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A dimensional reduction of the Stokes problem

Olivier Ricou 1 Michel Bercovier 2

Abstract: In this article, we present a method of re-
duction of the dimension of the Stokes equations by one
in a quasi-cylindrical domain. It takes the special shape
of the domain into account by the use of a projection onto
a space of polynomials defined over the thickness. The
polynomials are defined to fit as well as possible with
the variables they approximate. Hence, this method re-
stricted to the first polynomial, recovers the Hele-Shaw
approximation.

The convergence of the approximate solution to the con-
tinuous one is shown. Under a regularity hypothesis, we
also obtain error estimates.

A description of the stiffness matrix is exhibited and
some computations show the acceleration due to this
method. Finally a few numerical results are given.
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1 Introduction

In general, the simulation of 3D flow problems—in par-
ticular those including free surfaces—is a computation-
ally intensive task due to the large number of unknowns
in the associated linear systems. For certain families of
flow problems, this number of unknowns can be drasti-
cally reduced. In this article, we consider Stokes flows in
quasi-cylindrical domains, i.e., flows between two sur-
faces. When the thickness is small enough and the two
surfaces are planes, this set of flow has been studied for
long and are known as the Hele-Shaw flows. Such flows
are having by hypothesis a given parabolic profile in the
thickness direction. They are approximated by estimat-
ing the order of magnitude of each term in the governing
equations and reducing the problem to a Poisson equation
on the pressure only. Such methods are common in the
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simulation of injection mold flow in the plastic industry.

The present work is to simulate flows in quasi-cylindrical
domain by a projection on polynomial spaces and to
recover the Hele-Shaw approximation with the spaces
spanned by their lowest order polynomials. Moreover,
one can simulate 3D features of flows (like vortices in the
thickness) by increasing the degree of the approximation
spaces, thus extending the classical Hele-Shaw model.

1.1 Definition of the problem

A quasi-cylindrical domain is a N-dimensional domain
Ω such that there exists a (N�1)-dimensional domain ω
and two real-valued lipschitz functions h+ and h� on ω
with h�(xω)< h+(xω) for all xω = (x1; : : :;xN�1) 2ω :

Ω= f(xω;xN) jx2ωand y2 [h�(xω);h
+(xω)]g�R3 (1)

Hence, the functions h+ and h� describe the shape of
the upper and lower surfaces of the domain, and the flow
occurs between these two surfaces. Following an idea
of Vogelius-Babuska (see ?), ?), ?)) one takes advan-
tage of the quasi-cylindrical shape of Ω to project the N-
dimensional Stokes problem on a (N � 1)-dimensional
problem set on ω.

Let a mapping

T : Ω �! Ω̂
(xω;xN) 7�! (x̂ω = xω; x̂N)

be such that Ω̂ is the cylindrical domain ω� [�1;1].
Hence,using this mapping, one reformulates the Stokes
problem onto Ω̂ and approximates the new problem by
projecting the pressure and velocity on the spaces

QJ = fq 2 L2(Ω̂)=9(q j) j=0::J 2 L2(ω);

q =
J

∑
j=0

q j(xω)ψ j(xN)g

VJ = fv 2 H1(Ω̂)N=9(v j) j=0::J 2 H1
0 (ω)N;

v =
J

∑
j=0

v j(xω)ϕ j(xN)g



88 Copyright c
 2002 Tech Science Press CMES, vol.3, no.1, pp.87-99, 2002

where ψ j and ϕ j are given polynomials. Define these
polynomials such that the Inf-Sup condition (cf ?)) is
enforced on the Stokes equations projected onto VJ and
QJ. This will ensure that the reduced problem is well
posed. It can be shown then that the solution of this re-
duced problem converges to the solution of the original
Stokes equations as the degree of the polynomials tends
to infinity.

The reduced problem can be discretised by a finite ele-
ment method in the xω direction. Thus, the N-dimension
Stokes problem is computed on a (N � 1)-dimension
mesh. This leads to the definition of elements for which
the final problem is well posed.

The stiffness matrix obtained is block defined and
smaller than the stiffness matrix one would have with a
3D FEM for the same quality of result. Hence, the time
computation is reduced by taking advantage of its special
shape (and adapted preconditionners).

Results are compared with the Hele-Shaw model and the
full dimension F.E.M.. On one hand, the method of re-
duction is more accurate than the Hele-Shaw model (it
recovers this model at its lower degree of approximation).
On this other hand, this method is cheaper than a full di-
mension F.E.M.. Finally, this is confirmed by numerical
examples.

2 The dimensional reduction

All the results not detailed here can be found in the book
of ?) and ?).

Let Ω be a quasi-cylindrical domain (N = 2;3)

Ω = f(xω;xN) jx 2ωand y 2 [h�(xω);h
+(xω)]g � RN

(2)

where h�(xω) and h+(xω) are two lipschitz real-value
functions defining the thickness of the domain (h�(xω)<
h+(xω)). Assume that the upper and lower surfaces
ΓH = f(xω;xN)jx 2 ω; y = h�(xω) or h+(xω)g are walls
(of a mold cavity for example), the boundary conditions
used are no-slip boundary conditions. The “vertical” bor-
ders, ΓV = f(xω;xN)jxω 2 ∂ω; y 2 [h�(xω);h+(xω)]g =
ΓD + ΓN , will be walls, inflow, outflow or free bound-
aries.

Let u(xω;xN) and p(xω;xN) be the velocity of the flow
and the fluid pressure at point (xω;xN) 2Ω, respectively.
The flow is governed by the Stokes equations with mixed

Γ
ΓN

Ω

ω

ΓH

D

Figure 1 : a quasi-cylindrical domain

Neumann-Dirichlet boundary conditions i.e. it is the so-
lution of the problem: Find (u; p) 2 H 1(Ω)N � L2(Ω)
such that8>>>><
>>>>:

�ν∆u+ ∇ p = f on Ω
∇ :u = 0

u = 0 on ΓH

u = g on ΓD

�ν ∂u
∂n + p:n = 0 on ΓN

(3)

with f 2 L2(Ω)N and g 2 H1=2(Γ).

Proposition 2.1 The Stokes problem with mixed bound-
ary conditions (3) has a solution. This solution (u; p)
2 H1(Ω)N �L2(Ω) is unique.

Proof This proposition is a variation of known results.
A proof is proposed in appendix A. �

The weak formulation of the Stokes problem is8>>>>><
>>>>>:

ν
Z

Ω
∇ u∇ vdxωdxN�

R
Ω p ∇ :vdxωdxN

=
Z

Ω
fvdxωdxN 8v 2V

�
Z

Ω
∇ :uqdxωdxN = 0 8q 2 Q

(4)

also written�
a(u;v)+b(v; p) = < f;v >V 0�V 8v 2 V

b(u;q) = 0 8q 2 Q

(5)

with a(u;v) = ν
Z

Ω
∇ u∇ vdxωdxN and b(v; p) =

�
Z

Ω
p ∇ :vdxωdxN .

Let us apply the bijective mapping T to the Stokes prob-
lem

T : Ω �! Ω̂ = ω� [�1;1]
(xω;xN) 7�! (x̂ω = xω; x̂N)

(6)
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where

x̂N(xω;xN) =
1

h+(xω)�h�(xω)
(2xN�h+(xω)�h�(xω)):

(7)

Hence the new problem is: Find (û; p̂)2 V̂ � Q̂ such that

8>>>>>>>>><
>>>>>>>>>:

ν
Z

Ω̂
(∇ T ∇̂ )û(∇ T ∇̂ )v̂ j∇ T�1jdx̂ωdx̂N

�
Z

Ω̂
p̂(∇ T ∇̂ ):v̂ j∇ T�1jdx̂ωdx̂N

=
Z

Ω̂
l̂ v̂ j∇ T�1jdx̂ωdx̂N 8v̂ 2 V̂

�
Z

Ω̂
(∇ T ∇̂ ):û q̂ j∇ T�1jdx̂ωdx̂N = 0 8q̂ 2 Q̂

(8)

also written

�
â(û; v̂)+ b̂(v̂; p̂) = < l̂; v̂ >V̂ 0�V̂ 8v̂ 2 V̂

b̂(û; q̂) = 0 8q̂ 2 Q̂

(9)

The new spaces are V̂ = Ĥ1(Ω̂)N and Q̂ = L2(Ω̂) where:

Ĥ1(Ω̂) =
�

v̂ 2 L2(Ω̂)N s.t. ∇̃ v̂ 2 L2(Ω̂)N	 (10)

with ∇̃ = (∇ T ∇̂ ) =

0
BB@

∂
∂x̂ω

+
∂x̂N

∂xω

∂
∂x̂N

∂x̂N

∂xN

∂
∂x̂N

1
CCA (11)

where

∂x̂N

∂xω
=

�1
h+�h�

�
(
∂h+

∂xω
+

∂h�

∂xω
)+(

∂h+

∂xω
�

∂h�

∂xω
)x̂N

�
= H(xω)+G(xω) x̂N;

∂x̂N

∂xN
= 2

h+�h� :

(12)

Since h�(xω) and h+(xω) are two lipschitz functions, and
since h+(xω)> h�(xω), and ω is a bounded set, these two
derivatives are bounded. Therefore Ĥ1(Ω̂) = H1(Ω̂).

Proposition 2.2 The problem with mixed boundary con-
ditions (8) has a solution. This solution ( û; p̂) 2
H1(Ω̂)N �L2(Ω̂) is unique.

Proof The transformation T is a bilipschitz homeo-
morphism. Since problem (3) has a unique solution,
the problem reformulated (8) using this transformation
has also a unique solution in T (V(Ω))� T (Q(Ω)) =
H1(Ω̂)�L2(Ω̂). �

Now that the problem is defined on Ω̂ = ω� [�1;1], the
idea is to approximate the solutions û and p̂ by functions
that are polynomial with respect to x̂N (the thickness).
Let

û(x̂ω; x̂N) =
J

∑
j=0

ûj(x̂ω)ϕ j(x̂N); (13)

p̂(x̂ω; x̂N) =
J

∑
j=0

p̂ j(x̂ω)ψ j(x̂N); (14)

where ϕ j and ψ j are polynomials defined on [�1;1] and
ûj(x̂ω) and p̂ j(x̂ω) (x̂ 2 ω) the coefficients of the projec-
tion of û and p̂ on these polynomials. Furthermore the
boundary conditions on x̂N = �1, which are still Dirich-
let homogeneous ones, have to be satisfied.

The polynomials ϕ j and ψ j must satisfy three condi-
tions: the reduced problem must be well defined, the
Hele-Shaw approximation should be recovered and there
should be some L2-orthogonality to reduce the numerical
cost of the simulation.

Let ψ j be the Legendre polynomials:

ψ j(y) = Lj(y) with L j the Legendre polynomials of
order j :

L0 = 1; L1 = y;

Lj = (y�λ j)Lj�1(y)�µ jL j�2(y)

(15)

where λ j =
kLj�1k

2

kLj�2k2 and µ j =
(yLj�1;Lj�1)

kLj�2k2 .

They define an orthogonal basis of L2(�1;1) for its usual
scalar product. Furthermore ψ0 = 1 which means that
the pressure over the thickness will be constant at the
lowest degree of approximation. This is similar to the
Hele-Shaw approximation (see 32).

The polynomials ϕ j are defined by

ϕ j = ψ j�ψ j+2; ϕ j is of degree j+2: (16)

Here again, the first polynomial ϕ0 recover the typical
parabolic profile of the velocity for Hele-Shaw flows.
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With these definitions, one can check that the reduced
problem is well defined.

Let w : (�1;1)! R+ be a weight function and let

L2
w(�1;1) := fv : (�1;1)! R jv is measurable

and kvk0;w < ∞g

where kvk0;w is the norm induced by the scalar product

(u;v)w :=
Z 1

�1
u(y)v(y)w(y)dy:

Proposition 2.3 The set of polynomials (ϕ j) j�0 is an
orthogonal basis of the space L 2

w(�1;1) for the weight

w(y) =
1

1�y2 .

Proof: Notice that the space (1 � y2)P is dense in
L2

w(�1;1) for the L2
w-norm.

Since the Legendre polynomials verify ψ j(1) = 1 and
ψ j(�1) = (�1) j, ϕ j(�1) = 0. Therefore ϕ j(y) = (1�
y2)ϕ̃ j(y) where ϕ̃ j(y) is a polynomial of degree j, and
the family (ϕ j) j=0::J is a basis of (1�y2)PJ.

The orthogonality of the polynomials ϕ j for the scalar
product of L2

w(�1;0) is satisfied if (ϕ i;ϕ j)w = 0 for all
i < j � J.

(ϕi;ϕ j)w =
Z 1

�1
(1�y2)ϕ̃i(y)ϕ j(y)

1
1�y2 dy

=
Z 1

�1
ϕ̃i(y)(ψ j�ψ j+2)(y)dy;

The polynomial ϕ̃i 2 Pi and therefore is a linear combi-
nation of the (i+ 1) first Legendre polynomials. Conse-
quently

(ϕi;ϕ j)w =
Z 1

�1

 
i

∑
k=0

ϕ̃ikψk(y)

!
(ψ j �ψ j+2)(y)dy

= 0 since i < j:

�

Hence the space spanned by the ϕ j is dense in H 1
0 (�1;1)

since H1
0(�1;1) = L2

w(�1;1)\H1(�1;1).

One can also remark the ϕ j are orthogonal for the semi-
norm in H1(�1;1) and that
Z 1

�1
ϕ0j ψi dy = 0 for i 6= j�1

since ϕ0j = �(2 j+3)ψ j+1.

2.1 Discretization in the thickness

Note: From now on, w(y) denotes the weight
1

1�y2 . The

functions ψ j and ϕ j are the one defined by (15) and (16).

Let QJ = fq2 L2(Ω̂)=9(q j) j=0::J 2 L2(ω);

q =
J

∑
j=0

q j(xω)ψ j(xN)g

VJ = fv2 H1(Ω̂)N=9(v j) j=0::J 2 H1
0;γD

(ω)N;

v =
J

∑
j=0

v j(xω)ϕ j(xN)g .

Proposition 2.4
∞[

J=0

VJ is dense in V̂ .

Proof: A proof is proposed in appendix A.

Proposition 2.5
∞[

J=0

QJ is dense in Q̂.

Proof: Apply the same proof as above to the series q J in
L2. �

To conclude, given J < ∞ the transformed Stokes prob-
lem (9) can be discretised as follows: find (uJ; pJ) 2
VJ �QJ such that

�
â(uJ ;vJ)+ b̂(vJ; pJ) = < f̂;vJ >V 0

J�VJ
8vJ 2 VJ

b̂(uJ; pJ) = 0 8qJ 2 QJ

(17)

Proposition 2.6 The reduced Stokes problem (17) has a
solution (uJ; pJ). This solution is unique in VJ �QJ.

Proof: A proof is given in appendix A.

Remark 2.1 Note that equation (48) gives an uncondi-
tional stability of the dimension reduction : the Inf-Sup
coefficient β is not linked to the dimension J of the poly-
nomial space V J. This is not the case for 2D spectral
elements (see ?)).

To complete the reduction of the probleme, one has to
analyze the convergence of the reduced problem when
J ! ∞.
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It is shown in ?), that the discretization error for an ab-
stract problem of the form (17) is given by

kuJ � ûkV̂ � c1 inf
vJ2VJ

kû�vJkV̂ +c2 inf
qJ2QJ

kp�qJkQ̂ (18)

kpJ � p̂kQ̂=Ker(Div) � (1+
kb̂k
kJ

) inf
qJ2QJ

kqJ � p̂kQ̂

+
kâk
β
kû�uJkV̂

(19)

with

c1 � (1+
kâk
α

)(1+
kb̂k
β

)

c2 �
kb̂k
α

where α is the ellipticity constant and β the constant of
the Inf-Sup condition.

Let ΠJ be the operator of L2(�1;1) orthogonal pro-
jection onto PJ(�1;1). Under the following assump-
tion of regularity: u 2 H m(�1;1)\H1

0 (�1;1) and q 2
Hn(�1;1), we have (see ?)):

kp�ΠJ pk0 � C(n)J�nkpkn n� 0 (20)

ju�Π1;0
J uj1 � C(m)J1�mkukm m� 1 (21)

Unfortunately, in our case, u is in H 1
0 (�1;1)N and q in

H0(�1;1). This is insufficient to obtain an estimate of
the error by C1(J)kuk1+C2(J)kqk0 with Ci(J)�!

J!∞
0. So

the error analysis does not prove by itself that the solu-
tion (uJ ; pJ) of the reduced problem will converge to the
solution (u; p) of the continuous problem when J ! ∞.
However the following theorem gives the convergence:

Theorem 2.1 The solution (uJ; pJ) of the reduced Stokes
problem (17) converges to the solution ( û; p̂) of the con-
tinuous problem (8) when J ! ∞.

Proof: Due to propositions (2.4) and (2.5)

lim
J!∞

inf
vJ2VJ

kû�vJkV = 0

lim
J!∞

inf
qJ2QJ

kp̂�qJkQ = 0:

Therefore the convergence is achieved with (18) and
(19). �

This implies that the solution (T �1(uJ);T�1(pJ)) con-
verges to the continuous Stokes problem (3).

All this error analysis has been done for the worst case,
and without taking in account the shape of the domain
or the regularity of the second member. It is known
that with hypothesis on the domain (convex, polygo-
nal...) the solution is more regular: (u; p) 2 H 1+s(Ω)N �
Hs(Ω)withs > 0 (see ?)). This, combined with the fact
that the influence of corners on the regularity of a Stokes
flow is local, explain why the numerical results show a
faster convergence than expected from the results above.

3 Discretization of the problem over ω

From now on, u denotes the solution of the reduced prob-
lem (17), formerly called uJ, and not the solution of the
original problem (3) anymore. The same is done with p
so that: (u; p) 2VJ �QJ .

The purpose is now to discretize the reduce problem with
a finite element method, hence to have a usual finite ele-
ment method with its advantages but applied on a domain
of N�1 dimensions.

 

 

Figure 2 : Finite element mesh on ω

Let VJh ,! VJ and QJh ,! QJ be finite dimensional sub-
spaces of VJ and QJ respectively (the subscript h refers to
the size of the mesh elements). The discretized problem
is: Find (uh; ph) 2VJh�QJh such that:

�
â(uh;vh)+ b̂(vh; ph) = < fh;vh >V 0�V 8vh 2 VJh

b̂(uh;qh) = 0 8qh 2 QJh

(22)

Proposition 3.1 Under the assumption the Inf-Sup con-
dition is satisfied for the chosen element, the discretized
problem (22) has a unique solution (u h; ph) 2 VJh�QJh.

The proof is standard (see ?)).
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3.1 The elements

To complete the discretization, one has to define a finite
element which satisfies the Inf-Sup condition for the dis-
crete reduced problem (22).

This means, if Πh is the interpolation operator, it has to
be such that

b(Πhu�u;qh) = 0 8qh 2 QJh (23)

kΠhukVJ h �CkukVJ (24)

with

b(Πhu j�u j;qh j)

=
N

∑
i=1

�
C1

Z
ω

∂
∂xω

(Πhui j�ui j)qh j dxω

+C2

Z
ω

H(xω)(Πhui j�ui j)qh j dxω

+C3

Z
ω

G(xω)(Πhui j�ui j)qh j dxω

�

+C2

Z
ω

∂x̂N

∂xN
(ΠhuN j�uN j)qh j dxω

where C1 =
Z 1

�1
ϕ jψk dx̂N , C2 =

Z 1

�1
ϕ0jψk dx̂N and C3 =

Z 1

�1
ϕ0jψk x̂N dx̂N .

The first part of the linear constraint b is the divergence
constraint in the reduced dimension. It will be null if the
chosen element is a good element for the regular Stokes
problem on ω. If we use a piecewise constant pressure,
the easiest way to nullify the others integrals is to have a
degree of freedom inside the element, i.e. to have “bub-
ble” function – H(xω); G(xω) and ∂x̂N=∂xN are known
functions –. Hence the P1-bubble/P0 element satisfies
the Inf-Sup condition.

The second condition (24) is satisfied if the interpolation
operator is such that Πhpk = pk for all polynomial de-
fined onto the element K: pk 2 Pk(K).

Example: the P2/P0 element. This element satisfies
the Inf-Sup condition for the Stokes problem in 2D,
therefore the first integral vanishes.

One has to define the Πh operator on u3 such that the last

integrals are null i.e. such that

Z
K

Πhu3 dxω =
Z

K
u3 dxω�

2

∑
i=1

Z
K
(H(xω)

+
C3

C2
G(xω))(Πhui j �ui j)dxω

(25)

Let Πhu3(Mi) = u3(Mi) where Mi are the nodes on the
vertices of K and Mi j on its edges. Hence the three degree
of freedom Πhu3(Mi j) stay free. One has to be fix to
satisfy (25), therefore 2 remain free. They will be used
by other elements, so that we can keep the conformity if
there are more free edges than elements. Æ

As in the 2D Stokes problem, the Q1/Q0 element can
give good numerical result even if it does not satisfy the
Inf-Sup condition. We used it for the examples.

3.2 The matrix system

The resulting stiffness matrix is block defined: each usual
block for each degree of freedom (ux;uy;uz; p) is sub-
divided in (J + 1)� (J + 1) blocks of the same shape.
Thanks to the orthogonalities of ϕ j and ψ j, and accord-
ing to the shape of two surfaces h+ and h�, some of these
blocks are null.

For example the laplacian gives a pentadiagonal block
defined matrix and the equation of the mass conservation
(∇ :u = 0) leads to the following shape (for J = 4) :

0
BBBBBBBB@

� 0 0 0 0 0 0 0 0 0

� � 0 0 0 � 0 0 0 0

� � � 0 0 0 � 0 0 0

0 � � � 0 0 0 � 0 0

0 0 � � � 0 0 0 � 0

1
CCCCCCCCA

0
BBBBBBBBBBB@

u1;0

u1;1

u1;2

u1;3

u1;4

u2;0
...

u2;4

1
CCCCCCCCCCCA

=
�

0
�

(26)

where the stars are for non zero matrices. This shape
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comes from the following matrices of coefficients :

�Z 1

�1
ψi ϕ j dξ

�
i j

=

2
666666664

2 0 0 0 0

0 2=3 0 0 0

�2=5 0 2=5 0 0

0 �2=7 0 2=7 0

0 0 �2=9 0 2=9

3
777777775

; (27)

�Z 1

�1
ψi

∂ϕ j

∂ξ
dξ
�

i j
=

2
666666664

0 0 0 0 0

�2 0 0 0 0

0 �2 0 0 0

0 0 �2 0 0

0 0 0 �2 0

3
777777775

; (28)

�Z 1

�1
ψi

∂ϕ j

∂ξ
ξ dξ

�
i j

=

2
666666664

�2 0 0 0 0

0 �4=3 0 0 0

�4=5 0 �6=5 0 0

0 �6=7 0 �8=7 0

0 0 �8=9 0 �10=9

3
777777775
:(29)

Here is the shape of the matrix of the 2D+1 3 examples
proposed in the end of this paper :

Figure 3 : stiffness matrix of a 2D+1 example

The stiffness matrix is smaller than the one we would
get from a finite element method applied on the original
problem if the number of polynomial function needed is

3 2D+1 computations have a 3D domain and variables but, by the
use the reduction method, compute the solution on a 2D mesh.

smaller than the number of node needed in the thickness
for the FEM to get the same result. One can show that, for
iterative solvers, the reduction method is advantageous
if the ratio number of node, number of function needed
is more the 1.5. It seems reasonable to accept that this
value is under reality (the ratio of the proposed examples
is around 3).

The speed of computation can be increased with pre-
conditionners for iterative methods. Computation have
shown that a good choice for the Uzawa algorithm is
an incomplete Choleski factorization on each diagonal
bloc for the computation of the speed, and a incomplete
Choleski factorization of the matrix defined by the oper-

ator
1
β

∆̂ where ∆̂ = ∇̂ :∇̂ (see eq.(11)) and β = ( ∂ŷ
∂xω

)2 +

( ∂ŷ
∂xN

)2.

Here are some CPU time of 2D and 3D computations
with or without the dimensional reduction method, with
the number of function in the first case and the number
of nodes used in the thickness in the second one 4:

with reduction without (F.E.M.)
a 2D example 8s, 1 function 11s, 5 nodes

22s, 3 functions 49s, 9 nodes
a 3D example 612s, 1 function 12813s, 5 nodes

4509s, 3 functions 33378s, 9 nodes

Figure 4 : Examples of CPU time according to the
method and precision

The right number of node to have similar result is not
always easy to find since one method can give better re-
sults for some criteria, and worst for other. Hence, we
have to arbitrary decide when results with and without
reduction are similar. However, the differences of CPU
time are large enough to show the acceleration due to the
reduction method.

4 Comparaison with the Hele-Shaw approximation

The most common approximation for low Reynolds
flows between two close plates (N=3) is the Hele-Shaw
approximation.

4 The values of the time computation are not important by them-
selves, but compared to the others. The solver is the same as far as
possible for the two methods.
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4.1 The Hele-Shaw approximation

The name of the Hele-Shaw flow comes from experi-
ments Hele-Shaw has published in Nature in 1898 (see
?)). He noticed then, that a flow between two plates be-
comes laminar when the two plates are close enough (see
also ?), ?)).

The features of Hele-Shaw flows and the governing equa-
tions (taken form the manual of the software Moldflow,
?)) come from estimates of the order of magnitude of
each term of the equations. In order to compare this or-
ders of magnitude, one need to define characteristic val-
ues (length of the domain, thickness, fluid viscosity, den-
sity...), to assume that the fluid is some melt fluid and that
the ratio between the thickness and the length is small
compared to the unity. Therefore the momentum conser-
vation equation leads to the following equations:

∂p
∂x1

=
∂

∂x3

�
µ

∂u1

∂x3

�
; (30)

∂p
∂x2

=
∂

∂x3

�
µ

∂u2

∂x3

�
; (31)

∂p
∂x3

= 0; (32)

where now the direction of the thickness is the x 3 direc-
tion.

Integrating these equations over the thickness, and as-
suming this thickness is delimited by +h and �h, one
can see that the velocity profile is parabolic:

u1(x3) = α(x2
3�h); uy(x3) = β(x2

3�h); u3 = 0: (33)

More precisely, the velocities are:

ux(x1;x2;x3) = �
1

2µ
∂p
∂x1

(x1;x2)(x
2
3�h); (34)

uy(x1;x2;x3) = �
1

2µ
∂p
∂x2

(x1;x2)(x2
3�h); (35)

uz(x1;x2;x3) = 0: (36)

The flow is governed by the pressure gradient, and the
pressure can be obtain from the mass conservation equa-
tion:

∂
∂x1

�
S

∂p
∂x1

�
+

∂
∂x2

�
S

∂p
∂x2

�
= 0 (37)

where S(x1;x2) is a scalar function of the upper and lower
boundaries and of the viscosity. This function is constant
when the boundaries are two parallel planes and the vis-
cosity is constant.

4.2 Comparaison between the two methods

Proposition 4.1 The Hele-Shaw approximation and the
reduction method at its lower degree (VJ = V0 and QJ =
Q0) are similar.

Proof: In the reduction method, the mass conservation
equation becomes:

�
∂u1;0

∂x1
+

∂u2;0

∂x2

�
(x1;x2)ϕ0(x3)+u3;0(x1;x2)

∂ϕ0

∂x3
(x3)

= 0 8x3 2 [�1;1]:

(38)

Hence

∂u1;0

∂x1
+

∂u2;0

∂x2
= 0 (39)

and u3;0 = 0 (40)

The momentum conservation equation gives:

µ

��
∂2u1;0

∂x2
1

+
∂2u1;0

∂x2
2

�
ϕ0 +u1;0

∂2ϕ0

∂x2
3

�
=

∂p
∂x1

ψ0; (41)

the same in x2 and 0 = 0 in x3 which is consistent (ψ0 =
1).

Since this equation is true for all x3, and because ∂2ϕ0

∂x2
3

and

ψ0 are constant, ϕ0(x3) stays the only term varying with
x3 thus

∂2u1;0

∂x2
1

+
∂2u1;0

∂x2
2

= 0: (42)

Therefore, by integrating the momentum equation over
x3

u1;0 =
1

µC1

∂p
∂x1

; (43)

u2;0 =
1

µC2

∂p
∂x2

: (44)

Since u = u0 ϕ0, the reduction method at its lower degree
recovers indeed the Hele-Shaw approximation. �

Remark 4.1 Note that any set of polynomial functions
like (1�y2) f j, with f j of degree j instead of the ϕ j would
have also recovered the Hele-Shaw approximation. The
main advantage of the ϕ j is their orthogonality for the
H1 semi-norm which reduce the cost of the computation.
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Remark 4.2 When the Hele-Shaw approximation is not
anymore valid – if the distance between the two borders
is too important, the borders are too irregular, the vis-
cosity is non-Newtonian and/or the temperature breaks
the laminar flow...– the reduction method becomes more
accurate by increasing the number of base polynomial
functions. At the same time it stays far more effective
than a real 3D computation.

5 Some examples of flows between two surfaces

The examples proposed here are compared with numeri-
cal results computed with the finite element software FI-
DAP (see ?)). Its post-processor is also used to visual-
ize the results obtained by the reduction method (which
means the (N�1)D results are projected on a ND mesh).

5.1 Example 1: A convergent

This example is a simple test to check that the method
gives correct results and to show the need of something
more accurate than the Hele-Shaw approximation for
quasi-cylindrical domains.

As it can be seen on the figures, the symmetry is satisfied:
the x-velocity ux only involves even polynomials (u x1 = 0
over ω). On the opposite uy involves only odd polynomi-
als (fig A1 and A2). The out-coming flux rate is twice
as large as the income one as expected. To confirm this
basic test we use a F.E.M. simulation on a very thin mesh
which will be called the “exact” solution (fig. A4 and
A6), and we compare it with our results.
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Fig. A2 : First three velocity polynoms ϕ 0;ϕ1 and ϕ2.

The results shown are computed with different numbers
of polynomials (J=1, 2, 3 and 5), so that we can see their
influence. In order, to see the differences between the
results we have to look at the pressure field as the veloc-
ity fields are all the same with 3 or more functions (fig.

A4).As expected, the results become more accurate when
J increases, but the main observation is the good quality
of the results with only 3 or 5 polynomials (fig. A9 and
A10). They are better than the results obtained with the
F.E.M. with 8 nodes over the thickness (fig. A5) which
gives a larger matrix than our method with 5 polynomi-
als.

The 1-polynomial results (fig. A3 and A7), which is the
same than the Hele-Shaw one, satisfy the mass conserva-
tion but forget the vertical velocity and worst, gives bad
pressure values.

On the figures, the x and y-scalings are the same.
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5.2 Example 2: Flow in a irregular shell

In this case, the variations of the geometry in the thick-
ness are quite smooth. However (Figs. 5-8) we can see
differences in the results according to the method, in the
quality and in the computation time needed.

Time computation are the one of the 3D example given
in table 4. The method of reduction of the dimension is
always much faster for a similar quality of result.

There is no reference model for this example since it
would have needed a huge computation, however the
evolution of the results with the increasing of the accu-
racy gives an idea of how should be the right solution.

The first case, with one polynomial function, gives al-
most the good result, but pressure is too hight on the last
wave of the model and speed are locally too slow be-
tween the hole and the borders. With three functions, the
pressure is correct and so seems to be the velocities. The
F.E.M. results shows more instabilities, especially for the
speed, but we recover the results of the reduction method.

6 Conclusion

The method described in this paper has proved its effi-
ciency as far the thickness varies “smoothly”. It can cap-
ture the recirculations and depressions inside the thick-
ness with just three polynomials and the computations
have shown the rapid convergence of the approximated
solution with J, the number of polynomials.

This method can be widely adapted to other kind of
problems such flows including thermic , non-Newtonian
flows... Transient equations, non linear ones (like the
Navier-Stokes equations) can be dimensionally reduced
too. Free surface problems can also be introduced, and
for a mold injection problem, the formulation of the
thickness would simplify the simulation of the frozen
layer i.e. the simulation of free surfaces on the top, h+,
and bottom, h�.

Other boundary conditions can be introduced with other
kinds of polynomials. For example, an axi-symmetric
simulation can be effected with a Neumann B.C. on h+

and a Dirichlet B.C. on h� = 0.

Last, the method needs much less polynomials than the
F.E.M. needs nodes over the thickness for comparable
results. This means a smaller associated linear problem
for this method and consequently a faster computation.
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Appendix A: Proofs of proposition 2.1, 2.4 and 2.6

Appendix A:.1 Proof of proposition 2.1

Proposition 2.1 The Stokes problem with mixed bound-
ary conditions (3) has a solution. This solution (u; p)
2 H1(Ω)N �L2(Ω) is unique.

Proof: First remove g in the Dirichlet boundary condi-
tion to get a homogeneous problem. This can be done
since there exists u0 2 H1(Ω)N such that(

∇ :u0 = 0
u0
��

ΓD

= g

so that with u = u? +u0 one obtain a variational formu-
lation of our problem: find (u?; p) 2 H1

0;ΓD
(Ω)N �L2(Ω)

such that 8v 2 H 1
0;ΓD

(Ω)N;8q2 L2(Ω)�
ν < ∇ u?; ∇ v > �< p; ∇ :v > = < l;v >

�< ∇ :u?;q > = 0

with < l;v >=< f;v > +ν < ∇ u0; ∇ v > � <

�ν
∂u0

∂n
;v >ΓN and H1

0;ΓD
(Ω) = fv 2 H1(Ω), vjΓD = 0g.

Using the usual notation a(u;v) =< ∇ u; ∇ v > and
b(v;q) = � < q; ∇ :v > , the above system can be writ-
ten as:�

ν a(u?;v)+b(v; p) = < l;v >V 0�V 8v 2 V
b(u?; p) = 0 8q 2 Q

where V = H1
0;ΓD

(Ω)N and Q = L2(Ω) are respectively
equipped with the norms:

kvkV =

�Z
Ω
j∇ vj2+v2 dxω

�1=2

kqkQ =

�Z
Ω

q2 dxω

�1=2

This system has a unique solution if the Inf-Sup condi-
tion (see ?)) is satisfied, i.e., if

inf
q2Q

sup
v2V

b(v;q)
kvkVkqkQ

� β > 0:

In order to verify this condition we first build for any
q 2 Q a function v 2 V such that ∇ :v = �q. Introduce a
function e = cρn on ΓN and 0 on ΓD with ρ defined as

ρ(xN) =

(
e

�1
1�4y2 if jyj< 1=2;

0 if 1=2 < jyj< 1;

and the constant c chosen such thatZ
∂Ω

e:nds =�
Z

Ω
qds;

i.e.,

c =�

R
Ω q dsR

ΓN
ρ dxN

:

Therefore:

kekH1=2(∂Ω) = jcj kρkH1=2(ΓN)

�
meas(Ω)1=2kqk0;Ω

j
R

ΓN
ρdsj

kρkH1=2(ΓN)

� C1 kqk0;Ω

Consider now the function w2 H 1(Ω)N solution of�
�∆w+w = 0;

wj∂Ω = e:

Obviously kwk1 = kekH1=2(∂Ω) since kwjΓk1=2 :=
inf

vjΓ = e
v 2 H1

kvk1;Ω.

The divergence operator ∇ : is an isomorphism
from fv 2 H1

0 (Ω)N; ∇ :v = 0g? onto L2
0(Ω) =�

p 2 L2(Ω);
Z

Ω
p dxω = 0

�
(see ?)). Therefore,

since �q� ∇ :w 2 L2
0(Ω), there exists z 2 H1

0 (Ω)N such
that ∇ :z = q� ∇ :w. Consequently:

jzj1;Ω �C2 (kqk0+kwk1)�C3 kqk0;Ω:

Finally, let v = z+w, so that ∇ :v = �q, v 2 V and

jvj1;Ω �C4kqk0;Ω:

Since the H1 semi-norm is equivalent to the H 1 norm on
V , we have

kvk1;Ω �C5kqk0;Ω

and the Inf-Sup condition holds since

8q 2 Q 9v 2V s.t.
b(v;q)

kvk1kqk0
=
kqk0

kvk1
�

1
C5

> 0

The bilinear functional a(u;v) =< ∇ u; ∇ v > is H 1
0;ΓN

el-
liptic and the Inf-Sup condition is satisfied hence our
problem has a unique solution in H 1

0;ΓN
(Ω)N � L2(Ω),

(see ?)). �
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Appendix A:.2 Proof of proposition 2.4

For any function v 2 V̂ one can find a sequence vJ that
converges to v in V̂ .

Since
S∞

J=0 PJ(�1;1) is dense in L2(�1;1) and since
the (J + 1) first Legendre polynomials form a basis of
PJ(�1;1)

8 f 2 L2(ω;L2(�1;1)); f (xω;xN) = ∑∞
j=0 f j(xω)ψ j(xN)

a.e. in xω:

This series converges in L2(Ω̂) by applying the domi-
nated convergence theorem.

The same proof and proposition 2.3, show that:

8 f 2 L2(ω;L2
w(�1;1)); f (xω;xN) = ∑∞

j=0 f j(xω)ϕ j(xN)

a.e. in xω

where f j 2 L2(ω) and this series converges in
L2(ω;L2

w(�1;1)).

Since V̂ = L2(ω;H1
0(�1;1))N \H1

0 (ω;L2(�1;1))N, and
because H1

0 is a subset of L2
w, we have:

8v 2 V̂ ; v(xω;xN) =
∞

∑
j=0

v j(xω)ϕ j(xN) a.e. in xω

and this series converges in L2(ω;L2
w(�1;1))N hence in

L2(Ω̂)N.

Let vJ =
J

∑
j=0

v j(xω)ϕ j(xN).

Since v j =
1

kϕ jk

Z 1

�1
vϕ j dxN , v j 2 H1(ω)N .

On the other hand, assume v 2 H 2(Ω̂)N \ H1
0(Ω̂)N ,

then
∂v
∂xω

(xω;xN) 2 L2(ω;L2
w(�1;1)) and one can write

∂v
∂xω

(xω;xN) = ∑∞
j=0 ṽ j(xω)ϕ j(xN).

One can check that
Z x

0
ṽ j dt = v j with ω= [0;1] and the

homogeneous Dirichlet boundary condition in x = 0 i.e.

ṽ j =
∂v j

∂xω
.

Applying the same proof and knowing that ϕ 0
j =�(2 j+

3)ψ j+1, one has:

∂vJ

∂xN
(xω;xN) =

J

∑
j=0

v j(xω)ϕ0j(xN) converges in L2 !
∂v
∂xN

:

Hence, if v 2 H2 \H1
0 , there exists a sequence vJ 2 VJ

such that vJ ! v in H1. Since H2 \H1
0 is dense in H 1

0 ,
the general result follows by the diagonal argument. �

Appendix A:.3 Proof of proposition 2.6

Define Π1;0
J the operator of L2

w-projection from V̂ into VJ:

Π1;0
J v(x̂ω; x̂N) =

J

∑
j=0

v j(x̂ω)ϕ j(x̂N): (45)

This operator defines also a H1y-projection (i.e. for the
H1-semi-norm in xN ):

Z 1

�1

∂(v�Π1;0
J v)

∂xN
(x̂ω; x̂N)ϕ0k(x̂N)dx̂N

=
Z 1

�1

∞

∑
j=J+1

v j(x̂ω)(�(2 j+3)ψ j+1(x̂N))

(�(2k+3)ψk+1(x̂N)) dx̂N

= 0 8k = 0::J

since k < j and the ψ j are the Legendre polynomials.

To prove the proposition, the Inf-Sup condition (see ?))
has to be satisfied for the discrete problem. Since the
continuous Inf-Sup condition is already satisfied, it will
carry to the reduced problem if one can show that (see
?)):

b̂(Π1;0
J v�v;qJ) = 0 8qJ 2 QJ 8v 2 V̂ (46)

kΠ1;0
J vkVJ �CkvkV̂ (47)

Since Π1;0
J is an orthogonal projection with respect to the

inner product of L2
w and to the product of the H1-semi-

norm in xN , inequality (47) is satisfied.

To check (46) first split b̂ :

b̂(Π1;0
J v�v;qJ) = �

R
Ω̂ ∇̃ :(Π1;0

J v�v)qJ ds = X1 +X2

8qJ 2 QJ

where

X1 = �
Z

Ω̂

�
∂

∂x̂ω
+

∂x̂N

∂xom
∂

∂x̂N

�
(Π1;0

J v1�v1)(x̂ω; x̂N)

J

∑
j=0

q j(x̂ω)ψ j(x̂N) dx̂ωdx̂N

X2 = �
Z

Ω̂

∂x̂N

∂xN

∂
∂x̂N

(Π1;0
J v2 �v2)(x̂ω; x̂N)

J

∑
j=0

q j(x̂ω)ψ j(x̂N) dx̂ωdx̂N

Here again one assume v 2 H2 to get the convergence in
L2 of the series ∑ ∂v1 j

∂x̂ω
and conclude by density. Therefore
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since

∂
∂x̂ω

(Π1;0
J v1 �v1) = �

∞

∑
j=J+1

∂v1 j

∂x̂ω
(x̂ω)ϕ j(x̂N)

= �
∞

∑
j=J+1

Fj(x̂ω)ψ j(x̂N)

with Fj(x̂ω) = (
∂v1 j

∂x̂ω
�

∂v1( j�2)

∂x̂ω
)(x̂ω);

the first part of X1 is

X11 =�
Z

Ω̂

∞

∑
j=J+1

Fj(x̂ω)ψ j(x̂N)
J

∑
j=0

q j(x̂ω)ψ j(x̂N) dx̂ωdx̂N:

The first series belongs to the L2-orthogonal comple-
ment of the space spanned by the J + 1 first Legendre
polynomials(LJ) and the second series belongs to LJ ,
therefore X11 = 0.

In the second part of X1, expand the partial derivative (cf
formulae (12)):

X12 = �
Z

Ω̂
(H(x̂ω)+G(x̂ω)x̂N)

∂
∂x̂N

(Π1;0
J v1�v1)(x̂ω; x̂N)

J

∑
j=0

q j(x̂ω)ψ j(x̂N) dx̂ωdx̂N

= �
Z

Ω̂
H(x̂ω)

∂
∂x̂N

(Π1;0
J v1�v1)(x̂ω; x̂N)

J

∑
j=0

q j(x̂ω)ψ j(x̂N) dx̂ωdx̂N

�
Z

Ω̂
G(x̂ω)

∂
∂x̂N

(Π1;0
J v1�v1)(x̂ω; x̂N)

J+1

∑
j=0

q̃ j(x̂ω)ψ j(x̂N) dx̂ωdx̂N

An integration by parts in x̂N gives

X12 =
Z

ω

Z 1

�1
H(x̂ω)

∞

∑
j=J+1

v2 j(x̂ω)ϕ j(x̂N)

J

∑
j=0

q j(x̂ω)ψ0
j(x̂N) dx̂N dx̂ω

+
Z

ω

Z 1

�1
G(x̂ω)

∞

∑
j=J+1

v2 j(x̂ω)ϕ j(x̂N)

J

∑
j=0

qj(x̂ω)ψ j(x̂N) dx̂N dx̂ω:

Once again the first series belongs to the L2-orthogonal
complement of LJ and the second series belongs to LJ ,
therefore X12 = 0.

The same proof gives X2 = 0.

Hence (46) is satisfied for all q2QJ and so is the discrete
Inf-Sup condition applied to our reduced problem:

sup
v2V J

b̂(v;q)
kvkV J

� βkqkQJ 8q 2 QJ (48)

Therefore problem (17) has a unique solution (uJ ;qJ) in
VJ �QJ . �
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Figure 5 : with the reduction method and 3 functions in
the thickness
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Figure 6 : with the F.E.M. and 5 nodes in the thickness
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Figure 7 : with the reduction method and 5 functions in
the thickness
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Figure 8 : with the F.E.M. and 9 nodes in the thickness




