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Numerical Simulation of Cohesive Fracture by the Virtual-Internal-Bond Model

P. Zhang 1, P. Klein2, Y. Huang1;3, H. Gao4 and P. D. Wu 5

Abstract: The recently developed virtual-internal-
bond (VIB) model has incorporated a cohesive-type law
into the constitutive law of solids such that fracture and
failure of solids become a coherent part of the consti-
tutive law and no separate fracture or failure criteria are
needed. A numerical algorithm is developed in this study
for the VIB model under static loadings. The model is
applied to study three examples, namely the crack nucle-
ation and propagation from stress concentration, kinking
and subsequent propagation of a mode II crack, and the
buckling-driven delamination of a thin film from a sub-
strate. The results have demonstrated that the VIB model
provides an effective method to study crack nucleation
and propagation in engineering materials and systems.

1 Introduction

Cohesive surface modeling of fracture (Barenblatt, 1959;
Dugdale, 1960; Willis, 1967) started more than 30 years
ago. Significant efforts are made in recent years to simu-
late fracture initiation and crack growth by cohesive sur-
face models, in which a set of discrete cohesive surfaces
having finite work of fracture and finite cohesive strength
is introduced at the stage of finite element discretiza-
tion. Nonlinear cohesive laws that dictate the relation
between the tractions and separations are prescribed at
element boundaries. Once the work of fracture and co-
hesive strength are reached, cracks are allowed to form
and propagate along element boundaries in accordance
with the cohesive laws. Therefore, a separate and ex-
ternal fracture criterion (e.g., KIC, GIC) is not needed in
the cohesive surface modeling of fracture since the frac-
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ture criterion has been implicitly built into the cohesive
laws. The cohesive surface models have been success-
fully applied to simulate dynamic crack tip instabilities
(Xu and Needleman, 1994), material fragmentation (Ca-
macho and Ortiz, 1996; Espinosa et al, 1998), impact-
induced delamination of composites (Geubelle and Bay-
lor, 1998) and quasi-brittle fracture of solids (Tijssens et
al, 2000).

There are other cohesive fracture models such as the
embedded-process-zone model (Tvergaard and Hutchin-
son, 1992, 1993), which accounts for the effort of plastic-
ity inside the volumetric elements. Gao and Klein (1998)
and Klein and Gao (1998, 2000) proposed a virtual-
internal-bond (VIB) model to incorporate a cohesive-
type law directly into the constitutive law by statistically
averaging a spatial network of cohesive bonds connecting
randomly distributed material particles within the mate-
rial (Figure 1). Each bond can be described by a bond
energy function U(l), where l denotes the bond length.
Its derivative, U 0(l), gives the cohesive force in the bond.
The macroscopic collective behavior of this random bond
network is determined by the so-called Cauchy-Born rule
of crystal elasticity, i.e., by equating the macroscopic
strain energy function on the continuum level to the po-
tential energy stored in the cohesive bonds on the mi-
croscale. For an imposed deformation at a point (e.g.,
the Green-Lagrange strain EIJ), the stretch in cohesive
bonds can be calculated once the bond orientations are
known, as shown in Fig. 1. The summation of bond en-
ergy over all microscopic cohesive bonds at the same ma-
terial point provides the macroscopic strain energy func-
tion. Its derivative with respect to the Green-Lagrange
strain EIJ gives the second Piola-Kirchhoff stress SIJ.
The macroscopic constitutive law is then obtained from
the cohesive law of microscopic bonds. Furthermore, no
presumed or separate fracture criteria are needed in the
VIB model since it has implicitly embedded the fracture
criterion into the constitutive law. Fracture can be simply
viewed as the strain localization (Klein and Gao, 1998,
2000).
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Figure 1 : The VIB model with randomized internal bonds and a schematic diagram to establish the macroscale
constitutive law from microscopic bond energy function
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The softening behavior in the cohesive force law, U 0(l),
on the microscale (Figure 1) translates to macroscopic
softening behavior of materials at relatively large defor-
mation, which may lead to difficulties in numerical sim-
ulations. This does not seem to be a significant prob-
lem in dynamic simulations nor for material systems con-
taining weak interfaces (Gao and Klein, 1998; Klein and
Gao, 1998, 2000). However, for homogeneous materials
subjected to static loading, the Newton-Rhapson method
used to solve nonlinear equations iteratively may not al-
ways provide a convergent solution for the static VIB
model. The purpose of this paper is to develop a robust
numerical algorithm for the static VIB model so as to ex-
pand the model’s application range to static engineering
problems, as demonstrated through numerical examples
in the paper. We begin with a summary of the VIB model
(Gao and Klein, 1998) in Section 2. For isotropic solids,
Klein and Gao (2000) has developed a formulation that
is much more efficient for numerical simulations. This
formulation is summarized in Section 3. The numerical
algorithms and their implementation on the ABAQUS fi-
nite element program are discussed in Section 4, while
three numerical examples, namely the crack nucleation
and propagation from stress concentration around a hole,
mode II crack kinking and subsequent propagation, and
the buckling-driven delamination of a thin film from the
substrate, are presented in Section 5.

2 The Virtual-Internal-Bond Model

2.1 Macroscopic Strain vs. Microscopic Bond Stretch

The virtual-internal-bond (VIB) model proposed by Gao
and Klein (1998) is established within the framework of
hyperelasticity in continuum mechanics. The material
points in the initial, undeformed configuration are de-
scribed by the reference, Lagrangian coordinates X =
(X1;X2;X3), while the same material points in the cur-
rent, deformed configuration are described by the spatial,
Eulerian coordinates x = (x1;x2;x3). In general, the rela-
tion between these two sets of coordinates, x= x(X; t), is
completely determined by the deformation gradient ten-
sor

F =
∂x
∂X

; FiI =
∂xi(X1;X2;X3; t)

∂XI
; (1)

where t is time. The right Cauchy-Green tensor C and
the Green-Lagrange strain tensor E are related to the de-

formation gradient tensor F by

C = FT �F; CIJ = FiIFiJ ; (2)

E =
1
2
(C� I) =

1
2
(FT �F� I) ;

EIJ =
1
2
(CIJ�δIJ) =

1
2
(FiIFiJ �δIJ) : (3)

Once the strain tensor E(X) at a material point
X is known, the stretch in a direction ξ at X is

[1+2ξ �E(X) �ξ] 1
2 (e.g., Marsden and Hughes, 1983). As

shown in Figure 1, each material point on the macroscale
is attached to bonds on the microscale. Therefore, the
bond which has the initial, unstretched length l 0 is now
stretched to

l = l0 [1+2ξ �E(X) �ξ] 1
2 = l0 [1+2ξIEIJξJ ]

1
2 ; (4)

where ξ is the unit vector along the bond direction on
the microscale, and E(X) is the macroscopic strain at
the material point X. It should be pointed out that the
stretched bond length depends on both the macroscopic
strain E(X) and the microscopic bond orientation ξ.

2.2 Macroscopic Strain Energy Function vs. Micro-
scopic Bond Potential Energy

The potential energy stored in each bond is denoted by
U(l), where the stretched bond length l is given in (4).
The macroscopic strain energy per unit undeformed vol-
ume in this network of cohesive bonds can be obtained
via the Cauchy-Born rule (Milstein, 1980; Tadmor et al,
1996), i.e., by equating the macroscopic strain energy
function at a material point X to the potential energy
of all microscopic bonds attached to the same material
point. This gives the strain energy function Φ(E IJ),

Φ(EIJ) = hU(l)i=
D

U(l0
p

1+2ξI EIJξJ)
E
; (5)

where h� � �i stands for the average over all bonds at X. If
one further assumes that the bonds have identical initial
length l0, h� � �i becomes the average over all orientations
ξ of the bonds. For a three-dimensional problem, this
average is given by

h� � �i=
2πZ

0

πZ

0

(� � �)D0(θ;φ)sinθdθdφ; (6)
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where θ and φ are angles in spherical coordinates, and
D0(θ;φ) is the bond density such that D 0(θ;φ)sinθdθdφ
is the number of bonds per unit reference volume with
bond angles in the range (θ;θ+dθ) and (φ;φ+dφ). For
an isotropic solid with fully randomized internal bonds,
D0(θ;φ) becomes a constant D0, independent of θ and φ.
According to (6), the strain energy function Φ in three-
dimension becomes

Φ(EIJ) = D0

2πZ

0

πZ

0

U(l0
p

1+2ξI EIJξJ)sinθdθdφ; (7)

where the unit vector ξ along the bond direction is given
by

ξ = (ξ1; ξ2; ξ3 ) = (sinθcosφ;sinθsinφ;cosθ): (8)

For a two-dimensional plane-stress problem with fully
randomized internal bonds within the plane, the bond
density takes the form of D0(φ)δ(θ� π

2), such that the
average h� � �i becomes

h� � �i=
2πZ

0

(� � �)D0(φ)dφ; (9)

where φ is the polar angle in the plane. For fully random-
ized bonds, D0(φ) is a constant D0 and the strain energy
function Φ becomes

Φ(EIJ) = D0

2πZ

0

U(l0
p

1+2ξI EIJξJ)dφ; (10)

where ξ = (ξ1;ξ2) = (cosφ;sinφ).
Equations (7) and (10) give the macroscopic strain en-
ergy function Φ in terms of the microscopic bond poten-
tial energy U for an isotropic solid with fully randomized
internal bonds.

2.3 Macroscopic Stress and Moduli

Once the strain energy function Φ(EIJ) is known, the
second Piola-Kirchhoff stresses SIJ and moduli CIJKL are
readily to be obtained as (Gao and Klein, 1998)

SIJ =
∂Φ
∂EIJ

= l2
0

�
U 0(l)

l
ξIξJ

�
; (11)

CIJKL =
∂SIJ

∂EKL
=

∂2Φ
∂EIJ∂EKL

= l4
0

��
U 00(l)

l2 �U 0(l)
l3

�
ξIξJξKξL

�
; (12)

where the stretched bond length l is given in (4), and the
averaging scheme h� � �i is defined in (6) or (9). Once
expression of the bond potential energy U(l) is known,
Equation (11) provides the macroscopic stress-strain re-
lation for the VIB model, while the moduli in (12) are
useful in the incremental stress-strain relation. It is ob-
served that the moduli in (12) have the Cauchy sym-
metry CIJKL = CJIKL = CIJLK = CKLIJ = CIKJL. More-
over, it can be shown that the pure volumetric deforma-
tion EIJ = εδIJ gives only a pure volumetric hydrostatic
stress, SIJ = σδIJ .

2.4 Modeling Fracture as Strain Localization

Even though it is not necessary to impose a separate and
external fracture criterion in the VIB model, it is impor-
tant to identify a fracture indicator in order to determine
some key quantities related to fracture, such as the crack
tip location and speed, and the zone over which fracture
has occurred. Unlike a fracture criterion in classical frac-
ture mechanics, a fracture indicator in the VIB model
does not intervene the continuum stress analysis even af-
ter fracture occurs.

Hill (1962) described the loss of strong ellipticity of the
strain energy density function as an indication of ma-
terial instability, which typically occurs in the form of
strain localization and leads to the final failure of the ma-
terial. The classical condition for strain localization is
characterized by the acoustical tensor Q(N) being singu-
lar (Hill, 1962; Truesdell and Noll, 1965; Armero and
Garikipati, 1996; Klein and Gao, 1998), i.e.,

det[Q(N)] = 0; (13)

where det is the determinant of the second order tensor,
the acoustical tensor Q(N) is given by

Qik = BiJkLNJNL; (14)

N is the unit vector for an arbitrary direction, and B is
given in terms of incremental modulus tensor C, defor-
mation gradient F and the second Piola-Kirchhoff stress
S by

BiJkL = CIJKLFiIFkK +SJLδik: (15)

In other words, if there exists a direction N such that
the acoustical tensor becomes singular, strain localiza-
tion starts.
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One difference between the VIB model and the cohesive
surface model is that the former is established through the
constitutive modeling of solids. Numerical implementa-
tion of the VIB model in a finite element program does
not involve additional (surface) elements nor additional
degrees of freedom. Crack nucleation and propagation
can be viewed as strain localization in the VIB model,
i.e., very large deformation around localized and concen-
trated regions (Klein and Gao, 1998, 2000). However, it
is unclear how to determine the crack tip location, speed,
and crack propagation path in such an approach. Klein
and Gao (1998, 2000) suggested using the strain local-
ization condition (13) as a fracture indicator to determine
the crack tip location and crack propagation path. This
indicator is adopted in the present study. Further details
are given in section 4.

2.5 Phenomenological Cohesive Force Law of Micro-
scopic Bonds

Following Gao and Klein (1998), we adopt a simple, two-
parameter phenomenological cohesive force law

U 0(l) = A(l� l0)exp(� l� l0

Bl0
); (16)

where l0 is the initial, unstretched bond length; A is the
slope of U 0(l) for the unstretched bond (Figure 2) and is
linearly proportional to the shear modulus µ of the solid.
With the plane stress model, the shear modulus for in-
finitesimal deformations is (Gao and Klein, 1998; Klein
and Gao, 1998, 2000)

µ =
π
4

D0 l2
0 A: (17)

The parameter B in (16) is the critical stretch at which
the maximum bond strength is reached (Figure 2); the
larger B is the later the softening occurs in the bond. In
other words, B is the percentage of stretch at which the
softening starts. In a plane-stress state with equibiaxial
stretching, EIJ = εδIJ (I;J = 1;2), the strain at which lo-
calization occurs, or equivalently, at which the maximum
stress is reached, is given by (Gao and Klein, 1998)

ε� =
�1+2B+

p
1+4B

4
= B+O

�
B2�

; (18)

i.e., B represents the localization strain.

Klein and Gao (2000) derived the elastic moduli in three-
dimensional infinitesimal deformation in terms of the pa-
rameters of the cohesive potential. The bond density D 0,

l

U’(l)

A

B

l0

Figure 2 : A phenomenological cohesive force law

unstretched bond length l0 always appear together with
the parameter A in the combination of D0l2

0A, as in (17).
Therefore, it is not necessary to prescribe D0, l2

0 and A
separately.

3 VIB Model for Isotropic Solids

The constitutive law in the VIB model involves integra-
tions of bond stretches and bond density function with
respect to spherical angles or polar angles. For isotropic
solids, the general VIB model can be recast to a new for-
mulation which is much more efficient and better suited
for numerical implementation (Klein and Gao, 2000). It
ensures the isotropy of the constitutive law, regardless of
the numerical integration scheme with respect to spheri-
cal or polar angles.

The right Cauchy-Green tensor C in (2) can be expressed
in terms of its spectral decomposition along the principal
stretch directions for an isotropic solid,

C =
nsd

∑
A=1

λ2
AN(A)
N(A)

; CIJ =
nsd

∑
A=1

λ2
AN(A)

I N(A)
J ;

(19)

where nsd = 2 or 3 for two or three dimension analy-
sis, respectively, λA are the principal stretches (or equiv-
alently, λ2

A are the eigenvalues of C), and N(A) are the
corresponding unit vectors in the principal directions as-
sociated with λA. The Green-Lagrange strains in (3) be-
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come

E =
1
2

nsd

∑
A=1

�
λ2

A�1
�

N(A)
N(A)
: (20)

The strain energy function Φ(EIJ) can be written in terms
of the principal stretches due to isotropy (Simo and Tay-
lor, 1991),

Φ(E) = Φ̂(λA) (A = 1; : : :;nsd) (21)

such that the second Piola-Kirchhoff stresses in (11) are
given by

SIJ =
∂Φ
∂EIJ

= 2
∂Φ
∂CIJ

= 2
nsd

∑
A=1

∂Φ̂
∂λA

∂λA

∂CIJ
: (22)

The last term in (22) for the case of distinct eigenvalues
is (Simo and Taylor, 1991)

∂λA

∂C
=

1
2

λAM(A)
;

∂λA

∂CIJ
=

1
2

λAM(A)
IJ ; (23)

where M(A) is given by

M(A) =
1

λ2
A

N(A)
N(A)
; M(A)

IJ =
1

λ2
A

N(A)
I N(A)

J :

(24)

The other term, ∂Φ̂
∂λA

, in (22) can be obtained for the
isotropic VIB model by differentiating (5) with respect
to λA (Klein and Gao, 2000),

∂Φ̂
∂λA

= l2
0λA

�
U 0(l)

l
Ξ̂2

A

�
; (25)

where h� � �i stands for the average over spherical angles

in (6) or polar angle (9), Ξ̂A = ξ(A)I N(A)
I is the projec-

tion (or component) of the unit directional vector ξ of
the bond along the principal stretch direction N (A), and
the stretched length l in (4) becomes

l = l0

"
nsd

∑
A=1

λ2
AΞ̂2

A

# 1
2

: (26)

Equations (22)-(25) can be rearranged to give stresses
in terms of the principal stretches in the isotropic VIB
model as

S =
nsd

∑
A=1

SAλ2
AM(A)

; SIJ =
nsd

∑
A=1

SAλ2
AM(A)

IJ ; (27)

where

SA =
1

λA

∂Φ̂
∂λA

= l2
0

�
U 0(l)

l
Ξ̂2

A

�
: (28)

The differentiation of (27) gives the incremental moduli
as

CIJKL =
∂SIJ

∂EKL
= 2

∂SIJ

CKL

=
nsd

∑
A;B=1

γABλ2
Aλ2

BM(A)
IJ M(B)

KL

+ 2
nsd

∑
A=1

SAλ2
A

�
M(A)

IJ M(A)
KL +T (A)

IJKL

�
;

C =
nsd

∑
A;B=1

γABλ2
Aλ2

BM(A)
M(B)

+ 2
nsd

∑
A=1

SAλ2
A

�
M(A)
M(A)+T(A)

�
; (29)

where

γAB = γBA =
1
λB

∂
∂λB

�
1
λA

∂Φ̂
∂λA

�

= l4
0

��
U 00(l)

l2 �U 0(l)
l3

�
Ξ̂2

AΞ̂2
B

�
; (30)

T(A) = ∂M(A)

∂C is a fourth order tensor given in the Ap-
pendix. Besides the significant reduction in computa-
tional work, the isotropic VIB model also ensures the
isotropy of the incremental moduli regardless of the nu-
merical integration scheme, as compared to the general
VIB model in the previous section. In other words,
the formulation produces response that is invariant with
transformations of the deformation gradient F ! FR,
where R represents a right, orthogonal transformation,
i.e., RTR = 1, 1IJ = δIJ .

4 Numerical Implementation

4.1 Spatial Representation of the VIB Model

The general VIB model in Section 2 as well as the
isotropic VIB model in Section 3 have been implemented
in the ABAQUS finite element program through a USER-
MATERIAL subroutine UMAT. The current state vari-
ables as well as strain increments are provided to UMAT,
which then calculates the Jacobian matrix (incremen-
tal moduli) and updates all state variables. However,
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ABAQUS uses the Cauchy (true) stress σ, instead of
the second Piola-Kirchhoff stress S, as the stress mea-
sure. Accordingly, stresses and incremental moduli es-
tablished in Sections 2 and 3 have been recast in terms
of the Cauchy stress, its Jaumann rate and the rate of de-
formation. A fully implicit time integration scheme has
been adopted for this nonlinear problem.

Rather than making use of the transformation relation,
σ = 1

J FSFT, the formulations in Section 3 can be trans-
formed analytically to the corresponding spatial repre-
sentations, where F is the deformation gradient, and
J = det(F). This significantly reduces the computational
effort as compared to the numerical transformation from
material to spatial representations. Since the deformation
gradient F is provided to the USER-MATERIAL subrou-
tine UMAT in ABAQUS, the left Cauchy-Green tensor is
readily obtained as b = FFT, which has the same eigen-
values λ2

A as the right Cauchy-Green tensor C in (2), and
the corresponding eigenvectors n(A) are related to N(A)

associated with C by n(A) = FN(A). Similar to (24), we
define

m(A) = n(A)
n(A)
; (31)

which is the direct transformation of M (A) by m(A) =
FM(A)FT. The spatial representations of stresses and
moduli are readily obtained from the transformation of
(27) and (29),

σi j =
1
J

nsd

∑
A=1

SAλ2
Am(A)

i j ; (32)

ci jkl =
1
J

FiIFjJFkKFlLCIJKL

=
1
J

nsd

∑
A;B=1

γABλ2
Aλ2

Bm(A)
i j m(B)

kl

+
2
J

nsd

∑
A=1

SAλ2
A

�
m(A)

i j m(A)
kl + t(A)i jkl

�
; (33)

where t(A)i jkl = FiIFjJFkKFlLT (A)
IJKL is the transformation of

the tensor T(A) given in the Appendix, and it can be ex-
pressed analytically in terms of b and m(A) (Klein and
Gao, 2000) instead of computing from the above trans-
formation.

4.2 Determination of Principal Stretches and Their
Directions

The determination of the eigenvalues λ 2
A and the corre-

sponding eigenvectors n(A) are straightforward because
the deformation gradient F is provided to the USER-
MATERIAL subroutine UMAT in ABAQUS, and the left
Cauchy-Green tensor is readily evaluated from b = FFT.
The equation for λ2

A is a third-order polynominal for three
dimension and a quadratic equation for two dimension,
for which the closed-form solutions can be found. The
corresponding eigenvectors n(A) can also be found ana-
lytically.

4.3 Average with Respect to Bond Angles

The average over the bond orientations becomes an in-
tegral with respect to spherical angles as in (6) for a
three-dimensional problem. The numerical integration
may add a significant portion of the computational work
such that an efficient numerical integration scheme is
needed. Klein (1999) has developed an icosahedron-
based integration scheme for three-dimensional prob-
lems, while more sophisticated schemes can be found in
Bažant (1986). For simplicity, we use 10-point Gaussian
integration scheme by mapping the domains of integra-
tion to [�1;1] for each angle in the present study, i.e.,
there are 100 Gaussian integration points for the double
integral with respect to spherical angles θ and φ in three
dimension, and 10 Gaussian integration points with re-
spect to polar angle φ in two dimension. We have also
divided the domain of integration for each angle into sev-
eral (e.g., 4) subintegrals and used 10-point Gaussian in-
tegration for each subintegral. The error associated with
the 10-point Gaussian integration scheme for each angle
(θ or φ) is on the order of 0:1%.

The numerical integration scheme with respect to the
bond angles has also been tested against the intrinsic
symmetry of the VIB model. For example, the moduli
given by the general VIB model should not depend on
any rigid body rotation R in the deformation gradient F.
The Gaussian integration scheme discussed above gives
an error on the order of 0:1% in moduli for different rigid
body rotations. For the isotropic VIB model, the mod-
uli given in (29) do not guarantee the Cauchy symmetry,
though our numerical results have shown that the Cauchy
symmetry holds within an error of 0:1%. These provide
further validations of the numerical integration scheme.
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4.4 Determination of the Crack Tip Location

Fracture is modeled as strain localization in the VIB
model, and is characterized by the vanishing of the de-
terminant of the acoustical tensor Q(N) in (13). This is
implemented in the finite element analysis by examining
all directions N around all Gaussian integration points
in all elements at each time (loading) step. Once (13)
is met at a Gaussian integration point, crack nucleation
(or propagation) starts, and the corresponding N repre-
sents the direction for crack propagation. This provides
a means to determine the crack tip location in the VIB
model.

4.5 Material Softening

The static VIB model can be unstable due to material
softening in the cohesive model. This class of problems
must be solved either dynamically or with the aid of ar-
tificial damping. The finite element program ABAQUS
provides an automatic mechanism for stabilizing unsta-
ble static problems through the automatic addition of
volume-proportional damping to the model. The mech-
anism is triggered by including a STABILIZE parameter
on any nonlinear static procedure. Viscous forces of the
form Fv = cMv are added to the global equilibrium equa-
tion, where M is an artificial mass matrix, c is a damp-
ing coefficient, v is the vector of nodal velocities. The
VIB model is stable at the beginning of the step and in-
stabilities may develop in the course of the step. While
the model is stable, viscous forces and viscous energy
dissipated are very small. If a local region becomes un-
stable, the local velocities increase such that part of the
strain energy then released is dissipated by the applied
damping. The damping coefficient, c, is calculated based
on the solution of the first increment of the step. Incre-
ments in strain energy and in viscously dissipated energy
are calculated and extrapolated to the total step time. The
damping coefficient is then determined in such a way that
the dissipated energy is a small fraction of the strain en-
ergy, less than 2:0�10�4.

4.6 Validation

In order to validate the numerical procedures and algo-
rithms, we have calculated several cases that have closed-
form solutions. At small deformation, the VIB model
degenerates to linear elasticity. Our numerical results
have reproduced analytical solutions in linear elasticity,

including the crack tip K-field, pure bending of a beam,
and stress concentration around a hole. For finite defor-
mation, the numerical results have reproduced all avail-
able analytic solutions, including uniaxial, biaxial and
triaxial stretching (Gao and Klein, 1998) and pure shear
in the VIB model. We have also validated the results
against the numerical example for interfacial debonding
in multi-layered material systems (Gao and Klein, 1998).

5 Numerical Results

We have studied three examples under static loading us-
ing the VIB model. No separate, external fracture crite-
ria are needed for crack nucleation nor for crack growth
since fracture becomes a coherent part of the VIB con-
stitutive model. It is not necessary to specify the param-
eter A, bond density D0 and unstretched bond length l0

in the VIB model since they always appear together in
the form of shear modulus µ in (17). We have fixed the
critical stretch B of the bond in the VIB model as 0:02,
giving a localization strain ε� = 2%. Once the localiza-
tion strain is reached, the microscopic bond exceeds the
critical stretch B such that the bond has essentially lit-
tle or no load-carrying capacity, which gives very small
tractions, if not vanishing, in severely stretched elements.

5.1 Crack Nucleation from the Stress Concentration
around a Hole

The first example is crack nucleation from the stress con-
centration around a hole. A square plate containing a cir-
cular hole is subjected to remote uniaxial tension along
its edges in the x2 direction. The plate is thin in the
thickness (x3) direction and thus can be modeled as a
plane-stress problem. The maximum remote strain ap-
plied in the stretching direction is (ε ∞

22)max = 3� 10�3,
much smaller than the localization strain (2%) such that
the remote field never fractures.

A plate of 20a�20a centered around the hole is meshed
for the finite element method, where a is the radius of
the hole. Only a quarter of the region is analyzed due to
symmetry. There are 4355 nodes and 8468 3-node tri-
angular elements, although we have used refined meshes
as well as 6-node quadratic elements and 4-node bilinear
elements to ensure that there is no mesh dependency.

Figure 3(a) shows the initial, undeformed mesh near the
stress concentration around the hole, while Figures 3(b)
and 3(c) show the deformed mesh of the same region
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as well as the crack tip location at the remote strain
ε∞

22 = 0:275985% and ε∞
22 = 0:275990%, respectively.

At ε∞
22 = 0:275985%, several elements along the sym-

metry plane have been severely stretched and the crack
tip has propagated from the hole by a distance approxi-
mately equal to the hole radius [Figure 3(b)]. The large
difference between small remote ε∞

22 (0:275985%) and
large strain near the hole ( > localization strain 2%)
reflects the strain concentration around the hole. Fig-
ure 3(c) shows the deformed mesh at the remote strain
ε∞

22 = 0:275990%. It is observed that, even though the
remote strain increases only slightly from that in Figure
3(b) (0:275985%), many more elements on the symmetry
plane have been severely stretched, and the crack tip has
propagated approximately three times the hole radius.
Figure 3(d) presents the deformed mesh of the entire re-
gion at the remote strain ε∞

22 = 0:3%, which clearly shows
all elements on the symmetry plane have been severely
stretched and the crack has propagated through the entire
specimen.

Figure 3(e) shows the crack length, normalized by the
hole radius, versus the remote applied strain ε∞

22, where
the crack length is measured from the hole surface. It is
observed that, for strains less than 0:27598%, the crack
is nucleated and propagated for a short distance less than
half of the hole radius. However, as the remote strain
exceeds this critical strain level, the crack rapidly prop-
agates through the entire specimen (nearly 10 times the
hole radius) for a very small increase in the remote strain.
This is rather similar to material instability or unstable
crack growth.

5.2 Kinking and Propagation of a Mode II Crack

The second example is the kinking of a mode II crack and
the subsequent propagation of the kinked crack. A semi-
infinite crack in an infinite solid is subjected to remote
KII field. As the remote load increases, the crack will
kink out and propagate away from the crack plane.

A circular region containing a crack is meshed by the fi-
nite element method. There are 2421 nodes and 4716
3-node triangular elements. The classical KII field is im-
posed at the outer boundary by prescribing the displace-
ments. Even though a mode II crack is anti-symmetric
about the crack plane, this symmetry breaks down as
soon as the crack kinks out. Therefore, we do not im-
pose any symmetry conditions in the present analysis.

Figure 4(a) shows the initial, undeformed mesh around

the crack tip, and the symmetry about the crack plane
is clearly observed. As the remote load KII increases,
the deformed mesh becomes unsymmetric. As shown in
Figure 4(b) for a relatively small remote load KII , the
elements that are approximately 70Æ (clockwise) from
the crack plane seem to undergo larger deformation than
elsewhere, and the crack tip just kinks out of the initial
crack plane. This angle of 70Æ in Figure 4(b) is consistent
with the predicted crack kinking angle in mode II based
on a maximum crack tip energy release rate criterion in
elastic fracture mechanics. The crack kinking and sub-
sequent crack propagation is better shown in Figure 4(c)
for a larger remote load KII , where a layer of elements
undergoes significantly stretches, indicating that a mode
II crack first kinks out at 70Æ, then propagates away. It
should be pointed out that, this kink angle of 70 Æ does not
apply to subsequent crack propagation because the tip of
the kinked crack is not mode II anymore. At the same
remote load KII as in Figure 4(c), the deformed mesh of
the entire domain and the kinked crack tip are shown in
Figure 4(d), where the crack kinking and propagation are
evident from the layer of significantly stretched elements.

5.3 Buckling-Driven Delamination of a Thin Film

A thin film that is bonded to a substrate and subjected
to a compressive stress may delaminate by a mecha-
nism involving buckling (e.g., Chai et al, 1981; Evans
and Hutchinson, 1984; Argon et al, 1989; Hutchinson
et al, 1992; Thouless et al, 1992; Huang et al, 1998 ).
Once the compressive stress in the film reaches a criti-
cal value, the film buckles and the elastic energy stored
in the system is released, which then drives the initial
delamination to propagate between the film and the sub-
strate, i.e., the so-called “buckling-driven delamination”.
Hutchinson et al (1992) have developed a model to in-
vestigate the buckling-driven delamination for a thin film
under axisymmetric compression. The initially delami-
nated portion of the film is modeled as a clamped plate
under compression, while the subsequent propagation of
the delaminated region is controlled by the crack tip en-
ergy release rate. Thouless et al (1992) have extended
the analysis of buckling-driven delamination to films un-
der the plane-strain condition. The analytical models are
in excellent agreement with experiments (Hutchinson et
al, 1992; Thouless et al, 1992).

We use the VIB model to simulate this buckling-driven
delamination in this section. A thin film of thickness h
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Figure 3 : Crack nucleation from the stress con-
centration around a hole (a) initial, undeformed
mesh around the hole (b) the deformed mesh
around the hole and crack tip location at the re-
mote strain ε∞

22 = 0:275985% (c) the deformed
mesh around the hole and crack tip location at the
remote strain ε∞

22 = 0:275990% (d) the deformed
mesh of the entire domain at the remote strain
ε∞

22 = 0:3% (e) crack length versus the remote ap-
plied strain

(e)
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Figure 4 : Crack kinking and subsequent propagation of a mode II crack (a) initial, undeformed mesh around the
crack tip (b) the deformed mesh around the crack tip showing crack kinking around 70 Æ from the crack plane and
the tip of the kinked crack (c) the deformed mesh around the crack tip showing subsequent crack propagation (d) the
deformed mesh for the entire domain showing subsequent crack propagation and the tip of the kinked crack
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Figure 5 : Buckling-driven delamination of a thin film from the substrate (a) initial, undeformed mesh around
the initial delamination (b) the deformed mesh around the initial delamination and the crack tip location at the
compressive strain ε0 = 3:237% (c) the deformed mesh around the initial delamination and the crack tip location at
the compressive strain ε0 = 3:239% (d) the deformed mesh of the film and the crack tip location at the compressive
strain ε0 = 3:243%
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is bonded to a rigid substrate. The film is initially de-
laminated from the substrate over a length of 2b [Figure
5(a)], but is bonded well to the substrate elsewhere. The
length of the initial delamination is twice the film thick-
ness in the present study, i.e., 2b = 2h, representing a
small damage at the interface. The film, characterized
by the VIB model, is under compression within its plane,
with the remote compressive strain denoted by ε0. The
film is meshed for the finite element methods, with 4612
nodes and 4600 4-node bilinear elements. The rigid sub-
strate has no deformation, and therefore only enters the
analysis through the boundary conditions at the interface.

Figure 5(a) shows the undeformed mesh near the ini-
tial delamination. Since our interest is the propagation
of delamination along the interface, we simplify the ini-
tial delaminatin as a very thin slit with the height 0:02h,
rather than an interface crack. Figures 5(b) and 5(c) show
the deformed mesh around the initial delamination and
the crack tip location at the remote compressive strain
ε0 = 3:237% and ε0 = 3:239%, respectively. The ele-
ments at the interface are gradually stretched as the load
increases, while elements elsewhere have very little de-
formation. This clearly indicates the propagation of in-
terface delamination due to film buckling (away from the
substrate). This buckling-driven delamination can be bet-
ter seen in Figure 5(d), where the deformed mesh of a
much larger region and the crack tip location are shown
at the remote compressive strain ε0 = 3:243%. The el-
ements at the interface are severely stretched, indicating
interface delamination, while elements elsewhere remain
intact. The dark zone just above the elements at the in-
terface in Figure 5(d) is a region of very dense mesh. It
should be pointed out that the interface delamination oc-
curs rather rapidly when the compressive strain is around
3% since the strain levels in Figures 5(b), 5(c) and 5(d)
are very close. This level of compressive strain 3%, how-
ever, is sensitive to the critical stretch B of the bond.

6 Summary

The virtual-internal-bond (VIB) model has incorporated
a cohesive-type law into the constitutive model such that
the failure of solid becomes a coherent part of the con-
stitutive law. No separate failure criteria need to be pre-
scribed, and a deformation analysis can predict crack nu-
cleation and propagation in materials.

A numerical algorithm suitable for the VIB model under
static loading is developed and implemented in the finite

element program ABAQUS in this study. We have ap-
plied the method to investigate three examples, including
crack nucleation and propagation from stress concentra-
tion around a hole, the kinking and subsequent propaga-
tion of a mode II crack, and the buckling-driven delami-
nation of a thin film from a substrate.
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Appendix

The fourth order tensor T in (29) is (Klein, 1999)

T(A) =
∂M(A)

∂C
; T (A)

IJKL =
∂M(A)

IJ

∂CKL
; (34)

which is presented separately in the following for three
dimension and for two dimension. It is assumed that the
tensor C has distinct eigenvalues.
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(i) three dimension:

T(A) =
1

DA
[I�1
1]

� I3

DAλ2
A

h
IC�1 �

�
C�1�M(A)

�


�

C�1�M(A)
�i

+
λ2

A

DA

h�
1
M(A)+M(A)
1

�
+
�
I1�4λ2

A

�
M(A)
M(A)

i
; (35)

where I1 = λ2
1 + λ2

2 + λ2
3 and I3 = λ2

1λ2
2λ2

3 are the
trace and determinant of C, respectively, DA = 2λ4

A �
λ2

AI1 +
I3
λ2

A
, I is the fourth order identity tensor [IIJKL =

1
2 (δIKδJL +δILδJK)], 1 is the second order identity ten-

sor ( 1IJ = δIJ ), C�1 =
3
∑

B=1

1
λ2

B
N(B)
N(B) is the inverse

of C, and IC�1 is given by

IC�1 =�∂C�1

∂C
;

(IC�1)IJKL =�∂C�1
IJ

∂CKL
=C�1

IR
∂CRS

∂CKL
C�1

SJ
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1
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IK C�1
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IL C�1
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(ii) two dimension:

T(A) =
λ2

1λ2
2

λ2
A

�
2λ2
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where IC�1 is also given in (36), and C�1 =
2
∑

B=1

1
λ2

B
N(B)


N(B) is the inverse of C.




