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A dimensional reduction of the Stokes problem

Olivier Ricou ! Michel Bercovier 2

Abstract:  In this article, we present a method of re-
duction of the dimension of the Stokes equations by one
in a quasi-cylindrical domain. It takes the special shape
of the domain into account by the use of a projection onto
a space of polynomials defined over the thickness. The
polynomials are defined to fit as well as possible with
the variables they approximate. Hence, this method re-
stricted to the first polynomial, recovers the Hele-Shaw
approximation.

The convergence of the approximate solution to the con-
tinuous one is shown. Under aregularity hypothesis, we
also abtain error estimates.

A description of the stiffness matrix is exhibited and
some computations show the acceleration due to this
method. Finally afew numerical results are given.
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1 Introduction

In general, the ssimulation of 3D flow problems—in par-
ticular those including free surfaces—is a computation-
aly intensive task due to the large number of unknowns
in the associated linear systems. For certain families of
flow problems, this number of unknowns can be drasti-
cally reduced. Inthisarticle, we consider Stokesflowsin
quasi-cylindrical domains, i.e., flows between two sur-
faces. When the thicknessis small enough and the two
surfaces are planes, this set of flow has been studied for
long and are known as the Hele-Shaw flows. Such flows
are having by hypothesis a given parabolic profile in the
thickness direction. They are approximated by estimat-
ing the order of magnitude of each term in the governing
equationsand reducing the problem to a Poi sson equation
on the pressure only. Such methods are common in the
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simulation of injection mold flow in the plastic industry.

The present work isto simulateflowsin quasi-cylindrical
domain by a projection on polynomial spaces and to
recover the Hele-Shaw approximation with the spaces
spanned by their lowest order polynomials. Moreover,
one can simulate 3D features of flows (likevorticesinthe
thickness) by increasing the degree of the approximation
spaces, thus extending the classical Hele-Shaw model.

1.1 Définition of the problem

A quasi-cylindrical domain is a N-dimensional domain
Q such that there existsa (N — 1)-dimensional domain w
and two real-valued lipschitz functionsh™ and h™ on w
with h™ (X)) < ht (%) for al X, = (X1,...,XN-1) € W:

F(x)]} CR® (1)

Hence, the functions h* and h~ describe the shape of
the upper and lower surfaces of the domain, and the flow
occurs between these two surfaces. Following an idea
of Vogelius-Babuska (see ?), ?), 7)) one takes advan-
tage of the quasi-cylindrical shape of Q to project the N-
dimensional Stokes problem on a (N — 1)-dimensional
problem set on w.

Q={(XoXn) |x€ wandy € [n7 (%), h

Let amapping
T: Q — O
(X XN) > (Reo = X0 RN)

be such that Q is the cylindrical domain w x [—1,1].
Hence,using this mapping, one reformulates the Stokes
problem onto Q and approximates the new problem by
projecting the pressure and velocity on the spaces

Q = {qel—z( )/3(a)) j=0.3 € L*(0);
q= Zq, Wi (xn) }
V) = {ve HY{(QN/3(vj)j=0.0 € H3 ()

J
V=3 vilko)ds 00}
=
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where J; and ¢; are given polynomials. Define these
polynomials such that the Inf-Sup condition (cf ?)) is
enforced on the Stokes equations projected onto V; and
Qj. This will ensure that the reduced problem is well
posed. It can be shown then that the solution of this re-
duced problem converges to the solution of the original
Stokes equations as the degree of the polynomials tends
to infinity.

The reduced problem can be discretised by a finite ele-
ment method in the x,, direction. Thus, the N-dimension
Stokes problem is computed on a (N — 1)-dimension
mesh. This leads to the definition of elements for which
thefinal problem iswell posed.

The stiffness matrix obtained is block defined and
smaller than the stiffness matrix one would have with a
3D FEM for the same quality of result. Hence, the time
computationisreduced by taking advantage of its special

shape (and adapted preconditionners).

Results are compared with the Hele-Shaw model and the
full dimension FE.M.. On one hand, the method of re-
duction is more accurate than the Hele-Shaw model (it
recoversthismodel at itslower degree of approximation).
On this other hand, this method is cheaper than afull di-

mension FE.M.. Finaly, thisis confirmed by numerical

examples.

2 Thedimensional reduction

All the results not detailed here can be found in the book
of ?) and ?).

Let Q be aquasi-cylindrical domain (N = 2,3)

Q= {(xo:xn) |x€ wandy € [h™ (x), h*(x)]} € R"
(2)

where h™(x,) and h*(x,) are two lipschitz real-value
functions defining the thickness of the domain (h ~ () <
h*(Xw)). Assume that the upper and lower surfaces
M = { (X, XN)|X € W,y = h™(X,) or h(xy,)} are wals
(of amold cavity for example), the boundary conditions
used are no-slip boundary conditions. The“vertical” bor-
ders, Tv = { (X, Xn) %o € 0w, Y € [N (%), (%)]} =
o + Mn, will be walls, inflow, outflow or free bound-
aries.

Let u(Xe,Xn) and p(xq,Xn) be the velocity of the flow
and the fluid pressure at point (X, Xn) € Q, respectively.
Theflow isgoverned by the Stokes equationswith mixed
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Figure 1: aquasi-cylindrical domain

Neumann-Dirichlet boundary conditionsi.e. it isthe so-
lution of the problem: Find (u,p) € HYX(Q)N x L?(Q)
such that

—VvAu+0Op =f onQ
Ou =0
u =0 only (3)
u =g onlp
—v¥4pn =0 only

withf € L2(Q)Nandge HY2(T).

Proposition 2.1 The Stokes problem with mixed bound-
ary conditions (3) has a solution. This solution (u, p)
€ HY(Q)N x L?(Q) isunique.

Proof This proposition is a variation of known results.
A proof is proposed in appendix A. o
The weak formulation of the Stokes problem is

V/QDuDvdxwde— Jo pO.vdxe, dxy
_ /vadxwde WeV
—/QD.uquwde ~ 0 vgeQ
4)
also written
{a(u,v)—|—b(v,p) = <f,v>yv YweVv
b(u,q) = 0 VaeQ
(5)
with a(u,v) = V/QDuDvdxwde and b(v,p) =
—/QpD.vdxwde.

Let us apply the bijective mapping T to the Stokes prob-
lem

(6)
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where

R (Xeos XN) = = (2N —h* (%) =™ (X))
(7)

Hence the new problemis: Find (0, p) € V x Q such that

v/(DT@)@(DT@)\7|DT—1|d>zwd>zN
B(OT0).0|OT 1| dRe, dSy

D,\

(8)

— QT 0|07 2 dRg, diy eV
—/ﬁ(DTﬁ).OmDT‘HdﬁwdiN:O ¥4e O
also written
{ 40,9 +b(0,p) = <1U>g.y VeV
b(0,§) = 0 v4eQ

(9)

Thenew spacesare V = H1(Q)N and § = L2(Q) where:

~

AYQ) = {Vel?(Q)Nst 00eL2(QN)} (10)
0 0%y 0
- N Ay
ithd = (OTO)= 11
wit (OT0) 3% 9 (11)
6xN aXN
where
&N _ 6h+ 6h— (ah+_@)§()
Xy h+— axm ) o e
= G XN7
0N 5
oy PR
(12)
Since h™(x,) and h* (x,,) aretwo lipschitz functions, and

since h* (X,) > h™ (X), and wisabounded set, thesetwo
derivatives are bounded. Therefore H1(Q) = H(Q).

Proposition 2.2 The problemwith mixed boundary con-
ditions (8) has a solution. This solution (0,p) €
HY(Q)N x L2(Q) isunique.
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Proof The transformation T is a bilipschitz homeo-
morphism. Since problem (3) has a unique solution,
the problem reformulated (8) using this transformation
has also a unique solution in T(V(Q)) x T(Q(Q)) =
HY(Q) x L2(Q). o

Now that the problem is defined on Q = w x [—1,1], the
ideaisto approximate the solutions G and p by functions
that are polynomia with respect to Xy (the thickness).
Let

j (%) 9 (Rn), (13)

IfJ (%) W (Xn), (14)

HMQEMQ

where ¢; and ; are polynomials defined on [-1,1] and
Uj (Xw) and p; (Xw) (X € w) the coefficients of the projec-
tion of O and p on these polynomials. Furthermore the
boundary conditions on Xy = £1, which are still Dirich-
let homogeneous ones, have to be satisfied.

The polynomials ¢; and ; must satisfy three condi-
tions: the reduced problem must be well defined, the
Hele-Shaw approximation should be recovered and there
should be some L 2-orthogonality to reduce the numerical
cost of the simulation.

Let y; be the Legendre polynomials:

Pj(y) =L;(y) withL; the Legendre polynomials of
order j:
LO = 17 Li= Y,
Lj = (y=Aj)Lj-1(y) — HiLj-2(y)
(15
ILj-a]l? (Lj-1,Lj-1)
whereA; = and yj = ————.
Pl : ILj-2|l?

They define an orthogonal basisof L2(—1,1) for its usual
scalar product. Furthermore Yo = 1 which means that
the pressure over the thickness will be constant at the
lowest degree of approximation. This is similar to the
Hele-Shaw approximation (see 32).

The polynomials¢ ; are defined by
O =W — Wiz,

Here again, the first polynomial ¢ recover the typical
parabolic profile of the velocity for Hele-Shaw flows.

¢ isof degree j +2. (26)
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With these definitions, one can check that the reduced
problem iswell defined.

Letw: (—1,1) — R beaweight function and let
L2(-1,1) = {v
and ||v||ow < oo}

:(—1,1) —» R|vismeasurable

where ||V||ow is the norm induced by the scalar product

= [ uy)vy)wiy)dy.

-1

Proposition 2.3 The set of polynomials (¢ j);>o0 is an
orthogonal basis of the space L2(—1,1) for the weight

1
w(y) = 1—y2

Proof: Notice that the space (1 — y?)P is dense in

L2(—1,1) for the L2-norm.

Since the Legendre polynomials verify (1) =1 and

(1) = (=1}, 6; (1) = 0. Therefore ¢,(y) = {1 -
y?)$j(y) where §j(y) is a polynomial of degree j, and

thefamlly (9))j=0.7isabasisof (1-y?)P;.

The orthogonality of the polynomials ¢ ; for the scalar
product of L2(—1,0) is satisfied if (¢i,¢)w = O for all
i< j<d

@b = [ AP0

= [ e

The polynomial ¢; € P; and therefore is alinear combi-
nation of the (i 4 1) first Legendre polynomials. Conse-

quently
1 i
(010w = /_1 (kzotﬁiklllk(y)) (W) — Wjt2)(y) dy
=0

q’lj+2) (y) dy7

sincei < j.

&
Hence the space spanned by the ¢ ; isdensein H&(—l, 1)
sinceH3(-1,1) =L2(-1,1)nH(-1,1).
One can also remark the ¢; are orthogonal for the semi-
norminH(—1,1) and that

1
/_lq)’jLIJidy:Ofori;éj—l

since ¢ = —(2j + 3)Yj41.
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2.1 Discretization in the thickness

Note: From now on, w(y) —
functionss; and ¢ ; are the one defined by (15) and (16).

{ge LZ( )/3(a)) j=0.3 € L*(w);
q= Zq, )W ()}

= {VGHl( IN/3(vj)j= OJEHOyD( w)N;

V= S V(001 0))
1=0

LetQ;=

Proposition 2.4 | JV; isdensein V.
3=0

Proof: A proof is proposed in appendix A.

Proposition 25 | J Q; isdensein Q.
3=0

Proof: Apply the same proof as above to the series g in
L2, o
To conclude, given J < o the transformed Stokes prob-

lem (9) can be discretised as follows: find (u’, p’) €
Vj x Qy such that
AW V) +b(vp) = <EvIsyy, W eV
b(u,p’) = 0 v’ € Qs
17)

Proposition 2.6 The reduced Siokes problem (17) hasa
solution (u’, p?). ThissolutionisuniqueinVj x Q.

Proof: A proof is givenin appendix A.

Remark 2.1 Note that equation (48) gives an uncondi-
tional stability of the dimension reduction : the Inf-Sup
coefficient 3 is not linked to the dimension J of the poly-
nomial space VY. This is not the case for 2D spectral
elements (see ?)).

To complete the reduction of the probleme, one has to
analyze the convergence of the reduced problem when
J— oo,
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It is shown in ?), that the discretization error for an ab-
stract problem of the form (17) isgiven by

A : A : J
u' —ally <cg inf ||G=Vv|ly +co inf — A (18
o= ally < v int |a-v’llg+ez inf [Ip-’llg (18)

I _ Al bl . 3 Al
1P" = Pllo/kerpivy < (1’7:”%)(1}2&”(4 Pllo
al| | J
+2a-ul|ly
5 | IN
(19
with
kY [l
< — ) (1+ —
o < (oD
[LEl
< 2
C < o

where a is the elipticity constant and 3 the constant of
the Inf-Sup condition.

Let M, be the operator of L?(—1,1) orthogona pro-
jection onto P3(—1,1). Under the following assump-
tion of regularity: ue HM(—-1,1)NH3(-1,1) and q €
H"(—1,1), we have (see ?)):

C(mJI™[plln n>0
Cm) I Mjullm m>1

(20)
(21)

Unfortunately, in our case, u isin H}(~1,1)N and g in
HO(-1,1). Thisisinsufficient to obtain an estimate of
the error by C1(J)||ul|1+C2(J)]|q||o WithC;(J) o 0. So
the error analysis does not prove by itself that the solu-
tion (u’, p?) of the reduced problem will converge to the
solution (u, p) of the continuous problem when J — co.
However the following theorem gives the convergence:

Theorem 2.1 Thesolution (u’, p’) of the reduced Stokes
problem (17) converges to the solution ( G, p) of the con-
tinuous problem (8) when J — .

Proof: Due to propositions(2.4) and (2.5)

lim inf ||0—V'|lv =0

J—oo\lev;

lim inf ||p—q’|lo=0.

fim inf lIp=alle
Therefore the convergence is achieved with (18) and
(29). o
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This implies that the solution (T ~*(u’), T~1(p’)) con-
verges to the continuous Stokes problem (3).

All this error analysis has been done for the worst case,
and without taking in account the shape of the domain
or the regularity of the second member. It is known
that with hypothesis on the domain (convex, polygo-
nal...) the solutionis more regular: (u, p) € H+S(Q)N x
HS(Q)withs > 0 (see ?)). This, combined with the fact
that the influence of corners on the regularity of a Stokes
flow islocal, explain why the numerical results show a
faster convergence than expected from the results above.

3 Discretization of the problem over w

From now on, u denotesthe solution of the reduced prob-
lem (17), formerly called u’, and not the solution of the
original problem (3) anymore. The same is done with p
so that: (u, p) € V; x Qy.

The purposeis now to discretize the reduce problem with
afinite element method, hence to have ausual finite ele-
ment method with its advantages but applied on adomain
of N— 1 dimensions.

Figure 2 : Finite element mesh on w

Let Vi, — Vj and Qi — Q) be finite dimensional sub-
spaces of V; and Q; respectively (the subscript h refers to
the size of the mesh elements). The discretized problem
is: Find (up, pr) € Vin x Qan such that:

{ &(Un,Vn) +B(Vh, pr) = <fn,Vh vy Wh € Vi
b(un,an) = 0 Vah € Qun
(22)

Proposition 3.1 Under the assumption the Inf-Sup con-
dition is satisfied for the chosen element, the discretized
problem (22) has a unique solution (U, pn) € Vih X Qah.

The proof is standard (see ?)).
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3.1 Theedements

To complete the discretization, one has to define afinite
element which satisfies the Inf-Sup condition for the dis-
crete reduced problem (22).

This means, if My, is the interpolation operator, it has to
be such that

b(Mhu—u,0n) =0 Vah € Qun
[IMaullvsh < Cllullv,

(23)
(24)

with

b(MMhuj — Uj, thj)

N
0
:E C/—I‘Iu--—u-- id
2 ( 1 waXm( hUij ii) Onj dXe

+C2/wH(Xw)(|'|hUij—Uij)thde
‘|‘C3/G(Xw)(nhuij—uij)thdxw)
w

0X
‘|‘C2/6—N(nhUNj—UNj)thde
w OXN

1 1
whereClz/ & U dR, czz/1¢'jq;kd>zN and Cs =
_1 _

1
| #cudi.

The first part of the linear constraint b is the divergence
constraint in the reduced dimension. It will be null if the
chosen element is a good element for the regular Stokes
problem on w. If we use a piecewise constant pressure,
the easiest way to nullify the othersintegralsisto have a
degree of freedom inside the element, i.e. to have “bub-
ble” function — H(Xy,), G(X,) and 0Xy/0xy are known
functions — Hence the P1-bubble/PO element satisfies
the Inf-Sup condition.

The second condition (24) is satisfied if the interpolation
operator is such that Mypx = pk for al polynomial de-
fined onto the element K: py € Py(K).

Example: the P2/PO element. This element satisfies
the Inf-Sup condition for the Stokes problem in 2D,
therefore the first integral vanishes.

One has to define the My, operator on uz such that the last
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integralsare null i.e. such that

2
/KI'IhUe,dxw = /K(:?’dX“_i;/K(H(X“) 5
+C—2G(Xw))(”huij — Uij) dXg

Let Mpus(M;) = uz(M;) where M; are the nodes on the
verticesof K and M;j onitsedges. Hence the three degree
of freedom Muu3(M;;j) stay free. One has to be fix to
satisfy (25), therefore 2 remain free. They will be used
by other elements, so that we can keep the conformity if
there are more free edges than elements. o

As in the 2D Stokes problem, the Q1/Q0 element can
give good numerical result even if it does not satisfy the
Inf-Sup condition. We used it for the examples.

3.2 The matrix system

Theresulting stiffnessmatrix isblock defined: each usual

block for each degree of freedom (uy, Uy, Uz, p) is sub-
divided in (J+1) x (J+ 1) blocks of the same shape.

Thanks to the orthogonalitiesof ¢ j and ), and accord-
ing to the shape of two surfacesh™* and h™, some of these
blocks are null.

For example the laplacian gives a pentadiagonal block

defined matrix and the equation of the mass conservation
(O.u = 0) leads to the following shape (for J = 4) :

Uio
£ 000000000\ u,
* ok 0 0 =« 00O Ug2
U3
+ x x 000 «x 00O Uss :(0)
* x x 0 0 *+ 00 Uz.o
00 %« + 000 % O :
Uz,4

(26)

where the stars are for non zero matrices. This shape
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comes from the following matrices of coefficients:

> 0 0 o0 o0
o 23 0 0 0
(/twiq)jdz)__ = | —255 0o 25 0o o |,
! 0 —2/7 0 27 0
0 0 -2/9 0 29
0o 0 0 0 o0
2 0 0 0 0
(/1¢-%dz) - 0 -2 0 0 0 29)
1 IBE ij El
0 0 -2 0 0
0 0 0 -20
2 0 0 o0 0
0 -43 0 0 0
(/1%%&1{) = | —45 o -5 o0 0 (@)
-1 0 ij
o -67 0 -87 0
O o0 -89 0 -10/9

Here is the shape of the matrix of the 2D+1 3 examples
proposed in the end of this paper :

Figure 3: stiffnessmatrix of a2D+1 example

The stiffness matrix is smaller than the one we would
get from afinite element method applied on the original
problem if the number of polynomial function needed is

32D+1 computations have a 3D domain and variables but, by the
use the reduction method, compute the solution on a2D mesh.
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smaller than the number of node needed in the thickness
for the FEM to get the same result. One can show that, for
iterative solvers, the reduction method is advantageous
if the ratio number of node, number of function needed
is more the 1.5. It seems reasonable to accept that this
valueisunder reality (the ratio of the proposed examples
isaround 3).

The speed of computation can be increased with pre-
conditionners for iterative methods. Computation have
shown that a good choice for the Uzawa algorithm is
an incomplete Choleski factorization on each diagonal
bloc for the computation of the speed, and aincomplete
Choleski factorization of the matrix defined by the oper-
ator %A where A = (0.0 (see eq.(11)) and B = (%)24—
(2L)2.

Here are some CPU time of 2D and 3D computations
with or without the dimensional reduction method, with
the number of function in the first case and the number
of nodes used in the thicknessin the second one *:

withreduction | without (FE.M.)
a2D example 8s, 1 function 11s, 5 nodes

22s, 3 functions 49s, 9 nodes
a3D example | 612s, 1function | 12813s, 5 nodes

4509s, 3 functions | 33378s, 9 nodes

Figure 4 : Examples of CPU time according to the
method and precision

The right number of node to have similar result is not
always easy to find since one method can give better re-
sults for some criteria, and worst for other. Hence, we
have to arbitrary decide when results with and without
reduction are similar. However, the differences of CPU
time are large enough to show the accel eration due to the
reduction method.

4 Comparaison with the Hele-Shaw approximation

The most common approximation for low Reynolds
flows between two close plates (N=3) is the Hele-Shaw
approximation.

4The values of the time computation are not important by them-
selves, but compared to the others. The solver isthe same asfar as
possible for the two methods.
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4.1 The Hele-Shaw approximation

The name of the Hele-Shaw flow comes from experi-
ments Hele-Shaw has published in Nature in 1898 (see
?)). He noticed then, that a flow between two plates be-
comes laminar when the two plates are close enough (see
aso ?), ?)).

Thefeatures of Hele-Shaw flows and the governing equa-
tions (taken form the manual of the software Moldflow,
?)) come from estimates of the order of magnitude of
each term of the equations. In order to compare this or-
ders of magnitude, one need to define characteristic val-
ues (length of the domain, thickness, fluid viscosity, den-
sity...), to assume that the fluid is some melt fluid and that
the ratio between the thickness and the length is small
compared to the unity. Therefore the momentum conser-
vation equation leads to the following equations:

op 0 ou;

o 03 (“5X3) 7 0
op 0 Ju,

e o (“aXe,) | D
op

L 2

where now the direction of the thicknessis the x5 direc-
tion.

Integrating these equations over the thickness, and as-
suming this thickness is delimited by +h and —h, one
can see that the velocity profile is parabolic:

Ui (Xs) = G(X% —h), Uy(X3) = B(X% —h), u3=0. (33)
More precisely, the velocitiesare:
10
Ux(X1,X2,X3) = ~— o a—)Z(XL X2) (¢ —h), (34)
10
Whasexs) =~ a20ax) (G-, ()
Uz(X1,%2,X3) = O. (36)

The flow is governed by the pressure gradient, and the
pressure can be obtain from the mass conservation equa-

tion:

0 ap 0 opy\
5—X1( 5X1)+5—X2( 5X2) =0
where S(x1,Xp) isascalar function of the upper and lower
boundaries and of the viscosity. Thisfunctionis constant
when the boundaries are two parallel planes and the vis-
cosity is constant.

(37)
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4.2 Comparaison between the two methods

Proposition 4.1 The Hele-Shaw approximation and the
reduction method at its lower degree (V3 =Vpand Q; =
Qo) aresimilar.

Proof: In the reduction method, the mass conservation
equation becomes:

ou ou
(671170 + 67220) (X1,%2) do(X3) + u30(X17X2) ai( X3)
=0 5 € [ ]
(38)
Hence
duo  Oupo
L (@)
and uzp = 0 (40)
The momentum conservation equation gives.
0%uro  0%uyp o op
7 7 = 41
U(( ox2 + pY: )¢0+ U1,0 6X3) aquJm (41)

the samein x; and 0= 0in x3 whichis consistent (Jg =
1).

Sincethisequationistruefor al x3, and because aa)‘("zo and
Yo are constant, ¢o(X3) staysthe only term varying with
X3 thus

aZULo
2
ox5

aZULo
2
ox{

—0. (42)

Therefore, by integrating the momentum equation over
X3

1 odp

U1,0 G, ox (43)
1 odp

= — . 44

U2,0 1C, 9% (44)

Since u = Up §o, the reduction method at itslower degree
recovers indeed the Hele-Shaw approximation. o

Remark 4.1 Note that any set of polynomial functions
like (1—y?) fj, with f; of degree j instead of the ¢ ; would
have also recovered the Hele-Shaw approximation. The
main advantage of the ¢ ; is their orthogonality for the
H?® semi-normwhich reduce the cost of the computation.
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Remark 4.2 When the Hele-Shaw approximation is not
anymore valid — if the distance between the two borders
is too important, the borders are too irregular, the vis-
cosity is non-Newtonian and/or the temperature breaks
the laminar flow...— the reduction method becomes more
accurate by increasing the number of base polynomial
functions. At the same time it stays far more effective
than areal 3D computation.

5 Some examplesof flows between two surfaces

The examples proposed here are compared with numeri-
cal results computed with the finite element software FI-
DAP (see ?)). Its post-processor is also used to visual-
ize the results obtained by the reduction method (which
meansthe (N — 1)D resultsare projected on aND mesh).

51 Examplel: A convergent

This example is a simple test to check that the method
gives correct results and to show the need of something
more accurate than the Hele-Shaw approximation for
quasi-cylindrical domains.

Asit can be seen on thefigures, the symmetry is satisfied:
the x-velocity uy only involveseven polynomials(ux; =0
over w). On the opposite uy involves only odd polynomi-
as (fig Al and A2). The out-coming flux rate is twice
as large as the income one as expected. To confirm this
basic test we usea F.E.M. simulation on avery thin mesh
which will be called the “exact” solution (fig. A4 and
A6), and we compare it with our results.

T

Fig. Al uy velocity

A ] [N

Fig. A2 : First three velocity polynoms ¢ o, 1 and ¢-.

The results shown are computed with different numbers
of polynomials(J=1, 2, 3 and 5), so that we can see their
influence. In order, to see the differences between the
results we have to look at the pressure field as the veloc-
ity fields are al the same with 3 or more functions (fig.
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A4).Asexpected, the resultsbecome more accurate when
Jincreases, but the main observation is the good quality
of the resultswith only 3 or 5 polynomials (fig. A9 and
A10). They are better than the results obtained with the
F.E.M. with 8 nodes over the thickness (fig. A5) which
gives alarger matrix than our method with 5 polynomi-
als.

The 1-polynomial results (fig. A3 and A7), whichisthe
same than the Hele-Shaw one, satisfy the mass conserva
tion but forget the vertical velocity and worst, gives bad
pressure values.

On thefigures, the x and y-scalings are the same.

Fig. A3
1D+1, 1 fct

Fig. A4
correct velocities

Fig. A5
2D with 8 nodes

Fig. A6
2D, finemesh
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Fig. A7 Fig. A8
1D+1, 1 fct 1D+1, 2 fcts

Fig. A9
1D+1, 3fcts

Fig. A10
1D+1, 5fcts

5.2 Example2: Flowin airregular shell

In this case, the variations of the geometry in the thick-
ness are quite smooth. However (Figs. 5-8) we can see
differences in the results according to the method, in the
quality and in the computation time needed.

Time computation are the one of the 3D example given
in table 4. The method of reduction of the dimension is
always much faster for a similar quality of result.
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There is no reference model for this example since it
would have needed a huge computation, however the
evolution of the results with the increasing of the accu-
racy givesan idea of how should be the right solution.

The first case, with one polynomial function, gives al-
most the good result, but pressure istoo hight on the last
wave of the model and speed are locally too slow be-
tween the hole and the borders. With three functions, the
pressureis correct and so seems to be the velocities. The
F.E.M. results showsmore instabilities, especialy for the
speed, but we recover the results of the reduction method.

6 Conclusion

The method described in this paper has proved its effi-
ciency asfar the thicknessvaries“smoothly”. It can cap-
ture the recirculations and depressions inside the thick-
ness with just three polynomials and the computations
have shown the rapid convergence of the approximated
solution with J, the number of polynomials.

This method can be widely adapted to other kind of
problems such flows including thermic , non-Newtonian
flows... Transient equations, non linear ones (like the
Navier-Stokes equations) can be dimensionally reduced
too. Free surface problems can also be introduced, and
for a mold injection problem, the formulation of the
thickness would simplify the simulation of the frozen
layer i.e. the simulation of free surfaces on the top, h*,
and bottom, h~.

Other boundary conditions can be introduced with other
kinds of polynomials. For example, an axi-symmetric
simulation can be effected with a Neumann B.C. on h*
and aDirichlet B.C. onh™ = 0.

Last, the method needs much less polynomials than the
F.E.M. needs nodes over the thickness for comparable
results. This means a smaller associated linear problem
for this method and consequently a faster computation.
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Appendix A:  Proofs of proposition 2.1, 2.4 and 2.6
Appendix A:.1  Proof of proposition 2.1

Proposition 2.1 The Stokes problem with mixed bound-
ary conditions (3) has a solution. This solution (u, p)
€ HY{(Q)N x L2(Q) is unique.

Proof: First remove g in the Dirichlet boundary condi-
tion to get a homogeneous problem. This can be done
since there exists ug € H(Q)N such that

Ou = 0

{ Uo‘ =49
>}

so that with u = u* + ug one obtain a variational formu-

lation of our problem: find (u*, p) € Hgr, (Q)N x L#(Q)

such that Vv € Hgr (Q)N, Vg e L*(Q)

v<Ou,0Ov>—<pOv> = <lv>
—-<Ubutg> = 0

with < ILv >=< fiv > 4+v <

ou
a_no"’ >ry and Hir_(Q) = {ve HY(Q), VI, = 0}.
Using the usua notation a(u,v) =< Ou,0v > and
b(v,q) = — < q,0.v >, the above system can be writ-
ten as:

va(ut,v)+b(v,p) = <ILv>vixy
b(ut,p) = 0

Oug,0v > — <

-V

Yvev
VgeQ

where  V =Hj (Q)Nand Q=L?(Q) arerespectively
equipped with the norms:

1/2
(/ IOv[2 V2 dxw)
© 1/2
(o)
Q

This system has a unique solution if the Inf-Sup condi-
tion (see ?)) issatisfied, i.e., if

a€Q vev |IVIIvIdllq

Vv =

lale =

>pB>0.

In order to verify this condition we first build for any
g€ Qafunctionv € V such that [0.v = —q. Introduce a
functione=cpn on "y and 0 on I'p with p defined as

=1
e if

_ vl <1/2,
p(XN)_{ 0 if 1/2<

ly <1,

97

and the constant ¢ chosen such that

/ e.nds:—/qu,
Flo) Q

i.e.,
o _ Joads
Jr P Xy
Therefore:
ellhzaq) = Il lIPllHvz(ry)
nBaS(Q)l/ZHqHQQ HpH "

B | Jr, PdS] HY5(Tw)
< Cilldlloe

Consider now the functionw € H(Q)N solution of

{—Aw—l—w = 0,

W = e
Obviously |W|l1 = [[ellyszioq) Since W [l =
inf ||v|[1q-
Vi =¢€
veH?!
The divergence operator [. is an isomorphism
from  {ve H}QN;Ov=0}t onto L3Q) =

{p € L2(Q); /Q D dx, = o} (e 7).  Therefore

since —q— O.w € L3(Q), there exists z € H3(Q)N such
that 0.z = g— O.w. Consequently:

1z]1,0 < Ca(J|glfo+ |[w]1) < Cslldlloq-
Finaly, letv=2z+w, sothat 0.v=—q,v €V and

IVl1,0 < Calldlfo-

Sincethe H* semi-norm is equivalent to the H* norm on
V, we have

IVllze < Cslldlloe

and the Inf-Sup condition holds since
_ a1

b(v,q) N

YqeQ dveV st = >
[IVllaflallo lIvll2 ~ Cs

The bilinear functional a(u,v) =< Ou,0v > isHj €l-
liptic and the Inf-Sup condition is satisfied hence our
problem has a unique solution in Hi (Q)N x L3(Q),
(see?)). o
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Appendix A:.2 Proof of proposition 2.4

For any function v € V one can find a sequence v? that
convergestovinV.

Since JS_oP3(—1,1) is dense in L?(—1,1) and since
the (J+ 1) first Legendre polynomials form a basis of
PJ(_17 l)

Ve L2(wL2(=1,1)), f(XeXn) Xeo) P (Xn)

a.e. inXg.

=3 i=ofil

This series converges in L2(Q) by applying the domi-
nated convergence theorem.

The same proof and proposition 2.3, show that:
Ve LP(w,L5(=1,1)), f (%o Xn) = 3o i (%) 9 (xn)
ae inx,
where fj € L?(w) and this series converges in
Lz(wv L\%,(—l, l))
Since V = L2(w, H3 (-1, 1))N N HE (00, L?(—-1,1)N, and
because H3 is a subset of L2, we have:

00

Z}Vj (X0)dj(xn) ae inxy

j:

v 6\77 V(X(A)?XN) =
and this series converges in L2(w, L5,(—1,1))" hence in
L2(Q)N.
J
V(%) & ().
ZD j j

. 1 1
Sincevj = —/ v dxn, vj € HY ()N
3] /-1

On the other hand, assume v € H2(Q)N N HI(Q)N,

Letv) =

then a—v(xw, x) € L?(w,L2(-1,1)) and one can write

0%
f—x\;(xwva):ZTzov'( )0 (xn)-
One can check that vJ dt = v with w=[0, 1] and the
homogeneous Dlrlchlet boundary conditioninx=0i.e.
- v
Vi = ﬁ
Applying the same proof and knowing that ¢'j =—(2j+
3)Pj+1, one has:
GV‘] J
. (Xeoy XN) Z “(xn) convergesin L? — F

Hence, if v € H2NHg, there exists a sequence v? € V;
such that v? — v in H1. Since H2NH} isdensein HE,
the general result follows by the diagonal argument.  ©
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Appendix A:.3  Proof of proposition 2.6

Define %’0 the operator of L2 -projection from VintoVy:

This operator defines also a Hyy-projection (i.e. for the
Hj-semi-norm in xy):

1,0
[,y aanva)“ SETENEEY

- [ 3 il (~(2143051a(%0)

( (2k+ 3)Pie+1(Xn)) dRn
vk=0..J

M3 (R, (45)

=0

sincek < j and the \p; are the Legendre polynomials.

To prove the proposition, the Inf-Sup condition (see ?))
has to be satisfied for the discrete problem. Since the
continuous Inf-Sup condition is already satisfied, it will
carry to the reduced problem if one can show that (see

?):
A/ L0 I\ J
b(Myv—-v,q)=0 Vo €Qy
1,0
IM57V]lv, < Clivily

Vv ev (46)

(47)
Sincell }0 isan orthogonal projection with respect to the
inner product of L2, and to the product of the Hi-semi-
normin Xy, inequality (47) is satisfied.

To check (46) first split b :

EJ(I'I}OV—V,qJ) =-Ja ﬁ.(l‘l}ov—v)qJ ds= X1+ X5

Vgl € Qs
where
_ 0 O 0\ 1o . o
Xy = —/A (6>A<w+6xom6§( )(I-IJ V1 — V1) (R, XN)
Z)QJ JP;j (Xn) AR, A%
_ [0 0 10,
Xo = 6XN aXN(nJ V2 — Vo) (X5, XN

dXy

_quj@w)wj(m) 0%
J:

Here again one assume v € H? to get the convergence in
L2 of the series Y % Mii and conclude by density. Therefore
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since The same proof gives X, = 0.
0,10 > ovqj R Hence (46) issatisfied for all q € Q; and soisthediscrete
0% oz (Myvi—v) = - 4., 0% (R0); (1) Inf-Sup condition applied to our reduced problem:
_ < b(v,
= Z Ro)Wj (%0) ap 209> ggley  vaeQ (49
vevd [IVIlve
_ B ovij  Ovij_z), . : . :
with i (Re) = (55— — )(%w), Therefore problem (17) has a unique solution (u?,q’) in
)N 0%y,
VJ X QJ. <o
thefirst part of X is
w J
Xllz—/ X)W (Rn) Z Reo) Wi (Rn) AR, AR -
Q j= +1 =0
The first series belongs to the L2-orthogonal comple-
ment of the space spanned by the J + 1 first Legendre
polynomials(L ;) and the second series belongs to L j,
therefore X141 = 0.
In the second part of X1, expand the partial derivative (cf
formulae (12)):
. o vo y O . o
Xi2 = —/Q(H(XQ))‘|‘G(XQ))XN)6)A( (M3%1 — V1) (R0, %)

J
Z 0j (X)W (Rn) dRey dRN

[e3}

. /H<xw>aXN<nJ o

Zoqj

0 " oa
—/QG %) R (HJ’ V1—V1)(Xco7XN)
J+1

qu,

An integration by partsin Xy gives

JP;j(Rn) AR, dXN

LIJJ Xn) dR, ARy

Once again the first series belongs to the L2-orthogonal
complement of L ; and the second series belongsto L ;,
therefore X;o = 0.
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Pressure

Pressure

Figure 6 : with the FE.M. and 5 nodesin the thickness

Figure 5 : with the reduction method and 3 functionsin

the thickness
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Pressure

Pressure

Figure 8: with the FE.M. and 9 nodesin the thickness

Figure 7 : with the reduction method and 5 functionsin

the thickness






