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The Influence of Crystal Surfaces on Dislocation Interactions in Mesoscopic
Plasticity: A Combined Dislocation Dynamics- Finite Element Approach

R. Martinez1 and N. M. Ghoniem2

Abstract: We focus here on the direct coupling of Dis-
location Dynamics (DD) computer simulations with the
Finite Element Method (FEM) to simulate plastic defor-
mation of micro-scale structures, and investigate the in-
fluence of crystal surfaces on dislocation motion. A se-
ries of three-dimensional (3-d) DD simulations of BCC
single crystals with a single shear loop in the (101)-[111]
slip system are first presented. The purpose of these sim-
ulations is to explore the relationship between loop force
distributions and the proximity of the loop to the crys-
tal boundary. Traction boundary conditions on a single
crystal model are satisfied through the superposition of
the “image” stress field computed by FEM, and the elas-
tic stress field of dislocations computed by DD. The force
distribution on a prototypical shear loop is shown to con-
sist of the superposition of Peierls, image, applied, and
self forces. Force distributions are explored as a function
of loop proximity to the boundary of the single crystal
model. The deformation of the loop under the influence
of these force distributions is computed using a Galerkin
variational energy method, and the equilibrium geometry
is determined. Additionally, the deformation of a Frank-
Reed (FR) source in a single crystal model under the in-
fluence of image forces, applied stress, and Peierls forces
with varying screw/edge mobility ratios is determined.
The results indicate that image forces play a significant
role in dislocation force distributions and deformation to
a depth from the surface, which is proportional to the
loop radius. Large out-of-plane image force distributions
on closed loops in “oblique” slip plane/free surface orien-
tations are verified. These forces act in such a way as to
repel loop motion from the intersection of the slip plane
with the free surface, while causing deformation through
the mechanism of cross-slip. Expansion or contraction
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of shear loops is found to be dependent on the critical
applied stress, the radius of curvature, and the proxim-
ity/orientation of the loop with respect to the boundary.

1 Introduction

Dislocation interaction with free surfaces is of great im-
portance in the understanding of a number of phenom-
ena, which govern the mechanical response of materials
to applied loads. For example, the interaction between
dislocations and free surfaces plays a significant role in
fatigue behavior. In single crystals it is widely accepted
that surface roughness caused by the formation of persis-
tent slip bands (PSBs) is the dominant contributing factor
to fatigue crack initiation [Rosenbloom and Laird(1993);
Repetto and Ortiz(1997); Basinski, Pascual, and Basin-
ski(1983)]. This surface roughness is characterized by
the protrusion and extrusion of slip planes due to the ef-
fects of dislocation motion and their interaction with free
surfaces. Fatigue crack nucleation often accounts for a
large portion of the fatigue life of a component. Com-
puter models which simulate the surface roughening of
various kinds of single crystals due to random slip on
primary slip planes have accurately predicted the number
of cycles required for crack nucleation [Repetto and Or-
tiz(1997); Basinski, Pascual, and Basinski(1983)]. The
importance of dislocation motion and free surface inter-
action is also now being recognized in the field of mi-
croscale tribology with respect to MEMS components.
A micromechanical dislocation model of frictional slip
between two asperities presented by Hurtado and Kim
(1999) suggests that slip between two asperities is as-
sisted by the nucleation and gliding of a dislocation loop.
This model assumes that the dislocation is nucleated
along the perimeter of the contacting regions. For the
dislocation to glide, the resultant forces influencing its
motion; namely self forces, image forces, and applied
forces, must overcome the Peierls barrier. For resultant
forces that are directed inwards, the loop will contract
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as it glides across the contact area and self annihilates.
The end result is the slip of the upper asperity over the
lower asperity by a distance of one Burgers vector. Ad-
ditionally, the interaction between threading dislocations
and free surfaces of a strained layer bonded to a substrate
plays a significant role in the estimation of the critical
thickness of a strained layer for a particular mismatch
strain. Misfit dislocations in epitaxially grown thin films
are known to be detrimental to the electronic properties
of these materials [Beltz and Freund (1993)]. Verdier,
Fivel and Groma (1998) have modeled dislocation dy-
namics at the mesoscale for the indentation test on a Cop-
per crystal. Their work details the effect of image forces
developed by a free surface through the use of the finite
element technique. Through these examples, the impor-
tance of the interaction between dislocations and free sur-
faces can be clearly established.

In this work, we develop an iterative Finite Element / Dis-
location Dynamics method for investigation of the influ-
ence of surface forces on dislocation loop stability and
motion in finite, three-dimensional crystals. The internal
elastic field, forces and motion of dislocation loops are
all computed by the Parametric Dislocation Dynamics
methodology, developed in Ghoniem and Sun (1999) and
Ghoniem, Tong and Sun (2000). Tractions are computed
on all crystal surfaces, and a superposition technique is
developed, where the tractions are reversed on a crystal
of the same configuration, but without dislocations, and
the Finite Element Method (FEM) is used to determine
the residual stress field, and hence image forces. Since
FEM computations are intensive, several accuracy cri-
teria are imposed to determine the rate of image forces
re-calculation, as dislocation loops approach the crystal
surface. Within one time interval of FEM evaluation, the
dislocation loop shape is updated by an implicit time-
integration scheme. Several computational techniques
for locating dislocation line nodes, and estimation of act-
ing image-type Peach-Koehler forces will be discussed.
The motion, deformation and interaction of dislocation
loops with crystal surfaces will also be analyzed in this
paper. Results of computer simulations will be discussed
in terms of the mechanism by which dislocation loops
and Frank-Read sources emerge from within the crystal
as they approach its surface.

Using the finite element method and the method of Dis-
location Dynamics described above, various force distri-
butions on a single shear loop in a BCC Fe single crystal

will be determined. The analysis proceeds in the follow-
ing fashion. First, the displacement, elastic stress and
traction fields on the surface of the single crystal model
are computed using the Parametric DD method. Then,
stress iso-surfaces for the elastic stress field and the field
produced by the superposition of the elastic field and the
image stress field are calculated and compared to ver-
ify that the free surface boundary condition was satisfied.
To verify the accuracy of the numerical model, all forces
on the loop in the (101)-[111] slip system are computed
and compared to distributions proposed in the literature.
Having completed this process successfully, loops will
then be placed at different locations within the crystal
to study the effects of loop/boundary orientation on the
various force distributions. Also, the deformation of a
single loop will be determined for orientations in close
proximity to the boundary. A final analysis will explore
the deformation of the dynamics of a Frank-Reed (FR)
source in BCC materials with high (10 to 1) and low (2
to 1) ratios of screw to edge Peierls threshold forces.

The paper is organized as follows. First, a brief outline
of the theoretical framework of Parametric Dislocation
Dynamics (PDD) is given in subsection (2.1), together
with details of the computational methods devised for
coupling the PDD with the FEM technique in subsection
(2.2). Results of our computer simulations are then pre-
sented in subsection (3.1) for the elastic field of a single
shear loop in a finite isotropic crystal, where we discuss
conditions for its equilibrium. In subsection (3.2), we
also present results for the equilibrium of FR dislocation
sources near surfaces, and analyze the forces acting on
them. Finally, a summary and conclusions are given in
section (4).

2 Computational Method

2.1 A Brief Description of Parametric Dislocation
Dynamics

Ghoniem, Huang and Wang (2001) obtained a differen-
tial form of the stress tensor σ, that can be numerically
integrated, as given by:

dσ
dω

=
µV jTj

4π(1�ν)R2

��
g1
g1+g1
g1�+

(1�ν)
�
g2
g2+g2
g2�� (3g1
g1+ I)

	

(1)
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Where the three covariant unit vectors: g1;g2;and g3

represent the non-orthonornmal set: the unit vector along
the direction between a source and a field point (radius
vector), the unit tangent vector, and a normalized unit
Burgers vector, respectively. The vectors g1;g2;and g3

are their contravariant reciprocals, and V is the volume
spanned by them. In Eqn. 1, µ = shear modulus, ν =
Poisson’s ratio, the unit second order tensor = I is , the
magnitude of the tangent vector to a parametric dislo-
cation segment = jTj, and the magnitude of the radius
vector = R. The location of any point on the segment is
described by the scalar parameter ω, and the total field
is obtained as a fast sum over quadrature points on all
the segments of a dislocation loop [Ghoniem and Sun
(1999)]. The Peach-Koehler force on any loop is ob-
tained by performing a line integral over the segment of
the vector: fPK = σ �b� t. A variational form of the gov-
erning equation of motion of a single dislocation loop has
been developed by Ghoniem, Tong and Sun (2000), as :
Z

Γ

�
f t
k �BαkVα

�
δrk jdsj= 0 (2)

Where f t
k is the kth component of the resultant force, con-

sisting of following types of forces: Peach-Koehler force
fPK , the self-force, and the Osmotic force [Hirth and
Lothe(1982)], and s is the arc length vector along the dis-
location line. To simplify the problem, we only consider
the mobility Bαk to be isotropic, i.e. Bαk = Bδαk. Let’s
now define the following dimensionless parameters:

r� =
r
a
; f � =

f
µa

; t� =
µt
B

as the dimensionless distance, force and time, respec-
tively. Here, a is the lattice constant, and t is time. Hence
Eqn. (2) can be rewritten in matrix form as:

Z
Γ�

δr�>
�

f��
dr�

dt�

�
jds�j= 0 (3)

Where, f� = [ f �1 ; f �2 ; f �3 ]
>, and r� = [r�1;r

�

2;r
�

3]
>. Follow-

ing Ghoniem, Tong, and Sun (2000) the dislocation loop
can be divided into Ns segments. In each segments, we
can choose a set of generalized coordinates qm at the two
ends of each segment j, which can be parametrically de-
scribed as:

r� = CQ (4)

Where, C = [C1(ω);C2(ω); :::;Cm(ω)], Ci(ω);(i =
1;2; :::m) are shape functions dependent on the param-
eter ω (0 � ω� 1), and Q = [q1;q2; :::;qm]

>, qi is the
generalized coordinate. Substituting Eqn. (4) into Eqn.
(3), we obtain:

Ns

∑
j=1

Z
Γ j

δQ>

�
C>f��C>C

dQ
dt�

�
jdsj= 0 (5)

Now Let,

f j �
Z

Γ j

C>f� jdsj ; k j �
Z

Γ j

C>C jdsj ;

and

F =
Ns

∑
j=1

f j; K =
Ns

∑
j=1

k j;

then, from Eqn. (5), we finally obtain:

K
dQ
dt�

= F (6)

Eqn. (6) represents a set of ordinary differential equa-
tions, which describe the motion of a dislocation loop
as an evolutionary dynamical system. In our computer
simulations, we use cubic spline as shape functions for
dislocation segments, i.e.

C= [2ω3�3ω2+1;ω3�2ω2+ω;�2ω3+3ω2;ω3�ω2]

Q = [P1;T1;P2;T2]
>

Here, Pi and Ti (i = 1;2) are corresponding position and
tangent vectors, respectively. The resulting equations
of motion are solved by implicit integration in the PDD
computer code: UC-MICROPLASTICITY, and then the
results are coupled with the FEM technique to satisfy the
boundary conditions, as described below.

2.2 Coupling between the DD and FEM Computa-
tional Procedures

In the present model, a tensile stress is imposed on a cu-
bic single crystal and its effect on the dislocation loop
forces is calculated through the use of the Peach-Kohler
formula. To evaluate image stresses due to crystal sur-
faces, first the elastic stress field in an infinite medium
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resulting from the dislocation loop is computed. The
tractions that result at the surfaces of the finite crystal
from this stress field are then determined, reversed, and
placed on the FEM model as boundary conditions. The
FEM model is then used to calculate the image stress
field. From this stress field, the Peach- Kohler formula
can again be used to detrmine image forces on the dislo-
cation loop. This procedure follows the approach of Van
der Giessen and Needleman (1995), and extends it to 3-D
DD applications.

Having described the general idea behind the coupled
FEM-DD approach to the solution of the problem of a
single dislocation loop in a finite crystal with external
boundary conditions, we will now turn our attention
to the details of the calculational method. The elastic
field developed by the dislocation loop is evaluated
at crystal spatial nodal positions defined by the FEM
model of the ANSYS computer program. For the bulk
of the present analyses, 10 divisions per cube side were
employed for the FEM model. This resulted in 1,331
nodes and 3,990 degrees of freedom. Some analyses
were run with a finer mesh generated by using 20
divisions per cube side, thus resulting in 9,261 nodes
and 27,780 degrees of freedom. These FEM models
have one node in the center of the crystal model with
all degrees of freedom constrained to prevent rigid
body motion. Once the ANSYS model is created, the
coordinates of the nodes and the associated unit normals
are introduced into UC-MICROPLASTICITY. Tractions
are then calculated, with the unit normal vectors at the
surface of the cell. The tractions, with their directions
reversed, are then imported into the ANSYS computer
program. After the FEM analysis is run and the stress
field in the crystal interior computed to an intermediate
file, which is then re-written into a format usable by
UC-MICROPLASTICITY. The Peach-Kohler formula
is then used to calculate the image forces on the loop
nodes. Because the FEM analysis only calculates the
stress field at specific positions, the stress on the loop
nodes has to be estimated by a three-dimensional linear
interpolation algorithm [Cook (1995)]. To this end, a
number of subroutines were developed to perform the
linear interpolation of the stress tensor components from
FEM nodal positions to loop nodal positions. These
subroutines determine the FEM field nodes that are
closest to a specific loop node, and estimate the stress
on the loop node by using a linear interpolation method

described below.

Loop Node Stress Tensor Estimation

To estimate the stress on a specific loop node, the stress
on the nearest FEM field points surrounding the loop
node must be found. These field node values are found
by comparing the FEM field node coordinate values to
the loop node in question. The eight field nodes in a
quadrilateral brick element closest to the loop node are
thus selected. Another subroutine organizes the stress
values and position coordinates so that the loop nodal
stresses can be determined by appropriate weighting fac-
tors. The procedure used for estimating the stress on
loop nodes from the stress that was calculated at the field
nodes is taken from an extension of the quadratic quadri-
lateral used in finite element analysis, into three dimen-
sions [Cook(1995)]. The shape functions are given be-
low.

N1 = [(a�x)(b�y)(c� z)]=8Ve (7)

N2 = [(a+x)(b�y)(c� z)]=8Ve (8)

N3 = [(a�x)(b+y)(c� z)]=8Ve (9)

N4 = [(a+x)(b+y)(c� z)]=8Ve (10)

N5 = [(a�x)(b�y)(c+ z)]=8Ve (11)

N6 = [(a+x)(b�y)(c+ z)]=8Ve (12)

N7 = [(a�x)(b+y)(c+ z)]=8Ve (13)

N8 = [(a+x)(b+y)(c+ z)]=8Ve (14)

In Eqns. 7-14, a;b and c are equal to half the length of
a quadrilateral brick element, and Ve is the element vol-
ume. The variables x;y and z are the coordinates of the
loop node with respect to element’s local origin. The
stress on the loop node is estimated through the following
summation:

σloopnode =
8

∑
i=1

Ni σi (15)

Here, Ni is the shape functions and σi is the stress
on the particular field node. Once the stress on the
loop node is established, the image force is calculated
using the Peach-Kohler equation. The applied stress
is calculated in a similar fashion to that of the image
force, and is then entered into UC-MICROPLASTICITY.
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Peierls Forces

The applied resolved shear stress required to overcome
the lattice resistance to movement by a dislocation loop
is referred to as the Peierls-Nabarro stress. This stress is a
consequence of the inter-atomic forces/displacement in-
teraction between the dislocation loop and the surround-
ing crystal. This resistance to dislocation movement
is due to the periodic variation in the misfit energy of
atomic half planes above and below the slip plane with
the dislocation loop. For high dislocation densities, the
influence of the Peierls stress on the dynamics of the
dislocation loop is comparable to the long-range inter-
actions between the dislocation loops themselves. For
low dislocation densities however, the contribution of the
Peierls stress is significant. It is generally accepted that
the Peierls stress is a dominant controlling factor in the
plastic slip of BCC metals at low temperatures [Teodosiu
(1982)]. Peierls and Nabarro calculated the dislocation
energy per unit length as a function of position. This en-
ergy was found to oscillate with period jbj=2, where b is
the Burgers vector. This maximum value for the energy
is given in the following equation.

Ep =
µb2

π(1�ν)
exp

�
�2πw

b

�
(16)

The Peierls stress is the critical stress required to move
a dislocation through the crystal. This is the maximum
slope of the energy vs. distance curve, divided by the
Burgers vector.

τp =
2µ

(1�ν)
exp

�
�2πw

b

�
(17)

In Eqns. 16 and 17, and w is the distance between the
atoms immediately below the dislocation.

Values for Ep and τp are sensitive to the details of inter-
atomic bonding. τ p varies between (10�6 to 10�5µ) for
FCC metals, (10�2 µ) for covalent crystals, and is some-
where in between for BCC metals. The Peierls stress de-
creases with increasing temperature and with increasing
dislocation width. It is also lower for edge dislocations
than screw dislocations [Hirth and Lothe (1982)]. Based
on the Peierls stress, the corresponding Peierls force can
be found through the inner product of the Peierls stress
with the Burgers vector.

The ratio of Fe edge to screw velocities is estimated to
be � 2). By assuming that the ratio of Peierls forces as-
sociated with edge and screw dislocations are inversely

proportional to the velocity ratio, the Peierls force in the
direction of the Burgers vector was taken as 1

2 that in the
direction normal to the burgers vector. Other ratios were
also explored to determine the variability in the deformed
geometry with respect to this variable. The calculation of
the Peierls force is given by the following formula.

F
L

= τp

�
1+ sin(cos�1f

b �u
jbj juj

g

�
u
juj

(18)

The stress threshold value, τ p is taken as (10�3µ) for Fe,
u is the displacement vector, and b is the Burgers vector.

3 Results for Dislocation Interaction with Free Sur-
faces

3.1 A Shear Loop in a Finite Crystal

The displacement field for a shear dislocation loop with
a radius of 4000 a is shown in the vector plot of Fig.
1. The stress field of the loop in an infinite crystal was
calculated first by UC-MICROPLASTICITY, and the
corresponding reversed tractions necessary for solving
the FEM boundary value problem determined, as can be
seen in Fig. 2. The stress iso-surfaces formed by the
σxx stress component of the elastic stress field is added
to the stress field formed by surface image stresses, and
the results are shown in Fig. 3. The superposition of
the image stress field onto the elastic stress field of the
dislocation loop results in a total stress field with no
normal components at the (x = 10,000 a) surface, as can
be clearly seen in Fig. 3. The stress iso-surface appears
to be repelled from the surface. These results, along with
similar results for the shear components, show that the
free surface boundary condition has been satisfied.

Force Distributions

Force distributions on a 4000 a-radius shear loop in the
(101)- [111] slip system of an Fe single crystal with an
applied load of 100 MPa were calculated. The applied,
image, Peierls, self and resultant force distributions are
all shown Fig. 4 below. The image, self and Peierls
force distributions are all on the shear plane, while the
applied and resultant force distributions are characterized
by large out-of-plane components. The distributionof the
applied force on the circular shear loop is similar to that
proposed by Kroupa(1966).
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Figure 1 : Two views of the displacement field induced
by a 4000 a-radius shear loop in the (101)-[111] slip sys-
tem. Burgers vectors are represented at loop nodes.

Figure 2 : Vector plot for the tractions produced by the
elastic stress field of a 4000 a radius shear loop

Figure 3 : σxx = 2000 MPa stress iso-surface for the total
dislocation plus image elastic field
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Figure 4 : Force distributions on a 4000 a radius shear loop in the (101)-[111] slip system in Fe, applied stress σ xx

= 100 MPa. Vectors to scale except self and image with scale factors of 2 and 10, respectively
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Self forces seek to increase the length of screw com-
ponents and decrease the length of edge components
as a consequence of total energy minimization for the
loop. The screw orientation has a lower energy per
unit length as compared to the edge component, and
hence is “stiffer” in opposing applied forces. Peierls
forces are larger in the direction perpendicular to the
Burgers vector, resulting in low mobility of the screw
component as opposed to the edge component of the
loop. Dislocation loops in BCC metals thus tend to have
long, straight screw components, especially at lower
temperatures.

Equilibrium of Shear Loops Near Crystal Surfaces

To complete the analysis of the influence of free crys-
tal surfaces, a single dislocation loop was placed at dif-
ferent positions within the single crystal model, and the
force distributions were calculated. In addition to loop
position, other variables were evaluated including loop
diameter, applied stress magnitude, and the number of
FEM degrees of freedom. For all analyses, the material
modelled is BCC Fe (µ = 36:4 GPa;ν = 0:25; and a =
0:285 nm). An analysis was conducted with a fine mesh
of 20 divisions per side and 60 nodes per loop. The loop
is placed at 250 a from the crystal edge. The results of
this analysis are illustrated in Fig. 5. As the loop ap-
proaches the crystal corner, image forces increase, and on
the portion of the loop closest to the boundary, they are
characterized by attractive in-plane and attractive out-of-
plane components. A deformation analysis was also con-
ducted on this loop/boundary configuration. The results
are displayed in Fig. 6. These results indicate that the
loop advances away from the corner in the direction of
the Burgers vector. It must however be noted that the mo-
tion of the loop is limited to the slip plane in the present
numerical model. It is also obvious from Fig. 6 that large
out-of-plane forces can induce cross-slip.

To better understand the qualitative relationship between
the position of the shear loop and the crystal boundary
forces, a loop with a radius of 2000 a was placed at dif-
ferent positions with respect to the top crystal surface.
As the loop arrives at the surface, the magnitudes of im-
age forces become very large. For a loop very close to
the boundary, this force distribution becomes repulsive
when projected onto the slip plane, and is characterized
by large out-of-plane forces on the portion of the loop

Figure 5 : Two views of the image force distribution on
a loop in the corner of the unit cell. The loop is 250 a
from the edge of the cell. The Burgers vector direction is
also represented.

Figure 6 : The 500 a radius loop and the deformation
that results under an applied stress of 350 MPa.
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Figure 7 : Image force distributions on a 2000 a radius shear loop in the (101)-[111] slip system, (A)1000 a, and
(B) 10 a from z=10000 a surface. Vector scale factors: (A)100,(B) 1 .
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closest to the boundary. These forces should promote
cross-slip toward the free surface for the screw compo-
nents. Fig. 7 shows that forces on loop nodes not near
the boundary evolve from a radial outward distribution at
250 a from the boundary, to a downward normal (from
the slip plane) distribution at a distance of 10 a from the
boundary. These results indicate that image force dis-
tributions are heavily dependent on the proximity of the
loop to the the top crystal surface. Having established the
distribution of forces, the deformed shape of the loop un-
der an applied stress of 50 MPa was calculated (see Fig.
8). As predicted by the nodal force distribution, the loop

Figure 8 : Deformation of a 2000 a radius shear loop in
the (101) -[111] slip system. The loop is initially 10 a
from the surface with applied stress: σxx = 50 MPa.

is repelled by the surface due to the influence of image
forces, as a result of constraining loop motion to be only
on the glide plane. A final equilibrium loop geometry is
achieved at a distance of 212 a from the free surface. If
the model allowed for motion out of the slip plane, the
loop would advance toward the boundary through cross-
slip of its screw components. To understand why surface
image forces become repulsive at close proximity to the
boundary, the surface tractions were compared for this
same configuration at 250 a and 10 a from the bound-
ary. These tractions show that there are large shear forces
acting on the surface of the crystal, and that these forces
grow very large as the loop comes close to the boundary.

Thus, the tendency of the loop to move out of its glide
plane is driven by surface shear forces.

3.2 The Influence of Crystal Surfaces on the Defor-
mation of Frank Reed Sources

Friedel concluded that a dislocation is attracted towards
its image, and that it should arrive perpendicular to the
free surface in order to achieve the most stable config-
uration [Friedel (1964)]. However, a dislocation in a
medium that is separated from a free surface by a thin
film of thickness h and shear modulus µ 0 behaves quite
differently. A screw dislocation at a depth L from the in-
terface will be drawn toward the free surface if µ0 < µ.
It will be repelled however, if µ 0 > µ and L << h. For
µ0 > µ, and L >> h, the dislocation will be attracted to-
ward the surface. This implies that there is an equilib-
rium position from the surface on the order of the film
thickness h from the interface. In ionic crystals such
as potassium chloride, evidence supports the conclusion
that image forces repel dislocations from breaking the
surface. Nabarro also states that the image forces may
induce cross slip [Nabarro(1967)]. Gilman and cowork-
ers conducted experimental studies involving the mea-
surement of dislocation velocities in LiF single crystals
[Gilman (1961)], and proposed a mechanism of disloca-
tion motion under the influence of surface forces in a
single crystal, as schematically illustrated in Fig. 9. In
this schematic, a Frank-Read source is shown to expand
towards the crystal surface, glide plane, which is at an
angle θ with respect to the free surface. Although the
dislocation typically would move on the glide plane, de-
formation through cross-slip has been observed [Gilman
(1961)]. This mechanism of cross-slip was assumed by
Gilman to be the result of energy minimization through
the reduction in the length of the dislocation along the
slip plane. With the image force distribution observed in
Fig. 8, it is obvious that this effect is the result of the
large surface shear forces uncovered by the present anal-
ysis.

The deformed geometry of a Frank Reed (FR) source in
BCC Fe under the influence of an applied stress was then
computed to determine the influence of surface image
forces on the shape of the FR-source. In Fig. 10, a stress
of 125 MPa was applied to a crystal containing a sin-
gle FR source. The FR source is located on the slip plane
with origin at(7500,5000,7500). The local coordinates of
the fixed points on the FR-source are (-2000, 3000) and



The influence of cyrstal surfaces on dislocation interactions in mesoscopic plasticity 239

1 2 3

[-111]

b

Figure 10 : Isometric view of a crystal containing an FR-source, and a 2-d view of the deformed geometry as viewed
normal to the (101)-plane. (1) Initial geometry, (3) is the equilibrium geometry under an applied stress σ xx = 125
MPa.
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(b)

(c)

(a)

Figure 9 : Schematic of cross-slip mechanism for a dis-
location loop expanding to the surface. (a) Initial config-
uration, and (b) edge segments reach the surface forming
a step, (c) screw segments bend to minimize energy and
extend the step. [Gilman(1961)]).

(2000,3000). The equilibrium shape of the FR-source is
evolved, as it approaches the free crystal surface. The
equilibrium position of the source is approximately 163
a from the surface of the crystal model, as can be seen in
Fig. 10.

To study the effects of anisotropic Peierls forces on the
deformation of FR-sources, the ratio of edge to screw
Peierls forces were varied. Fig. 11 shows the deforma-
tion of an FR-source in a finite crystal with a screw to
edge Peierls force ratio of 2 to 1, and a Peierls threshold
shear stress of 1� 10�6µ, and an applied stress of 200
MPa. This case may be representative of a crystal with a
“low” screw to edge Peierls force ratio, such as an FCC
crystal. The results depicted in Fig. 11 also show the
deformation of an FR-source in a crystal with a screw
to edge Peierls force ratio of 10 to 1, and Peierls shear
stress threshold of 10�3µ, typical of a BCC crystal and an
applied stress of 700 MPa. Both cases indicate that the
deformation for the high ratio case evolves with signifi-
cantly less curvature than for the low ratio case, consis-
tent with the observations of dislocation loop curvatures
in FCC and BCC crystals, respectively.

4 Conclusions

The computer modelling and numerical results presented
in this paper seek to determine the influence of free sur-
faces on dislocation motion in metallic single crystals.
Much of the work in Dislocation Dynamics that is pre-
sented in the literature testifies to the importance of sur-
face effects. However, little if any modelling has been
completed which describes the precise nature of force
distributions in 3-D geometry induced by the proxim-
ity of dislocation loops to crystal surfaces with specified
boundary conditions. Based on the results of computer
simulations for the elastic fields around static and dy-
namic dislocation loops and FR-sources in single crys-
tals, and the corresponding forces and deformation of
these loops, the following conclusions can be drawn.

1. Imposed surface traction boundary conditions can
be achieved through the use of a hybrid finite ele-
ment method (FEM), coupled with Dislocation Dy-
namics (DD). Peierls and self-forces cause the loop
to deform preferentially (stretch) in the direction of
the Burgers vector, while surface image forces act to
either attract or repel the loop, depending on its dis-
tance from the boundary, and the orientation of the
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Figure 11 : Isometric (A), and 2-d (B, C, and D) views of the evolution of an FR-source near a crystal surface. View
C depicts the “low screw/edge force” ratio case, while D depicts the “high” ratio case. 4000 time steps.



242 Copyright c 2002 Tech Science Press CMES, vol.3, no.2, pp.229-243, 2002

slip plane with respect to the nearest free surface.
For slip planes at an oblique angle to a free surface,
the image forces on the closest screw-component
portions of the loop are characterized by a large out-
of-plane component, which acts to pull the loop to-
ward the surface through the mechanism of cross-
slip. For example, for loop model geometry char-
acterized by 20 nodes, and 10 mesh divisions per
side in the FEM model, the out of plane component
became dominant at approximately 500 lattice con-
stants.

2. For slip planes that are normal to the free surface,
image force distributions on dislocation loops have
negligible out-of-plane components. These image
forces are directed along the slip plane regardless of
the distance of the loop from the boundary. Further-
more, these image forces can either attract or repel
portions of the loop closest to boundary depending
on the distance between the loop and the boundary.
For a 4000 lattice parameter diameter loop charac-
terized by a 60 node geometry, and an FEM model
with 20 mesh divisions per side, calculated image
forces are attractive for a loop/free surface separa-
tion of 250 lattice parameters. For the same model,
but with a separation of 10 lattice parameters be-
tween the loop and the free surface, the image forces
are repulsive to the loop segment nearest to the sur-
face.

3. Image forces dominate the resultant force distribu-
tion for orientations of the shear loop closest to the
free surface. The distance from the boundary at
which image forces become significant can be es-
timated based on the image force/self force ratio.
This distance varies with respect to the loop radius.
Loops with large radii are affected by image forces
deeper into the single crystal than are loops with
small radii. For small loops, self forces dominate
and cause contraction. Thus, the expansion or con-
traction of the loop is dependent on a critical applied
stress, radius of curvature, and proximity from the
boundary.

4. Shear dislocation loops and FR-sources in similar
slip systems under similar loading configurations
close to the surface deform and evolve into similar
geometric shapes. A dislocation loop (radius=2000
a, σxx = 50 MPa, initial loop surface separation of

10 a) and an FR-source of initial length= 4000 a,
σxx = 150 MPa, initial separation from boundary
= 535 a in the “oblique” orientation deform into
similar shapes. The loop evolves into an equilib-
rium position 212 a from the surface, while the FR-
source evolves to an equilibrium position approxi-
mately 163 a from the free surface.

5. Analysis and comparison of modelling results for
FR-source deformation under the influence of an ap-
plied stress indicates that dislocation loops in BCC
crystals deform into geometry with significantly less
curvature than in FCC crystals under the same con-
ditions . For the “low” Pierels ratio, the Peirels
threshold was taken as 10�6µ. For the “high” Pierels
ratio, the Pierels threshold was taken as 10�3µ.
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