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A 2-D Time-Domain BIEM for Dynamic Analysis of Cracked Orthotropic Solids1

Ch. Zhang2

Abstract: A 2-D time-domain boundary integral equa-
tion method (BIEM) for transient dynamic analysis of
cracked orthotropic solids is presented in this paper. A
finite crack in an unbounded orthotropic solid subjected
to an impact loading is considered. Hypersingular time-
domain traction boundary integral equations (BIEs) are
applied in the analysis. A time-stepping scheme is de-
veloped for solving the hypersingular time-domain trac-
tion BIEs. The scheme uses a convolution quadrature
formula for temporal and a Galerkin method for spatial
discretizations. Numerical examples are given to show
that the presented time-domain BIEM is highly efficient
and accurate.

keyword: Time-domain boundary integral equation
method, 2-D orthotropic solids, elastodynamic crack
analysis, elastodynamic stress intensity factors.

1 Introduction

Though the time-domain boundary element method
(BEM) has been successfully applied to dynamic anal-
ysis of isotropic solids for many years, its applications
to anisotropic solids are yet still very limited. This is
due to the lack of closed or simple form elastodynamic
Green’s functions for anisotropic solids, which influ-
ences the efficiency of the time-domain BEM signifi-
cantly (Beskos, 1997). Recent effort toward developing
simple form time-domain and frequency-domain Green’s
functions for anisotropic solids has been presented by
Wang and Achenbach (1992, 1993, 1994, 1995). For
elastodynamic analysis of anisotropic solids, different
BEM formulations can be found in literature. The first
one is the so-called dual reciprocity BEM, either in time-
domain (see e.g. Albuquerque and Sollero, 1998; Al-
buquerque, Sollero, and Aliabadi, 1999a, 1999b, 2000;
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Kögl and Gaul, 2000) or in Laplace transform domain
(see e.g; Albuquerque, Sollero, and Fedelinsky, 2000).
The dual reciprocity BEM applies static Green’s func-
tions, which have simple forms, and avoids the use of
complicated time-domain Green’s functions. The sec-
ond one is the conventional time-domain BEM by us-
ing time-dependent Green’s functions (see e.g. Hirose,
1999; Hirose, Wang, and Achenbach, 2000; Nishimura,
Kobayashi, and Kishima, 1986; Nishimura, Kobayashi,
and Takeuchi, 1995; Wang, Achenbach, and Hirose,
1996; Zheng and Dravinski, 2000). The third method
is the frequency-domain BEM which solves the bound-
ary value problem in the frequency-domain (see e.g.
Dominguez and Sáez, 1998; Mattsson, 1996; Sáez and
Dominguez, 1999a, 1999b, 2000, 2001; Wang, Sáez,
and Achenbach, 1995). Recently, Zhang (2000a, 2000b)
presented a time-domain traction BIEM for cracked
anisotropic solids where the convolution quadrature for-
mula of Lubich (see e.g. Lubich, 1988a, 1988b, 1994;
Lubich and Schneider, 1992) is adopted for tempo-
ral discretization of the time-domain traction BIEs and
only Laplace-domain Green’s functions are needed. For
spatial discretization of the time-domain traction BIEs,
Zhang (2000a, 2000b) applied a Galerkin method. Each
of the above mentioned methods has its advantages and
drawbacks. The dual reciprocity BEM avoids the use of
complicared time-domain Green’s functions but involves
internal nodes which may be not suitable and less accu-
rate for unbounded solids. In addition, the applicability
of the dual reciprocity BEM to wave scattering analysis
in unbounded domains for computing the scattered far
filed is questionable, since the radiation conditions for
scattered waves at infinty are not ensured automatically.
The conventional time-domain BEM applies in general
very complicated time-domain Green’s functions, which
are difficult for numerical implementation and reduce
hence the efficiency of the time-domain BEM. Besides,
the choice of the time-step is crucial in the conventional
time-domain BEM: a too small time-step may lead to nu-
merical instability of the time-stepping scheme, while
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a too large time-step may cause unreasonable numeri-
cal damping of the results. The frequency- or Laplace-
domain BEM has the advantage that it utilizes frequency-
or Laplace-domain Green’s functions which are easy to
obtain and have in most cases a simple mathematical
structure. Through Fourier or Laplace inverse transform,
stable numerical results at large-time can be obtained,
but the method may be very inaccurate in the short-time
range for impact loaded solids. The time-domain BIEM
for anisotropic solids by using the convolution quadra-
ture formula of Lubich (see e.g. Lubich, 1988a, 1988b,
1994; Lubich and Schneider, 1992) for temporal dis-
cretization as presented by Zhang (2000a, 2000b) com-
bines the advantages of the conventional time-domain
BEM and the Laplace-domain BEM: its formulation is
directly in the time-domain, but it requires only the sim-
ple Laplace-domain Green’s functions, and it is highly
accurate and much more stable than the conventional
time-domain BEM.

In this paper, a 2-D BIEM is presented for transient
elastodynamic analysis of cracked orthotropic solids.
A hypersingular time-domain traction BIE formulation
is used for this purpose, in which the crack-opening-
displacements (CODs) are the fundamental unknown
quantities. To solve the hypersingular time-domain
traction BIEs, a time-stepping scheme is developed.
In comparison to the commonly applied time-domain
BEM/BIEM for anisotropic solids, the present method
contains two novel aspects:

� Approximation of the temporal convolution of the
time-domain traction BIEs by the convolution
quadrature formula of Lubich (see e.g. Lubich,
1988a, 1988b, 1994; Lubich and Schneider, 1992).
In the convolution quadrature method, a multistep
method is used and only Laplace-domain elastody-
namic Green’s functions are required. The Laplace-
domain elastodynamic Green’s functions for or-
thotropic solids can be expressed as Fourier inte-
grals and have a simple mathematical structure.

� Approximation of the spatial variation of the crack-
opening displacements (CODs) by a Galerkin-
ansatz in terms of Chebyshev polynomials, which
can properly describe the local square-root beha-
vior of the CODs at crack-tips. The application of a
spatial Galerkin method to the time-domain traction
BIEs leads to a system of linear algebraic equations

for the unknown expansion coefficients. A time-
stepping scheme is developed for solving the linear
algebraic equations.

One important feature of the present time-domain trac-
tion BIEM is that it requires no special technique for in-
tegrating the arising hypersingular integrals. Another in-
teresting feauture of the method is that the triple integrals
appearing in the spatial Galerkin method can be reduced
to a single integral like in the collocation method, which
reduces the numerical expenses, improves the accuracy
of the Galerkin method, and makes the method especially
attractive.

Elastodynamic stress intensity factors are computed di-
rectly from the numerically calculated CODs. Numer-
ical examples are presented to show the accuracy, effi-
ciency and stability of the method. In the special case
of isotropy, numerical results are also given and com-
pared with the analytical results of Thau and Lu (1971).
Numerical results for a finite crack in an unbounded or-
thotropic solids are presented and compared with the nu-
merical results of Kassir and Bandyopadhyay (1983). In
addition, numerical results for several values of the mate-
rial anisotropy parameter are given to analyze its effects
on elastodynamic stress intensity factors.

A spectral scheme for dynamic fracture analysis of com-
posites was developed by Hwang and Geubelle (2000).
BEM was applied by Shiah and Tan (2000) for frac-
ture mechanics analysis in 2-D anisotropic thermoelastic
solids.

2 Problem Formulation and Time-Domain BIEs

Let us consider a straight finite crack of length 2a in
an unbounded, homogeneous, linearly elastic, and or-
thotropic solid as shown in Fig. 1. The cracked or-

Figure 1 : A finite crack in an unbounded orthotropic
solid

thotropic solid is subjected to an impact loading on the
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crack-faces, and the deformation of the solid is assumed
to be in a state of generalized plane strain or generalized
plane stress. In the absence of body forces, the cracked
orthotropic solid satisfies the equations of motion (see
Achenbach, 1973)

σαβ;β = ρüα ; (1)

the Hooke’s law8<
:

σ11

σ22

σ12

9=
;=

2
4 C11 C12 0

C21 C22 0
0 0 C66

3
5
8<
:

ε11

ε22

2ε12

9=
; ; (2)

the initial conditions

uα(x; t) = u̇α(x; t) = 0 ; for t = 0 ; (3)

and the traction boundary conditions on the crack-faces

σαβ(x; t)nβ(x) = fα(x; t) ; x 2 Γc : (4)

Here, σαβ , εαβ and uα denote the stress, the strain and
the displacement components, ρ is the mass density, Ci j

(i; j = 1;2;6) is the elasticity matrix, f α(x; t) is the trac-
tion vector, nβ is the unit normal vector, and Γ c = Γ+c +
Γ�c are the upper and lower crack-faces, respectively. A
comma after a quantity stands for partial derivatives with
respect to spatial variables, while superscript dots repre-
sent temporal derivatives with respect to time. Also, the
conventional summation rule over double indices is im-
plied, and Greek indices take the values 1 and 2. For
orthotropic solids, the elasticity matrix Ci j is related to
the engineering elastic constants by2
6664
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for generalized plane stress, and2
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for generalized plane strain, where

∆= 1�ν12ν21�ν23ν32�ν31ν13�ν12ν23ν31�ν13ν21ν32 :

(7)

Here, E1 and E2 are Young’s muduli, ν12, ν21, ν13, ν23,
ν31 and ν32 are Poission’s ratios, G12 is the shear modu-
lus, and the following relation holds

ν12E2 = ν21E1 : (8)

The displacement field can be represented by a boundary
integral as

uγ(x; t) =
Z

Γ+c

σG
αβγ �∆uαnβds; x =2 Γ+

c ; (9)

where σG
αβγ is the time-domain stress Green’s functions,

∆uα(y;τ) are the crack-opening-displacements (CODs)
defined by

∆uα(y;τ) = uα(y 2 Γ+c ;τ)�uα(y 2 Γ�c ;τ) ; (10)

and an � stands for Riemann convolution which is de-
fined by

g(x; t)�h(x; t)=

tZ

0

g(x; t� τ)h(x;τ)dτ : (11)

The stress Green’s functions σG
αβγ are related to the dis-

placement Green’s functions uG
αγ by Hooke’s law (2), i.e.,
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(12)

Substituting Eq. (9) into Hooke’s law (2), taking the limit
process x ! Γ+

c and considering the traction boundary
conditions (4), time-domain traction BIEs are obtained
as

nβ(x)
Z

Γ+c

T G
γαβ(x;y; t;τ)�∆uγ(y;τ)ds= fα(x; t) ; x2 Γ+

c ;

(13)

where T G
γαβ are time-domain traction Green’s functions
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which are related to the stress Green’s functions σG
γαβ by

8><
>:

T G
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T G
γ12

9>=
>; = �

2
4 C11 C12 0
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0 0 C66

3
5�

8><
>:
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γα1;1nα

σG
γα2;2nα�
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�
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9>=
>; ; (14)

The time-domain traction BIEs (13) are hypersingular,
since T G

γαβ(x;y; t;τ) have the same singularity as their
corresponding static Green’s functions (see Wang and
Achenbach, 1992, 1993, 1994, 1995), i.e.,

T G
γαβ(x;y; t;τ) ∝

1
j x�y j2 ; for x! y : (15)

The hypersingular integrals in (13) are undestood in the
sense of Hadamard finite-part integrals. To solve the hy-
persingular traction BIEs (13), different methods, such
as the Galerkin method, the regularization method and
the direct method can be applied. This analysis uses a
Galerkin method for spatial discretization and the con-
volution quadrature formula of Lubich (see e.g. Lubich,
1988a, 1988b, 1994; Lubich and Schneider, 1992) for
temporal discretization of the time-domain traction BIEs
(13). In this method, an explicit expression of the time-
domain Green’s functions T G

γαβ(x;y; t;τ) are not needed,

and only their Laplace transform T̂ G
γαβ(x;y; p) are re-

quired as will be seen in the next section.

3 Time-Stepping Scheme

This section presents a time-stepping scheme for solv-
ing the hypersingular time-domain traction BIEs (13).
Here, the convolution quadrature formula of Lubich (see
e.g. Lubich, 1988a, 1988b, 1994; Lubich and Schnei-
der, 1992) is used for evaluating the temporal convolu-
tion while a Galerkin method is applied for the spatial
approximation of the unknown CODs arising in the time-
domain BIEs (13).

The unknown CODs ∆uγ(y1;τ) are expanded into an in-
finite series of the form

∆uγ(y1;τ) =
q

a2�y2
1

∞

∑
k=1

cγ;k(τ)Uk�1(y1=a) ; (16)

where cγ;k(τ) are unknown time-dependent expansion co-
efficients and Uk�1(y1=a) are Chebyshev polynomials of

second kind. Substituting Eq. (16) into Eq. (13), multi-

plying both sides by
q

a2�x2
1Ul�1(x1=a), and integrat-

ing with respect to x1 from�a to +a, the following time-
domain Galerkin traction BIEs are obtained

∞

∑
k=1

+aZ

�a

q
a2�x2

1Ul�1(x1=a)

+aZ

�a

q
a2�y2

1Uk�1(y1=a)�

T G
γα2(x1;y1; t;τ)�cγ;k(τ)dy1dx1 (17)

=

+aZ

�a

fα(x1; t)
q

a2�x2
1Ul�1(x1=a)dx1 ; l = 1;2; :::;∞ :

By applying the convolution quadrature formula of Lu-
bich (see e.g. Lubich, 1988a, 1988b, 1994; Lubich and
Schneider, 1992)

f (t) = g(t)�h(t) =

tZ

0

g(t� τ)h(τ)dτ

=) f (n∆t) =
n

∑
j=0

ωn� j(∆t)h( j∆t) ; (18)

to Eq. (17) a system of linear algebraic equations for the
expanssion coefficients is obtained as

n

∑
j=0

∞

∑
k=1

An� j
γα;klc

j
γ;k = f n

α;l ; (19)

(n = 0;1; :::;N ; l = 1;2; :::;∞) ;

where the time-variable t is devided into N equal time-
steps ∆t, and the upper indices indicate the time-steps.
The system matrix in Eq. (19) corresponds to the inte-
gration weights ωn� j(∆t) of the convolution quadrature
formula (18). The system matrix An� j

γα;kl and the right-
hand side f n

α;l of Eq. (19) can be obtained by using

An� j
γα;kl =

r�(n� j)

M

M�1

∑
m=0

Âγα;kl(pm)e
�2πi(n� j)m=M ; (20)

f n
α;l = (�1)l+1

+aZ

�a

fα(x1;n∆t)
q

a2�x2
1Ul�1(x1=a)dx1

= (�1)l+1 f �α �
8<
:

πa2

2 ; l = 1 ;

0 ; l 6= 1 :
(21)
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where

pm =
δ(ζm)

∆t
; δ(ζm) =

2

∑
j=1

(1�ζm)
j

j
; ζm = re2πi�m=M :

(22)

Here M = N and rN =
p

ε are chosen with ε being the
numerical error arised in the computation of the Laplace-
transform of the system matrix Âγα;kl(pm). ¿From Eq.
(17) it follows that the Laplace-transform of the system
matrix Âγα;kl(pm) has the following form

Âγα;kl(pm) = (�1)lnβ

+aZ

�a

q
a2�x2

1Ul�1(x1=a)� (23)

+aZ

�a

T̂ G
γαβ(x1;y1; pm)

q
a2�y2

1Uk�1(y1=a)dy1dx1 :

in which T̂ G
γαβ(x1;y1; p) represents Green’s functions in

the Laplace transform domain. The numerical com-
putation of the system matrix in the Laplace-domian
Âγα;kl(pm) will be explained in the next section.

Unlike the conventional time-domain BIE formulation
which uses in general very complicated time-domain
Green’s functions, the present time-domain BIEM ap-
plies Laplace-domain Green’s functions. Thus, the
present method requires no explicit expression of the
time-domain Green’s functions T G

γαβ. The Laplace-

domain Green’s functions T̂ G
γαβ needed here are expressed

as Fourier integrals as will be shown in the next section.
The system matrix defined by Eq. (20) is symmetric,
real-valued and it is the real-part of the right-hand side
of Eq. (20). The evaluation of Eq. (20) can be per-
formed very efficiently by using the Fast Fourier Trans-
form (FFT).

By considering the zero initial conditions (3), the follow-
ing time-stepping scheme is obtained from the system of
linear algebraic equations (19)

cn
γ;k =

∞

∑
l=1

�
A0

γα;kl

��1
"

f n
α;l�

n�1

∑
j=1

∞

∑
i=1

An� j
βα;lic

j
β;i

#
;

(n = 1;2; :::;N) ; (24)

in which (A0
γα;kl)

�1 represents the inverse matrix of A0
γα;kl

at the time-step n=0. Eq. (24) can be used to obtain the
expansion coefficients cn

γ;k time-step by time-step. The
elastodynamic stress intensity factors can be computed
immediately from the numerically calculated CODs.

4 Computation of the System Matrix in Laplace-
Domain

To compute the system matrix in the Laplace-domain
Âγα;kl(pm), the generic boundary value problem in the
Laplace transform domain is described in this section.
Applying the one-sided Laplace transform defined by

f̂ (p) =

∞Z

0

f (t)e�ptdt ; f (t) =
1

2πi

Z

Br

f̂ (p)eptdp ;

(25)

to Eq. (1) the equations of motion can be written as

σ̂αβ;β = ρp2ûα ; (26)

where p in Eq. (25) is a transform parameter and Br
denotes the Bromwich integration path which is a line
to the right-hand side and parallel to the imaginary axis
in the complex p-plane. The boundary and the continuity
conditions on the crack-faces jx1j � a and the crack-plane
jx1j � ∞ can be stated as

σ̂α2(x1;0) = f̂α(x1;0); jx1j � a : (27)

σ̂α2(x1;0
+) = σ̂α2(x1;0

�) ; jx1j< ∞ ; (28)

ûα(x1;0
+) = ûα(x1;0

�) ; jx1j � a : (29)

Across the crack-faces, the displacements jump, i.e.,

ûα(x1;0+)� ûα(x1;0�) = ∆ûα(x1) ; jx1j< a ; (30)

where ∆ûα(x1) are the crack-opening-displacements in
the Laplace transform domain.

The displacements ûγ are expressed as the following
Fourier integrals

ûγ(x) =

8>>><
>>>:

∞R
�∞

2
∑

β=1
Bβ

γ(ξ)exp(iξx1�γβx2)dξ ; x2 > 0 ;

∞R
�∞

2
∑

β=1
Dβ

γ(ξ)exp(iξx1 +γβx2)dξ ; x2 < 0 :

(31)

Substitution of Eq. (31) into Hooke’s law (2) and subse-
quently into euqations of motion (26) results in the fol-
lowing relations

Bβ
2 = λβBβ

1 ; Dβ
2 =�λβDβ

1 ; (no sum over β) ;

(32)
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and the characteristic equation for γβ

aγ4
β+bγ2

β +c = 0 ; (33)

where

λβ =
1

(C12 +C66)(iξ)γβ

�
C66γ2
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C66
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�
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)
;

c =

�
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C66
ξ2 +

ρ
C66

p2
��

ξ2 +
ρ

C66
p2
�
: (34)

Eq. (33) has the simple solutions

γ2
β =

1
2a

�
�b+(�1)β�1

p
b2�4ac

�
: (35)

In Eq. (31), Re(γβ) � 0 due to the radiation conditions

at infinity, and Bβ
γ(ξ) and Dβ

γ(ξ) are unknown functions
which have to be determined.

Stress components are obtained by substituting Eq. (31)
into Hokke’s law (2) as8<
:
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9>>>>>>>=
>>>>>>>;

;

x2 < 0 ; (37)

By substituting Eqs. (36) and (37) into the stress conti-
nuity equations (28) the following relations are obtained

2

∑
β=1

h
�γβBβ

1 +(iξ)Bβ
2�γβDβ

1� (iξ)Dβ
2

i
= 0 ; (38)
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∑
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h
C12(iξ)B

β
1�C22γβBβ

2�C12(iξ)D
β
1�C22γβDβ

2

i
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(39)

Substitution of Eq. (31) into the displacement continuity
and discontinuity equations (29) and (30) leads to

∞Z

�∞

2

∑
β=1

(Bβ
γ�Dβ

γ)exp(iξx1)dξ =

8<
:

0 ; jx1j> a ;

∆ûγ(x1) ; jx1j< a :

(40)

Eq. (40) can be inverted as

2

∑
β=1

(Bβ
γ�Dβ

γ) =
1

2π

+aZ

�a

∆ûγ(y1)exp(�iξy1)dy1 : (41)

Eqs. (38), (39) and (41) together with Eq. (32) result in
four algebraic equations for the four unknown functions
Bβ
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664
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where

aα = (iξ)λα�γα ; bα =C12(iξ)�C22γαλα ;

(no sum over α) ; (43)

dα =
1

2π

+aZ

�a

∆ûα(y1)exp(�iξy1)dy1 : (44)

Eqs. (42) have the following solutions
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1
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�
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�
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�
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D1
1 =

1
2
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d1 +

a2

a2λ1�a1λ2
d2

�
; (47)
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1
2

�
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a2λ1�a1λ2
d2

�
: (48)

By substituting Eqs. (32) and (44)-(48) into Eq. (31) an
expression for ûγ(x) is obtained as

ûγ(x) =

+aZ

�a

σ̂G
α2γ(x;y; p)∆ûα(y1)dy1 ; (49)

where the stress Green’s functions σ̂G
α2γ(x;y; p) are given

by

σ̂G
α2γ(x;y; p) =

1
4π
�

∞Z

�∞

2

∑
β=1

Sβ
αγ exp[iξ(x1�y1)�γβjx2�y2j]dξ ; (50)

in which

S1
11 =

b2

b2�b1
sgn ; S2

11 =
�b1

b2�b1
sgn ;

S1
21 =

a2

a2λ1�a1λ2
; S2

21 =
�a1

a2λ1�a1λ2
;

S1
12 =

b2λ1

b2�b1
; S2

12 =
�b1λ2

b2�b1
;

S1
22 =

a2λ1

a2λ1�a1λ2
sgn ; S2

22 =
�a1λ2

a2λ1�a1λ2
sgn ;

sgn =

�
+1 ; x2 > y2 ;

�1 ; x2 < y2 :
(51)

By the same way, substitution of Eqs. (32) and (44)-(48)
into Eqs. (36) and (37) yields a representation integral
for the stress components σ̂αδ(x)

σ̂αδ(x) =

+aZ

�a

T̂ G
γαδ(x1;y1; p)∆ûγ(y1)dy1 ; (52)

in which the traction Green’s functions T̂ G
γαδ(x;y; p) are

given by

T̂ G
γαδ(x;y; p) =� 1

4π
�

∞Z

�∞

2

∑
β=1

T
β
γαδexp[iξ(x1�y1)�γβjx2�y2j]dξ ; (53)

where T
β
γαδ = T

β
γδα, and

T 1
111 =

b2c1

b2�b1
sgn ; T 2

111 =
�b1c2

b2�b1
sgn ;

T
1
211 =

a2c1

a2λ1�a1λ2
; T

2
211 =

�a1c2

a2λ1�a1λ2
;

T
1
112 =C66

a1b2

b2�b1
; T

2
112 = C66

�a2b1

b2�b1
;

T
1
212 =C66

a1a2

a2λ1�a1λ2
sgn ; T

2
212 =�T

1
212 ;

T
1
122 =

b1b2

b2�b1
sgn ; T

2
122 = �T

1
122 ;

T 1
222 =

a2b1

a2λ1�a1λ2
; T 2

222 =
�a1b2

a2λ1�a1λ2
;

cα = C11(iξ)�C12γαλα ; (no sum over α): (54)

SubstitutingEq. (53) into Eq. (23) and using the relations

1Z

�1

p
1�η2Uk�1(η)exp(iαη)dη =

kπ
α

Jk(α)exp
h
i(k�1)

π
2

i
; (55)

a1b2�a2b1 =
i(γ1�γ2)

(C11 +C66)γ1γ2ξ
��

(C11ξ2 +ρp2)(C22γ1γ2+ρp2)�C2
12γ1γ2ξ2� ;(56)

b2�b1 =� iC22C66

(C12 +C66)ξ
�
γ2

1�γ2
2

�
; (57)

a2λ1�a1λ2 =
i(γ2

1�γ2
2)

(C11 +C66)γ1γ2ξ
�
C11ξ2 +ρp2� ; (58)

the system matrix in the Laplace-domain Âγα;kl(pm) can
be evaluated as

Âγα;kl(pm) = �π
4
(�1)l(kl)a2C66

∞Z

0

Fγα(ξ; pm)
1

ξ2 �

Jk(�ξa)Jl(ξa)exp
h
3i(k+ l)

π
2

i
dξ ; (59)

where Jk(�) is the Bessel function of first kind and k-th
order, and

Fγα =

2
664

F
(C22=C66)γ1γ2

0

0 F
(C11=C66)ξ2 +(ρ=C66)p2

m

3
775 ;
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(60)

in which

F =
1

γ1 +γ2

��
C11

C66
ξ2 +

ρ
C66

p2
m

��
C22

C66
γ1γ2 +

ρ
C66

p2
m

�

�
�

C12

C66

�2

γ1γ2ξ2
�
: (61)

By invoking the relation (Abramowitz and Stegun, 1972)

Jk(�z) = (�1)kJk(z) ; (k integer) ; (62)

Eq. (59) can be rewritten as

Âγα;kl(pm) =

8>>>>><
>>>>>:

0 ; k+ l odd ;

�π
2 (kl)a2ik+lC66

∞Z

0

Fγα(ξ; pm)
1
ξ2�

Jk(ξa)Jl(ξa)dξ ; k+ l even :

(63)

For ξ ! ∞, the integrand in Eq. (63) behaves as 1=ξ2

due to the following asymptotics of the Bessel function
(Abramowitz and Stegun, 1972)

Jk(z)�
r

2
πz

; jzj ! ∞ ; jzj � jkj ; (64)

and the asymptotic behavior

Fγα(ξ; pm)
1

ξ2 = Gγα � 1
ξ
; ξ ! ∞ ; (65)

in which

G11 =
1

(C22=C66)(H1+H2)

"
C11

C66
�C22

C66
�
�

C12

C66

�2
#

;

G22 =
H1H2

(C11=C66)(H1+H2)

"
C11

C66
�C22

C66
�
�

C12

C66

�2
#

;

G12 = G21 = 0;

H2
1;2 =

1
2(C22=C66)

�"
C11

C66
�C22

C66
�
�

C12

C66

�2

�2
C12

C66

#
�

vuut"C11

C66
�C22

C66
�
�

C12

C66

�2

�2
C12

C66

#2

�4
C11

C66
�C22

C66

�
:(66)

The slow convergency rate 1=ξ2 of the integrand in Eq.
(63) is inconvenient for numerically computing the sys-
tem matrix in the Laplace-domain. To get a better con-
vergency, Eq. (63) is recast into

Âγα;kl(pm)=�
π
2
(kl)a2ik+lC66

( ∞Z

0

�
Fγα(ξ; pm)

1

ξ2 �Gγα �
1
ξ

�
�

Jk(ξa)Jl(ξa)dξ+Gγα
δkl

k+ l

)
; k+ l even ; (67)

where use is made of the orthogonality relation of the
Bessel function (Abramowitz and Stegun, 1972)

Z ∞

0

1
z

Jk(z)Jl(z)dz=
δkl

k+ l
: (68)

It can be easily shown that for ξ!∞ the integrand in Eq.
(67) behaves as 1=ξ4, and the infinite integral of Eq. (67)
thus converges much more faster than the corresponding
integral of Eq. (63) does. For the numerical computation
of the system matrix in the Laplace-domain Âγα;kl(pm),
the fast convergency of the infinite integral in (67) is very
advantageous.

The system matrix Âγα;kl(pm) is symmetric, complex-
valued and has to be computed at N discrete values pm

(m = 0;1;2; :::N� 1). Subsequently, the system matrix
An

γα;kl (n = 0;1;2; :::;N) at N+1 time-steps can be evalu-
ated by using Eq. (20). Note here that the present method
requires only a numerical integration of a single integral,
while the usual Galerkin method in general involves a nu-
merical integration of triple integrals in anisotropic cases,
since the Laplace-domain Green’s functions do not have
closed form expressions. Here, the triple integrals aris-
ing in the system matrix are evaluated analytically twice
which makes the numerical scheme especially efficient
and attractive. The infinite integral of (67) is computed
numerically by using an adaptive Romberg quadrature
method in conjunction with the truncation method. The
upper limit of the integration in the truncation method is
taken as ξa = 20 which is sufficient.

5 Computation of Elastodynamic Stress Intensity
Factors

At a crack-tip in linear elastic and anisotropic solids, the
displacement field has the following asymptotic expres-



A 2-D Time-Domain BIEM for Dynamic Analysis of Cracked Orthotropic Solids 389

sions

u1 =

r
2r
π

(
KIRe

�
1

µ1�µ2

�
µ1 p2

p
cosθ+µ2 sinθ

�µ2 p1

p
cosθ+µ1 sinθ

��

+ KIIRe

�
1

µ1�µ2

�
p2

p
cosθ+µ2 sinθ

�p1

p
cosθ+µ1 sinθ

��)
; (69)

u2 =

r
2r
π

(
KIRe

�
1

µ1�µ2

�
µ1q2

p
cosθ+µ2 sinθ

�µ2q1

p
cosθ+µ1 sinθ

��

+ KIIRe

�
1

µ1�µ2

�
q2

p
cosθ+µ2 sinθ

�q1

p
cosθ+µ1 sinθ

��)
; (70)

where KI and KII are the mode-I and mode-II stress inten-
sity factors, r and θ are polar coordinates with the origin
centered at the crack-tip, µα are the complex roots of the
material characteristic equation

b11µ4 +(2b12 +b66)µ
2+b22 = 0 ; (71)

bi j (i; j = 1;2;6) is the material compliance matrix, and

pα = b11µ2
α +b12 ; qα = b12µα +b22=µα : (72)

For orthotropic solids, the material compliance matrix b i j

is related to the engineering elastic constants by2
6664

1
E1

� ν12
E1

0

� ν21
E2

1
E2

0

0 0 1
G12

3
7775 (73)

for generalized plane stress, and2
66664

1
E1
� ν2

21
E2

� ν12
E1
� ν12ν32

E1
0

� ν21
E2
� ν21ν32

E2

1
E2
� ν2

32
E2

0

0 0 1
G12

3
77775 (74)

for generalized plane strain. The characteristic equation
(71) has the solutions

µ1 =

r
α0�β0

2
+ i

r
α0 +β0

2
;

µ2 = �
r

α0�β0

2
+ i

r
α0 +β0

2
; (75)

in which

α0 =

r
b22

b11
; β0 =

2b12 +b66

2b11
: (76)

The asymptotic displacement field described by Eqs.
(69) and (70) yields then the following relation between
the elastodynamic stress intensity factors and the crack-
opening-displacements8<
:

K�

I (t)

K�

II (t)

9=
; =

p
2π

8
p

(α0 +β0)=2
lim

x1!�a

1p
a�x1

�

8<
:

α0
b22

∆u2(x1; t)

1
b11

∆u1(x1; t)

9=
; ; (77)

where “�” indicates the left and the right crack-tips at
x1 =+a and x1 =�a.

Substituting Eq. (16) into Eq. (77) and using the identity
(Abramowitz and Stegun, 1972)

Uk�1(�1) = (�1)k�1k (78)

a relation between the elastodynamic stress intensity fac-
tors and the expansion coefficients cγ;k(t) is obtained as

8<
:

K�

I (t)

K�

II (t)

9=
; =

p
πa

4
p

(α0 +β0)=2
�

8>><
>>:

α0
b22

∞
∑

k=1
(�1)k�1kc2;k(t)

1
b11

∞
∑

k=1
(�1)k�1kc1;k(t)

9>>=
>>; : (79)

Once the expansion coefficients cγ;k(t) have been deter-
mined numerically by using the time-stepping scheme
(24), the elastodynamic stress intensity factors can be
calculated by using Eq. (79).
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For convenience, normalized elastodynamic stress inten-
sity factors K

�

I and K
�

II are introduced as

K
�

I (t) = K�

I (t)=Kst
I ; K

�

II(t) = K�

II (t)=Kst
II ; (80)

where Kst
I and Kst

II are the corresponding static stress in-
tensity factors of a finite crack of length 2a contained
in an infinite orthotropic solid subjected to remote static
stress loadings σst

22 and σst
12at infinity, i.e.,

Kst
I = σst

22

p
πa ; Kst

II = σst
12

p
πa : (81)

6 Numerical Examples

To test the accuracy and the stability of the present time-
domain traction BIEM, a finite crack in an unbounded
isotropic solid is first considered. The crack is subjected
to an impact loading on the crack-faces as shown in Fig.
1. Numerical results for the normalized mode-I and
mode-II elastodynamic stress intesnity factors are shown
in Fig. 2, versus the dimensionless time cLt=a, where
cL =

p
(λ+µ)=ρ is the velocity of the longitudinal wave

with λ and µ being the Lamé’s elastic constants. In the
numerical calculation, Poisson’s ratio is taken as ν=0.25,
plane strain is assumed, 20 terms in the Galerkin-ansatz
(16) for k and l are used, and the time-step is selected
as cT t=a = 0:1, with cT =

p
µ=ρ being the velocity of

the transverse shear wave. The parameters used in the
computation of the time-dependent system matrix An

γα;kl

defined by Eq. (20) are chosen as: M = N, ε = 10�12 and
rN =

p
ε. A comparison between the present numerical

results and the analytical results of Thau and Lu (1971)
as well as the numerical results of Zhang and Savaidis
(1999) shows very good agreements, which confirms the
high accuracy of the present time-domain traction BIEM.
The analytical results of Thau and Lu (1971) were ob-
tained by a Wiener-Hopf technique for solving the inte-
gral euqations and they are valid only in the short-time
range before the arrival of the diffracted waves from one
crack-tip to the crack-tip considered. The numerical re-
sults of Zhang and Savaidis (1999) were obtained by a
hypersingular time-domain traction BEM, where time-
domain Green’s functions were applied and the same
time-step was used.

The effects of the upper truncation limits K = L (number
of terms of Chebyshev polynomials) for k and l, which
are needed for computing the system matrix An

γα;kl, on the
numerical results are shown in Fig. 3. The time-step used
here is cT ∆t = a=20. By trial and error it is concluded

Figure 2 : Normalized K
�

I - and K
�

II-factors (isotropic
solids)

that to keep the error of the numerically computed elas-
todynamic stress intensity factors less than 3% it is suffi-
cient to take K = L = 10. Fig. 3 shows that no essential
improvements can be obtained by using K = L = 20 and
K = L = 40.

Fig. 4 shows the dependence of the numerical results
on the choice of the time-step cT ∆t, where 40 terms of
Chebyshev polynomials, i.e., K = L = 40 were used. Fig.
4 reveals that a time-step cT ∆t = a=20 is sufficient to ob-



A 2-D Time-Domain BIEM for Dynamic Analysis of Cracked Orthotropic Solids 391

Figure 3 : Effects of the truncation limit K on K
�

I - and
K
�

II-factors (cT ∆t = a=20, isotropic solids)

tain accurate numerical results, and a smaller time-step
than cT ∆t = a=20 does not influence the numerical re-
sults significantly. Thus, all results presented below are
obtained with a time-step cT ∆t = a=20. Furthermore,
Fig. 4 shows that the present time-domain BIEM us-
ing the convolution quadrature of Lubich (1988a,1988b,
1994) is pretty insensitive to the choice of the time-step,
in contrast to the conventional time-domain BEM using
time-dependent Green’s functions. In the time range con-

Figure 4 : Effects of the time-step cT ∆t on K
�

I - and K
�

II-
factors (K = 40, isotropic solids)

sidered in this analysis, the present time-domain traction
BIEM provides stable numerical results for all the three
time-steps cT ∆t = a=10, a=20 and a=40.

Next, a class of orthotropic materials investigated by
Kassir and Bandyopadhyay (1983) is considered. The
corresponding engineering elastic constants are listed in
Tab. 1. Numerical results for the normalized mode-I and
mode-II elastodynamic stress intensity factors are pre-
sented in Figs. (5)-(10) and compared with those ob-
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tained by Kassir and Bandyopadhyay (1983). Here, gen-
eralized plane stress is assumed and the dimensionless
time cT t=a is used, where cT =

p
G12=ρ. Numerical cal-

culations are performed by using K = L = 20 and a time-
step cT ∆t = a=20. Kassir and Bandyopadhyay (1983)
applied a dual integral equation method in the Laplace
transform domain in conjunction with an inverse Laplace
transform to obtain the time-dependent solutions numer-
ically. The comparision shows that the agreement be-
tween the present numerical results and those obtained by
Kassir and Bandyopadhyay (1983) is quite satisfactory in
the large-time range, while some discrepancies between
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Figure 6 : Normalized K
�

I - and K
�

II-factors

both results are noted in the small-time range. Presum-
ably, the numerical results of Kassir and Bandyopadhyay
(1983) may not be accurate enough in the small-time
range, a common fact in the frequency or Laplace trans-
form method. The global behaviors of the normalized
elastodynamic stress intensity factors versus the dimen-
sionless time for orthotropic materials considered here
are similar to those for isotropic materials as shown in
Fig. 2. The dynamic stress intensity factors increase
rapidly with increasing time in the small-time range, de-
crease after reaching a peak, and tend to their correspond-
ing static values in the large-time range.
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To analyze the effects of material anisotropy on the elas-
todynamic stress intensity factors, additional numeri-
cal calculations are carried out, and the used engineer-
ing elastic constants are given in Tab. 2. Generalized
plane stress is assumed, and an anisotropy parameter
δ = E1=E2 is introduced for convenience. Also here,
K = L = 20 and a time-step cT ∆t = a=20 are applied in
the numerical calculations. For simplicity, only the en-
gineering elastic constant E1 is varied, while the other
elastic constants E2, G12 and ν12 are kept as constant.
This leads to different values for the anisotropy parame-
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I - and K
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II-factors

ter δ. The orthotropic material with δ = 10 corresponds
to a graphite-epoxy composite. Fig. 11 shows that the
material anisotropy influences both the peak values of
the normalized elastodynamic stress intensity factors and
the time at which the peaks arise. A smaller value of the
anisotropy parameter δ shifts the peaks of the normalized
elastodynamic stress intensity factors to a larger value of
the dimensionless time cT a=t. The maximum dynamic
overshoot of the elastodynamic stress intensity factors
over their coppresonding static values is about 30%.
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7 Conclusions

A 2-D time-domain BIEM for cracked orthortropic solids
is presented in this paper. The method has the following
advantages:

� The method is especially suited for unbounded do-
mains with straight cracks. The radiation conditions
for the displacement and the stress field at infinity
are satisfied automatically.

� The formulation is in the time-domain, but no
explicit expression of Green’s functions in time-
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II-factors

domain is required. The method needs, however,
Laplace-domain Green’s functions, which should
have a simple mathematical structure. The use
of Laplace-domain in lieu of time-domain Green’s
functions in the present time-domain BIEM is made
possible by applying the convolution quadrature for-
mula of Lubich (1988a, 1988b, 1994).

� Though the use of a Galerkin method for spatial dis-
cretization of the BIEs, only a single integral instead
of double or triple integrals needs to be computed
numerically. This means that the present spatial
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Table 1 : Engineering elastic constants

Material E1 [GPa] E2 [GPa] G12 [GPa] ν12

Boron-
epoxy I

224.06 12.69 4.43 0.256

Boron-
epoxy II

55.16 170.65 4.83 0.036

Glass-
fiber

38.27 9.17 3.72 0.28

Graphite-
fiber

173.75 6.89 3.79 0.28

Steel-
mylar

181.21 28.30 6.20 0.44

Beryllium 293.19 339.84 112.40 0.24

Table 2 : Elastic constants and anisotropy parameter

E1 [GPa] E2 [GPa] G12 [GPa] ν12 δ
1.44692 14.4692 5.8565 0.21002 0.1
7.23460 14.4692 5.8565 0.21002 0.5
14.4692 14.4692 5.8565 0.21002 1.0
144.692 14.4692 5.8565 0.21002 10

Galerkin method is computationally not expensiver
than the collocation method, which also involves
a single integral to be evaluated. In the present
method, the arising triple integrals in the system ma-
trix are reduced to a single integral by twice analyt-
ical integrations.

� Numerical examples show that the present time-
domain BIEM is highly accurate, efficient, and
much more stable than the conventional time-
domain method using time-dependent Green’s func-
tions, which have in anisotropic case very compli-
cated forms and are in general difficult to imple-
ment.

� The method can be extended to general anisotropic
solids is in a straightforward manner. For cracked
solids with general anisotropy and in antiplane
strain, the corresponding time-domain traction
BIEM has been presented by Zhang (2000a).

Figure 11 : Effects of the anisotropy parameter δ on K
�

I -
and K

�

II-factors

The extension of the present time-domain BIEM to gen-
eral anisotropic solids with cracks, and to finite domains
is in progress and the corresponding results will be re-
ported in future.
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Sáez, A.; Dominguez, J. (2000): Far field dynamic
Green’s functions for BEM in transversely isotropic



A 2-D Time-Domain BIEM for Dynamic Analysis of Cracked Orthotropic Solids 397

solids. Wave Motion, vol. 32, pp. 113–123.
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