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Meshless BEM for Three-dimensional Stokes Flows

C.C. Tsai1 , D.L. Young2, A.H.-D. Cheng3

Abstract: This paper describes a combination of the
dual reciprocity method (DRM) and the method of funda-
mental solution (MFS) as a meshless BEM (DRM-MFS)
to solve three-dimensional Stokes flow problems by the
velocity-vorticity formulation, where the DRM is based
on the compactly supported, positive definite radial basis
functions (CS-PD-RBF). In the velocity-vorticity formu-
lation, both of the diffusion type vorticity equations and
the Poisson type velocity equations are solved by DRM-
MFS. Here a typical internal cubic cavity flow and an
external flow past a sphere are presented. The results
are acceptable. Furthermore, this paper provides a pre-
liminary work for applications to the three-dimensional
Navier-Stokes equations.

keyword: Velocity-vorticity formulation, Stokes flow,
meshless, boundary element method, radial basis func-
tion, dual reciprocity method, method of fundamental so-
lution

1 Introduction

In the past years, there has been an increasing inter-
est in the idea of meshless numerical methods for solv-
ing partial differential equations (PDE). Generally speak-
ing, such methods can be divided into three types. The
first one is the so-called DRM-MFS, which combines
the dual reciprocity method and the method of funda-
mental solution, the second one is the so-called Kansa’s
method [Kansa (1999a,b)], and the third one is the so-
called meshless local Petrov-Galerkin (MLPG) and lo-
cal boundary integral equation (LBIE) methods based
on the integral equations [Wordelman, Aluru, Ravaioli
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(2000); Lin, Atluri (2000); Kim, Atluri (2000); Lin,
Atluri (2001); Atluri and Zhu (1998); Zhu, Zhang, Atluri
(1998),]. All of them are based on the radial basis func-
tions (RBF), [Atluri and Shen (2002) also discuss 4 other
types of trial functions, besides the RBF] and it is con-
vinced that researchers will finally find very solid mesh-
less methods to solve the PDE with non-homogeneous
terms. In this paper, we will adopt the DRM-MFS
method to solve the 3D Stokes flow problems, including
the internal and external flow fields.

The dual reciprocity method (DRM) was introduced by
Nardini and Brebbia to approximate the particular so-
lution of the equation in their 1982 pioneer work [Nar-
dini and Brebbia (1982)]. Since then, many researches
of meshless numerical methods have been carried out.
Furthermore, the method of fundamental solution (MFS)
is used to approximate the homogenous solution of the
equation. More details about MFS can be found in the
excellent review papers [Goldberg, Chen (1998); Fair-
weather, Karageorghis (1998)]. The meshless BEM,
which combines the DRM and MFS, has been used to
solve many PDE in different areas successfully [Kansa
(1999a); Goldberg, Chen (1998), Chen, Brebbia, Power
(1999); Muleshkov, Goldberg, Chen (1999); Goldberg,
Chen (2001)]. In the paper, we use the DRM-MFS to
solve the three-dimensional internal and external Stokes
flow problems.

There are three well-known formulations for the solution
of the incompressible Navier-Stokes equations in terms
of: primitive variables of pressure and velocity, velocity-
stream function and velocity-vorticity. The first two for-
mulations have been thoroughly investigated by various
researchers for two and three-dimensional problems by
using various numerical methods such as finite difference
methods (FDM) [Anderson, Tannehill, Pletcher (1984)],
finite element methods (FEM) [Gunzaburger (1987)],
and boundary element methods (BEM) [Power, Wrobel
(1995)]. The third formulation in terms of velocity and
vorticity also has been explained in the last decade in two
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and three dimensions using various numerical schemes
[Dennis, Ingham, Cook (1979); Gunzaburger, Peterson
(1988); Skerget, Rek (1995); Young, Liu, Eldho (1999);
Young, Yang, Eldho (2000)].

Stokes flow problems can be considered as a subpro-
gram of the Navier-Stokes flow problems, in which the
nonlinear convective terms are very small, thus can be
neglected. For the solution of Stokes flows using the
velocity-vorticity formulation, the governing equations
have been written as a system of diffusion-type and
Poisson-type equations for the components of the vor-
ticity and velocity fields, respectively. The main advan-
tage of this formulation is the numerical separation of the
kinematic and kinetic aspects of the fluid flow.

In this paper, numerical experiments of Stokes flow about
a cubic cavity internal flow and a flow around a sphere are
investigated by using DRM-MFS. For further application
to the three dimensional Navier-Stokes equations, this
paper really provides a preliminary work. The advantage
of mesh free can be used for large-scale industrial appli-
cation problems. The disadvantages of full matrix can
be circumvented by using compactly-support RBFs and
some iterative schemes, which could result in an iterative
scheme without the assembly of matrix [Young, Tsai, El-
dho, Cheng (in press); Cheng, Young, Tsai (2000); Tsai,
Young, Cheng (2001)].

2 Governing Equations

The governing equations of Stokes flow for the velocity-
vorticity formulation can be derived from the Navier-
Stokes equations in a non-dimensional form and written
as [Currie (1993)]:

� ∂~ω
∂t = ∇ 2~ω
∇ 2~u =�∇ �~ω in Ω

(1a, 1b)

~u = ~U on Γ (2)

where~u is the velocity vector, ~ω is the vorticity vector, ~U
is the known boundary velocity, and Ω as well as Γare the
domain and boundary, respectively. The vorticity vector
~ω can be expressed as:

~ω= ∇ �~u (3)

In equation (1), the governing equations are the diffusion
and Poisson equations and can be solved by DRM-MFS
to be described below.

3 Numerical Formulation

The governing equations (1) to be solved can be classi-
fied into two categories. The first is the diffusion equa-
tion and the second is the Poisson’s equation. The numer-
ical procedures involved for solving the two problems
will be introduced as follow.

Poisson’s equations

The Poisson’s equations have the form:

∇ 2Φ(~x) = b(~x) and Φ(~x) = BC(~x) on Γ (4)

where Γ is the boundary of the problem. We decompose
the solution into

Φ(~x) = Φh(~x)+Φp(~x) (5)

where the particular solution, Φp(~x), satisfies

∇ 2Φp(~x) = b(~x) (6)

and the homogenous solution, Φh(~x), satisfies

∇ 2Φh(~x) = 0 and

Φh(~x) = BC(~x)�Φp(~x) on Γ (7)

The particular solution corresponding to equation (6) can
be approximated by the DRM [Nardini, Brebbia (1982);
Chen, Brebbia, Power (1999); Goldberg, Chen (2001);
Young, Tsai, Eldho, Cheng (in press); Cheng, Young,
Tsai (2000); Tsai, Young, Cheng (2001)]. Let the right
hand side of the Poisson’s equation take the form

b(~x j) =
nd

∑
i=1

αi f (ri j) (8)

where f (r) is a radial basis function, r i j =
��~xi�~x j

�� is
the radial distance between a field point ~x j and the i-th
collocation point~xi, and nd is the number of collocation
nodes. The collocation nodes are typically distributed in
the interior domain as well as on the boundary. The col-
location points can be chosen arbitrary, regular or irregu-
lar mesh, depending on the convenience for computation.
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And α i are the collocation coefficients to be determined.
If we let the functional values be equal at nd collocation
points, we result in a linear system with n d unknowns,
αi, and nd equations, which can be solved if the system
is nonsingular. After α i’s have been solved, we can find
the particular solution which is of the form:

Φp(~x j) =
nd

∑
i=1

αiF(ri j) (9)

where F(r) is the inverse Laplacian of the radial basis
function f (r), i.e. ∇ 2F(r) = f (r).

For the current three-dimensional problems, we choose
the following CS-PD-RBF:

f (r) =

�
(1� r

a)
2

0
;

r � a
r > a

(10)

The detail of CS-PD-RBF is referred to Tsai, Young,
Cheng (2001). The particular solution corresponding to
equation (10) is derived by Chen, Brebbia, Power (1999).

F(r) =

 
r2(10a2

�10ar+3ar2)
60a2

a2

12 �
a3

30r

r� a
r > a

(11)

Furthermore, the homogeneous solution corresponding
to equation (7) can be solved by the MFS. Let the homo-
geneous solution in equation (7) the linear combination
of the fundamental solution of the Laplace operator, i.e.:

Φh(~x j) =
md

∑
i=1

βig(ri j) (12)

where g(r) = � 1
4πr is the fundamental solution of the

Laplace operator, ri j =
���~ξi�~x j

��� is the distance between

a field point ~x j and the i-th source point ~ξi, and md is
the number of source nodes. The source nodes are typi-
cally distributed in small distance away from the bound-
ary to avoid the coincidence of ~x j and ~ξi and thus to
avoid the singularity. Typically, it has been observed that
the locations and the distances of the source points from
the boundary depend on the type of the boundary con-
dition [Balakrishman, Ramachandrn (1999)]. We also

found the irregular collocation points and source points
are also possible. The regular collocation points and
source points adopted here, which are called as mesh, are
only for the convenient purpose of computation. And β i

are the coefficients to be determined. If we let the func-
tional values be equal to the boundary condition (7) at
md boundary points, we result in a linear system with m d

unknowns, βi, and md equations, which can be solved if
the system is nonsingular. After β i’s have been solved,
we can find the homogeneous solution.

After the homogeneous solution Φh and the particular so-
lution Φp have been solved, we can apply the principle
of superposition (equation (5) to get the solution.

Diffusion equations

The diffusion equations take the following form:
∂Φ(~x)

∂t = ∇ 2Φ(~x) and

Φ= Φ0(~x) in Ω at t = 0; and

Φ(~x) = BC(~x) on Γ (13)

where Φ0(~x) and BC(~x)are the initial condition in the
domain Ω and the boundary condition on the boundary
Γ,respectively.

If we discretize the equation in time by finite difference
method, we can get:

∇ 2Φ(n+1)(~x)�
Φ(n+1)(~x)

∆t
= �

Φ(n)(~x)
∆t

(14)

where ∆t is the interval for time discretization.

Furthermore, if we set λ =
q

1
∆t > 0, rearranging the

terms in equation (14) and combining with the BC of
equation (13), we can get:

∇ 2Φ(n+1)(~x)�λ2Φ(n+1)(~x) =�Φ(n)(~x)
∆t and

Φ(n+1)(~x) = BC(~x) on Γ (15)

which is a modified Helmholtz equation with proper
boundary condition. The source term of the modified
Helmholtz equation is corresponding to the initial con-
dition of the diffusion equation.

Now, we can apply the same procedure as we have un-
dertaken in the Poisson’s equation to equation (15) and
get similar results.

We decompose the solution into
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Φ(n+1)(~x) = Φ(n+1)
h (~x)+Φ(n+1)

p (~x) (16)

where the particular solution,Φ(n+1)
p (~x), satisfies

∇ 2Φ(n+1)
p (~x)�λ2Φ(n+1)

p (~x) =�
Φ(n)(~x)

∆t
(17)

and the homogenous solution, Φ(n+1)
h (~x), satisfies

∇ 2Φ(n+1)
h (~x)�λ2Φ(n+1)

h (~x) = 0 and

Φ(n+1)
h (~x) = BC(~x)�Φ(n+1)

p (~x) on Γ (18)

The particular solution corresponding to equation (17)
can be approximated by the DRM, which have already
been introduced in the Poisson’s equation[Chen, Breb-
bia, Power (1999); Muleshkov, Goldberg, Chen (1999);
Young, Tsai, Eldho, Cheng (in press); Cheng, Young,
Tsai (2000); Tsai, Young, Cheng (2001)]. The process
of the collocation procedure is exactly the same as be-
fore and the detail will be ignored here. Let

�
Φ(n)(~x)

∆t
=

nd

∑
i=1

αi f (ri j) (19)

After α i’s have been solved, we can find the particular
solution which is of the form:

Φ(n+1)
p (~x j) =

nd

∑
i=1

αiF(ri j) (20)

where F(r) is the inverse modified Helmholtz operator
of the radial basis function f (r), i.e. ∇ 2F(r)�λ2F(r) =
f (r).

If we choose the same CS-PD-RBF (equation (10)) as
we have performed in Poisson’s equation, we can get
the required F(r) are following [Goldberg, Chen, Ganesh
(2000)]

F(r) =

0
B@

λ(2B+q(0))+q0(0)
Ae�λr+Beλr+q(r)

r
Ce�λr

r

r = 0
0 < r � a
r > a

(21)

where

0
BBB@

A = �(B+q(0))

B = � e�λa(q0(a)+λq(a))
2λ

C = B(e2aλ�1)+q(a)eaλ�q(0)
q(r) = 4a�rλ2a2

�6r+2r2λ2a�r3λ2

λ4a2

(22)

Furthermore, the homogeneous solution corresponding
to equation (18) can be solved by the MFS. Let the ho-
mogeneous solution to be the linear combination of the
fundamental solution of the modified Helmholtz opera-
tor, i.e.:

Φ(n+1)
h (~x j) =

md

∑
i=1

βig(ri j) (23)

where g(r) = � e�λr

4πr is the fundamental solution of the
modified Helmholtz operator. The detail of the solution
procedure is exact the same as we have introduced in the
Poisson’s equation. After βi’s have been solved, we can
find the homogeneous solution.

After the homogeneous solution Φh and the particular so-
lution Φp have been solved, we can apply the superpo-
sition principle (equation (16) to get the solution of the
modified Helmholtz equation, which is also the solution
of the original diffusion equation (13).

4 Solution procedures

The governing equation (equation (1)) of the Stokes flow
problem involves three diffusion vorticity equations and
three Poisson’s velocity equations. If we can solve the
diffusion vorticity equations and the Poisson velocity
equations, we will be able to solve the Stokes flow prob-
lem only when we have appropriate vorticity boundary
conditions and sources terms of velocity Poisson’s equa-
tions. The computational procedure adopted here in-
cludes the following steps:

1. Choose suitable time interval ∆t � 0:5�(L=d)3, where
L is the large length scale and d is the minimum distance
of the numerical spatial points.

2. Set

�
~u(0)(~x) = (u1(0)(~x);u2(0)(~x);u3(0)(~x)) =~0
~ω(0)(~x) = (ω1(0)(~x);ω2(0)(~x);ω3(0)(~x)) =~0

where~u(n) =~u(~x;n�∆t) and ~ω(n) = ~ω(~x;n�∆t), i.e. ~u(0)

and ~ω(0) are the initial conditions.
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U=1

Figure 1 : Flow field configuration of cubic cavity

3. Solve the homogeneous velocity equation (1b) with
the known boundary velocity condition. (Laplace equa-
tion)

4. Get the vorticity at boundary by ~ω = ∇ �~u. The
derivatives of the velocity can be got by direct differenti-
ation of the series, i.e.

∂Φ
∂xk

=
nd

∑
i=1

αi
∂F(ri j)

∂xk
+

md

∑
i=1

βi
∂g(ri j)

∂xk
(24)

5. Solve the vorticity ~ω(n+1) by equation (1a) with the
boundary condition in step 4.

6. Solve the velocity equation (1b) with the known
boundary, where the source term is the derivative of the
vorticity components got from step 5. The technique for
differentiation is the same as described in step 4.

7. Repeat 4�6 until the solutions are convergent

In the procedure of taking the derivatives, we use the di-
rect differentiation of the series (equation (24)). In equa-
tion (24), the md source points for the homogeneous so-
lution should not be near the boundary. In the numeri-
cal experiments, we find the derivatives at the boundary
points are not accurate if the source points are too close
to the boundary.

U=1

x

z

y

O

Figure 2 : Flow field configuration of flow passing a
sphere

5 Results and Discussions

In order to see if the present scheme works or not, two
numerical experiments of unsteady Stokes flow problems
in three-dimension have been done. One is the cubic cav-
ity internal flow problem, which has the configuration
shown in the Fig. 1, with a uniform velocity driving the
top face of the cubic to the right. And the other is the
problem of the flow passing a sphere, which has the con-
figuration shown in the Fig. 2, with a uniform outflow
in far field and the flow domain is extended to infinity.
Using the method described above, we are able to get the
following results.

For the cavity problem, the contours of the vorticity com-
ponents at x=0.5, y=0.5 and z=0.5 are shown in Fig.
3�Fig. 8. The components, which are not shown, are
zero horizontal planes. Also, the velocity fields at y=0.5
and z=0.5 are shown in Fig. 9�Fig. 10. The velocity
components at x=0.5 are zeros in the case of the Stokes
flow. The mesh size in these figures is 21*21*21.

In order to check the accuracy of the method, a com-
parison with the results of Young et al. (1999) is per-
formed. In the comparison (Fig. 11 and Fig. 12), the
velocity distribution in the middle (x=0.5) of the main
cut profile (y=0.5) is shown. Here, the same mesh size
is used for the purpose of having same order of conver-
gence. The result seems to be acceptable. Furthermore,
A comparison for different mesh sizes (9*9*9, 11*11*11
and 13*13*13) has also been done (Fig. 13 and Fig. 14).
As shown in the figures, the solution approaches the same
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Figure 3 : Vorticity component y at x= 0.5
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Figure 4 : Vorticity component z at x= 0.5
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Figure 5 : Vorticity component y at y= 0.5
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Figure 6 : Vorticity component x at z= 0.5
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Figure 7 : Vorticity component y at z= 0.5

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00y

x

Figure 8 : Vorticity component z at z= 0.5
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Figure 9 : Velocity profile at y= 0.5

limitation as the mesh sizes increasing.

For the problem of uniform flow passing a sphere, there
is an exact solution [Tritton (1988)] for comparison. The
exact solution is

(
ur =U cosθ(1+ a3

2r3 �
3a
2r )

uθ =U sinθ(�1+ a3

4r3 +
3a
4r )

(25)

where U is the velocity of the uniform flow and a is the
radius of the sphere. In our numerical experiment, both
of the parameters are set to one. In the formula, the di-
rection of θ= 0 is corresponding to the direction of fluid
flowing away.

Since the Stokes flow problem is a linear problem, the
principle of superposition can be applied. The uniform
flow passing a sphere can be decomposed to a motion of
the sphere with negative unit velocity as well as a full
field unit velocity. In case of the motion of the sphere
with negative unit velocity, the far field boundary con-
dition of velocity and vorticity are both zeros. In our
numerical experiments, we adopt the compact support
radial basis function, which will automatically result in
zeroes far field boundary values for the particular solu-
tions in equation (6) and (17). Furthermore, the funda-
mental solutions for the homogeneous solutions are also
zeroes, when the distances from the sphere go to infinity.
The boundary condition corresponding to the sphere is
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Figure 10 : Velocity profiles at z= 0.5
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Figure 11 : Comparisons of the present and other meth-
ods (u3)
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Figure 12 : Comparisons of the present and other meth-
ods (ul)

~u = (�1;0;0). In our numerical experiments, three dif-
ferent meshes are tested. The meshes are 792 collocation
points (144 boundary points), 1650 collocation points
(220 boundary points), and 2652 collocation points (312
boundary points), respectively. The vorticity contour and
the velocity profile for 2652 collocation points are shown
in Fig. 15 and Fig. 16, respectively. These two figures
show the qualitative agreements with the existing litera-
ture. The velocity field in Fig.16 in the near field of the
sphere at θ = π

2 has been magnified on Fig. 17. Also,
a comparison for different mesh sizes with the exact so-
lution of the u velocity component for the positions of
1� r

a � 10 and θ= π
2 has been made (Fig. 17). The re-

sults show excellent agreements with the exact solutions.

Since the components of vorticity and its gradients have
non-zero values only near the sphere for the exterior
problems, the numerical scheme adopted in our numer-
ical experiments, which uses the compact support radial
function to approximate the right hand side of the equa-
tion (1b), seems to be a reasonable way. Base on this
reason, the same approach can be further applied to the
full Navier-Stokes problems for any exterior problems.

The meshless boundary element method possesses the
advantages of the boundary element method, which uses
the fundamental solution to catch the attribute of the gov-
erning equation, and also has the advantage of no need
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Figure 13 : Comparisons for different mesh sizes (u3)

to have a regular mesh. It is not necessary to perform
the element connectivity, which is inevitable for the con-
ventional finite element method. Besides, the present
method is also not necessary to have the orthogonal prop-
erties, which is needed for the finite difference method.
Actually, the only property we need for the solution pro-
cedure is the positions of collocation points and source
points. Furthermore, the derivatives calculated by the di-
rect differentiation of the solution series show good accu-
racy and can be applied to complex fluid dynamic prob-
lems even in a coarse mesh size.

For further application to the three-dimensional Navier-
Stokes problem with low Reynolds number, this paper
provides a preliminary work. Since the only differences
between the Stokes and Navier-Stokes flow problem are
the nonlinear convection term and the vortex-stretching
term, �∇ � (~u�~ω), which can be directly imposed in
the vorticity transport equation (equation (1a)). There is
no any change at all as far as the computation of the ve-
locity fields is concerned. Then, the resulted different
procedure is an addition of the source terms in the dif-
fusion equation (13), which is just the action of adding
more source terms to the original source term of initial
condition in the modified Helmholtz equation (15).
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Figure 14 : Comparisons for different mesh sizes (ul)

Figure 15 : Vorticity contour for flow passing a sphere
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Figure 16 : Velocity profile for flow passing a sphere
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Figure 17 : Comparisons for the u velocity at the position
of 1 � r=a� 10;θ= π

2 for different mesh sizes between
the numerical and the exact solutions

6 Conclusions

A truly meshless boundary element method has been
developed for solving the unsteady three-dimensional
Stokes flow problem. The vorticity boundary conditions
for the solution of vorticity transport equations are ob-
tained directly from the derivatives term by term of the
radial basis function series. Here, the result of cubic cav-
ity problem is performed for different mesh sizes. The
results show good convergence and generally in fairly
close agreement with the results of other models. Also a
numerical experiment of uniform flow passing a sphere,
which has exact solution, has been performed. The re-
sult also shows good agreement. The computational re-
sults show that the meshless boundary element method
presented here provides an efficient tool for the three-
dimensional Stokes problems and is expected to be ex-
tended to the general incompressible viscous fluid flow
problems which is governed by the Navier-Stokes equa-
tions.
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