

involving the gradient of the density (i.€p ) and an- _ (1_ ”_) andk = ko4 /1— (L) (42)
other involving its Laplacian (i.e.[1%p). At this stage, kar2 kor

the solution will proceed ignoring these terms and thﬁir

relative importance will be gauged once the corresponé?ﬁr::]zrlezgefutr?cgg: (V::’/Q t:tilrrs1 e"asyﬂt](?ﬁtszho)\(/v_tg@t; 'S
ing density profile is recovered. Thus, it is still possibl y ’ c plies P(X)=0. Fur-

to factor the biharmonic equation for the variable dert_]_ermore, the density gradient with respect to radial dis-

: — _2(n2 /123 :
sity case into two Helmhotz equations, which howevg"rmcer 's equal tol; p(r) = —2(n /kor )& Despite the

are no longer zero-order Bessel equations. Instead, t agig‘;;;gi?;iﬁgenngs :s;:c?zl?)l/ TE fﬁéor’egi'jnav\r/ﬁggy
become Bessel equations of arbitrary ordemwheren . : '

is not necessarily gn integer. The reaﬁon ig that we ngle density profile approaches the constant valupof
have a variable wave number in eqn (23). Therefore, eéltg]erefore, for all practical purposes, the gradient term

(23) assumes the more general form given in Gradshtexnes not .|nfluence the solutlpn for j[he_ Gree_n-’s function
and Ryzhik (1980), which is given below as in the region where the density profile is positive. In any
’ case, this term indicates dispersion, which can always be

accounted for through the use of complex-valued wave

14d X v\ 2 numbers. In sum, the solution obtained here is approxi-
T (zu) + | (By2 )" - (_y) ] u=0 (38) mate, and valid everywhere except in a small disc (whose
20z z radius is less than 10% of the value of the dominant wave

length) in which the density profile assumes physically
In the aboveyp andz are the dependent and independephreasonable negative values.

variables, respectively, whilg andy are constants. The

solution to eqn (38) is As before, substitution ofp(r) in egn (19) with a

variable density yields the following results for the
gijcomponents:

u=Z,(B2") (39)
1 (1), C+A+20y°
whereZ, stands for any of the Bessel functiahsY, or 911= 4 {49‘*’2"'” + 2 x
the Hankel functioneir(ll), HP. Going back to the bihar-
monic equation, the obvious choice fgfr) to represent k3 (Hr(i)2 —2HY + Hr(,i)z) + (43)

outgoing waves is

A+ 21) X2 + py? 1 1
‘|‘2( 33 ko (Hr(l—)l - Hr(1+)1)
(r) = CH{Y (kr") (40)

whereCis the usual integration constant. As such, thig, = 1 {X—g (A1) ko [ZHr(li)l — 2Hr(i)l (44)
new solution is a more general version of the basic solu- atr

tion used for constant density and reduces to it 4 O (1) (1) (1)

andy=1. By comparing egs (23) and (38), the new wave +rko (H”—Z —2Hn H”“)] }

number profile is

1 A+ 20) X2 4 py?
G22= 7 {4pw2Hr(11) + A+ H?; Ral A
Py
w:%{WH4f_1_} (41)
Gr2 {1 (M- 2 + 1, ) + (45)

For simplicity, we adopy=1 and thugp=H El)(kr), while WP+ (A4 2u) y? ) )
the corresponding two material profiles now simplify as +2 r3 ko (Hn—l - Hn+1) }
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In sum, the Green’s function tensor is synthesized as Z
follows: First, the components corresponding to the \
shear wave are$,, 03, 05, and are derived from the

HAY ((ko = ksp) r) Hankel function. Next, the process
is repeated for the pressure wave compongﬁ;sgfz, Y
gb, coming from theH ((ko = kpo) r) Hankel function,
where indexm # n, as will be explained in the next Us
section. Finally, the two solutions are superimposed as A
gij = gﬂ + gisj and factora that accounts for integration r
constanC is introducedso as to yield the final form of 0
the Gjj tensor. A cursory look at the biharmonic (i.e., f "6 X
egn (22)) indicates that can no longer have the same /

value as that given in egn (32), because dersity the
right-hand side is not constant and it’s value at the origin 1:2

does not coincide with the background valuepef This Figure 1 : Problem geometry with source at the origin

last step will be carried out in the next section, Wherzﬁwd elastic wave polarization in thie- y plane
the density profile is examined in more detail. Finally, '

since the impulse that triggers wave motion derives from

a force per unit volume, the resulting displacement field ) ) ] o
represented bg;; is measured in units of length. case, while fom = 1 we obtain a profile that is singular
at the source (here the origin of the coordinate system)

but rapidly approaches the background valge Specif-
ically, Fig. 2 plots these two cases, and for the latter one
In order to investigate the effect of inhomogeneity deve observe that the density dips to negative values in an
rived from a position-dependent density on elastic waviegerval which is smaller than = 0.0795 (i.e., for the
propagating under time-harmonic conditions, we exarfirst 7.95% of the pressure wave length). AtA o, the

ine the case shown in Fig. 1 for a signal emanataterial density has attain€9.4% of the background
ing from the origin outwards and restricted to travel ovalue po. We mention in passing that the same profile
the x —y plane. The geological medium in questiors obtained for a negative value of the index, namely for
(competent soft rock) is characterized by wave speeats —1. Finally, higher values aif yield density profiles
Cp=0.20 km/sec,cs=0.10 knvsec and by a Poisson’s ra-which are less sharp than that previously mentioned. For
tio v=0.33. Also, the “background” density i8g=2,500 instance, ifn = 2, the density crosses to positive values
kg/m®. These values give the Lantonstants a8=5.0 atr = 0.1591 km from the source, while 97.4% p§ is

10° and p=2.50 10° kN/m?. Furthermore, we consider abtained at= A y.

low to intermediate frequency of transmissieri2.0Hz,  Since the density profile is unique for a given material,
for which the fO”OW|ng reference values for the pl’eSSUfﬁe fo”owing condition having to do with the presence

and shear wave numbers and their corresponding w@f&oth pressure and shear waves in the continuum must
lengths are obtained: hold true:

5 Numerical example

Kp, = 6.28km™%,  Ap, = 21/kp = 1.0km _ 2\ 2
ke, = 1257km™L, Ag = 21/ks = 0.5km (46) p(r)=po{ 1~ (/kar)*f = po{ 1 (m/kar)*} (47)

From the abovem/kp = n/kg and solving for the for-
5.1 The Density Profile mer index gives

The variable density profile is gauged with respect to the
shear wave solution, i.ep(r)=po{1-(nker)?}. Obvi-
ously, the valuen = 0 corresponds to the homogeneous = /(1—2v) /(2—2v)-n (48)
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o ckagimy

Figure 3 : Disc & of infinitesimal radius around the
singularity in the densitp profile.

Figure2: Densityp profiles as functions of index= 0, 2m g 2n
1, 2 versus radial distance from the source. = c// —do = c/ l1(g)dO (49)
00

Constant = (n/kg)? is bounded and does not affect the
integration. Carrying out the first integral with respect to
Thus, for a Poisson’s ratio 0/=0.333, m= 1/2 when € (where the law of cosines is used to expregsterms
n= 1. Other values of Poisson’s ratio, suchva0.25 0f €) yields
andv=0.5, respectively yieldn= 0.577 andm= 0 with
n=1.
At this point, we wish to investigate the singularity ex-
hibited by the density profilp(r) as a necessary step in ; ede
computing factor and thus complete the Green'’s func- l1(e) = / a2+ €2 Jagcosd
tion derivation given in section.As shown in Fig. 3, 0

we take a disc of exclusio® centered at the origin and 1 s 5 €

define two pointsx and, which span the necessary dis- = 3" (a®+&” —2aecosh) | + (50)
tancer. The former is located on the perimeter of the 0

disc, namely at distanagfrom 0, while the latter is taken ~ 2acosd { arctan( 2e — 2a0089) } £

inside the disc at a distanee< ¢, so as to avoid an un- 2 2asing 2asing 0

necessary second singularity. Thus, we compute the limit
ase —0 of the following integral: Substituting the upper and lower limits of integration re-
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sults in the following expression:

ﬁ{(n/k@)z// (1/r)2d$} (54)

and the expression inside the brackets is non other than

I (€) = En\/l—|- (Z)Z— 2 (g) cosd +

sind I that was previously evaluated. Thus, the corrected fac-
cotd arctan[(a/e) — consB (51) tor for variable density is simplg = a{1.0+(n/kg)?
T((nd)}.
If we let b=¢/a, then we need to evaluate .
5.2 The Green’s Function
2n
le = lim c/ {En\/1—|—b2—2bcose (52) In reference to eqgs (43) to (145), ';rgfj comlponents
b0 are synthesized by using threé ), H£ ) and Hé ) Han-
Sind kel functions, while for thegipjcomponents we employ
+ cotearctanm} do the fractional order Hankel functiom‘s((f)l/z), H((ll/)z) and

HY )» @S & consequence of egn (48). In the latter case,

. . . . . 3
This last step is carried out using the Mathematica (199@33 expansions used in computing of Bessel functions
symbolic mathematics package, and resultslé? — of fractional orders that are increments of an integer

cr(¢nd), where we note that the contribution of the l0g&y|us one-half are actually quite simple (Gradshteyn and
rithmic term in eqn (52) is actually zero. Thus, the singyyzhik, 1980). Specifically,

larity exhibited by the density at the point of application

of the impulse function is a bounded one. 2 explikr
o HO (k) = 4 /-2 &Pk (55)
Factora that was used in scaling the constant density1/2) Tkr i
Green’s tensor in section 3 needs to be recomputed hera 2 _
Specifically, the right-hand side of the biharmonic (edh 1/ (kr) = {/ — - explikr)

(22)) is now integrated over the disc of exclusiBgas
follows: and the standard recursion formula can be used for evalu-
ating the necessary increments in order for the remaining
Hankel functions. Finally, scaling ttgg; components by
_ 1 5(r—01dS. — the correctech® yields the final form of the Green'’s
p(r)d(r-0)dS = . . g
KA+ 2u) tensorG;; for variable density elastodynamics iD2

1 2
R 1-(n/kgpr)” ;0(r)d 53 i i i
20 //po{ (n/ksr) } (r)dS  (53) 5.3 Discussion of the Numerical Results

The Green’s tensor componen®s;, Gi» and Gy, are
The first term in the above integral is the one that yieldggven in Figs. 4-6 for the homogeneous cdse= 0)
the value ofa given by eqn (32), while the second parand in Figs. 7-9 for the variable density= 1) case of
furnishes a correction due to variability in the densitggn (47). In all cases, the graphs show both amplitude
profile. In order to compute this correction, we resoand phase angle for the particular displacement field that
to the basic definition of the generalized delta functidhese tensor components represent. With respect to the
as a limiting process, since we are integrating over farmer group of plots, we first observe the classical ra-
infinitesimal disc centered at the origin whose radiusdiation decay in the amplitude, whereby the influence of
is collapsing to zero. Specifically, the delta function ihe unit impulse at the origin decays rapidly by a fac-
the limit of two Heaviside functions superimposed so der of about ten as a distance equal to the pressure wave
to produce a value of unity over the disc and zero eldength is covered. Next, the phase angle plots are consis-
where, as the disc radius goes to zero. Thus, the secterd with the fact that one cycle of vibration is anticipated
part of the integrand in eqn (53) becomes across a distance of a single wave length.
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As expected, variability in the density profile affects botffom spatial integration o;;.
the Green’s function’s amplitudes and phase angles. To
that purpose, separate plots are provided in the form
of Fig. 10 to help spot the differences, which are ex-
pressed ag (|G| - |Gﬂ°mg|) / |Gﬂ°mg| }x 100. We
observe that in all cases, these fluctuations are more pro-
nounced in the region close to the source, which is ex-
actly where the density profile diverges the most from
its background value. Both normaB(i, G,2) as well

as transversed;, = Gp1) components exhibit the same
amount of maximum fluctuation, which is rough?p-
25%. The phase angle plots are also quite revealing,
since the dip in the density profile seen in Fig. 2 influ-
ences the phase in the immediate vicinity of the source.
In general, the variable density material examined herein,
if the immediate neighborhood around the origin con-
taining the unit impulse source is excluded, can proba-
bly be classified as weakly non-homogenous (Miklow-
icz, 1978), since it exhibits wave motion patterns that do
not differ significantly from the ones expected in the case
where the same material is homogeneous.

The final series of plots, Figs. 11-13, depict the usual
Green’s tensor component&4;, Gi2 and Gyp, respec-
tively) for the variable densityn = 1) case, but at a
higher frequency of transmissién20.0 Hz. In this case, Figure 4 : Displacement componei@;; vs. distance
both P andS wave numbers increase ten-fold compargebm source as function of index= 0 and at frequency
to the values given by eqn (43), while their corresponé=2.0 Hz (a) amplitude and (b) phase angle.

ing wave lengths are at one-tenth of their previous val-

ues. By observing these plots, we see (with difficulty)

that they are not exactly scaled versions of the motioBst General Comments on the Solution Procedure
observed at the low frequenci=@.0 Hz) end and given

in Figs 7-9, because scaling factof® is itself a function There are some additional, and interesting from a mathe-
) ‘gatical viewpoint, comments with regards to the solution

of frequency. Thus, the effect of a variable density profi . o , .
of the type examined here is somewhat more noticea rgcedure used herein. Specifically, the final expression
or the differential operator that results from an evalua-

at higher frequencies of vibration; this is in contrast tQ

the standard homogeneous material, where obviouslyt o(ptof thte;]deteorlmlrz)ant ?]f sgi';]emdr?fatmxg) I'S depetznl;
such effect can be discerned. ent on the order by which the differentials are taken.

_ _ , This implies loss of symmetry, which can be explained
In closing, we mention that the present Green's funfging the following physical consideration: In a hetero-

tion is built on outgoing waves only, because of physicgbeus medium, the order of application of the point

reasons. This implies that in more complex situationgyces at the source influences the computation of the
where wave motions comprise both incoming and OWfjgp|acement signals at the receiver. To overcome this
going waves, plus the usual scattering phenomena assihiem, we first apply forces of half magnitude using

ciated with boundaries and interfaces, the effect of vae order ¢-direction first,y-direction second) and then

able density will be more pronounced. The same COlfe remaining magnitude using reverse order. This pro-

ment holds true for higher-order Green's functions, SUGls is equivalent to a symmetrization of the differential
asFij,which corresponds to tractions at the receiver dB‘ﬁerator given in egn (L).

to the same unit impulse at the source, since they derive , _ . . _
The solution for the differential operator given in egn
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Figure5: Displacement componef;, vs. distance from source as function of inaex 0 and at frequenciF 2.0
Hz (a) amplitude and (b) phase angle.

Figure 6 : Displacement componef,, vs. distance from source as function of inaex 0 and at frequenciF 2.0
Hz (a) amplitude and (b) phase angle.
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Figure7: Displacement componef; ; vs. distance from source as function of inaex 1 and at frequenciz 2.0
Hz (a) amplitude and (b) phase angle.
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By, (rad)

Figure 8 : Displacement componef@i, vs. distance
from source as function of index= 1 and at frequency
f=2.0 Hz (a) amplitude and (b) phase angle.

1Gzz | (m)

Figure 10 : Difference (as %) in the displacement com-
ponent amplitudes (af511(b)Gz1 and (c) Gy, for the
heterogeneous case compared to the equivalent homoge-
neous material at a frequenty2.0 Hz

1)

w Ckmy

Figure 9 : Displacement componef@d,, vs. distance
from source as function of index= 1 and at frequency
f=2.0 Hz (a) amplitude and (b) phase angle.
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(37) was obtained in what might seem a mathematically
inconsistent way, despite the fact that it was checked af-
terwards. It turns out, however, that Hormander's method
can be applied in a consistent way to variable density
elastodynamics if the density term is convoluted with the
dependent variable in the Navier-Cauchy equations, i.e.,

1 B

A+20)@ -u—pdxOxu+w?pru=—pxf  (56)

By (rad)

1G22 (m)

Figure 11 : Displacement compone®i; vs. distance
from source as function of index= 1 and at frequency
f=20.0 Hz (a) amplitude and (b) phase angle.
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Figure 13 : Displacement componef@,,vs. distance
from source as function of index= 1 and at frequency
f=20.0 Hz (a) amplitude and (b) phase angle.

¥ km)

where

p*u:/p(r—s)u(s,w)ds (57)

This was recently examined in Rangelov and Manolis
: (2002) by using the double Fourier integral transforma-
Figure 12 : Displacement componef@;, vs. distance fion with respect to the spatial variables, and a closed
from source as function of index= 1 and at frequency form transformed solution was obtained. It was then pos-
sible to show that the constant and variable density pro-
files such as those examined here can all be recovered

f=20.0 Hz (a) amplitude and (b) phase angle.
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as special cases from the general solution in the tratisnal Journal of Solidsand Structures, 22(4), 347-351.

formed domain. Of course, the inverse transformatigiaskos, D.E. (1987): Boundary element methods in dy-

for the general solution requires contour integration ovRmic analysisApplied Mechanics Reviews, 40 (1), 1-
the complex plane which is extremely difficult to do ans3

alytically, although in principle it is always possible toB&kos, D.E. (1997): Boundary element methods in dy-

compute it numerically. namic analysis: Part 1l (1986-199&pplied Mechanics
Reviews, 50 (3), 149-197.
Clements, D.L. (1998): Fundamental solutions for sec-
Although elastic wave propagation phenomena in inhend order linear elliptic partial differential equations,
mogeneous media are difficult to analyze, they have ifgomputational Mechanics, 22, 26-31.
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