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A Micromechanical Theory of Flow in Pulmonary Alveolar Sheet

Z. Zhong 1, Y. Dai1;2, C. C. Mei 3 and P. Tong1;4

Abstract: In this paper we reexamine the sheet-flow
model proposed by Fung and Sobin (1969) for blood
flow in capillaries in the pulmonary alveoli from mi-
cromechanical point of view. The pulmonary alveolar
capillary is assumed to be two parallel membranes con-
nected by periodic tissue posts. Blood is spread out
into the very thin layer or sheet between the two mem-
branes. The pulmonary alveolar sheet thus has a mi-
crostructure of hexagonal cells. A two-scale theory of
homogenization is used to establish the canonical equa-
tions for the unit cell. The microscale solution is obtained
by means of finite element method and the macroscopic
pressure/discharge relationship for the flow in the pul-
monary alveolar sheet is found through an average over
the unit cell. The influence of cell geometry on the per-
meability and geometric friction factor of the cell are dis-
cussed through numerical examples.

The tissue posts have a significant effect on the flow re-
sistance. Reducing either the post diameter or the vas-
cular space tissue ratio will reduce permeability. For
the post configuration considered, with a post volume of
4.5% of the cell, the ratio of permeability to that of Cou-
ette flow (K11=K0) changes from 0.8 to about 0.3 when
the sheet gap to post diameter ratio (h/a) increases from
1 to 5. The reduction in permeability is even more pro-
nounce with denser posts. At h=a = 5, K11=K0 is only
about 0.3 for the post volume of 4.5% of the cell. When
the post volume increases to 20% of the cell, K11=K0

drops to 0.05.
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1 Introduction

The function of lung is to oxygenate the blood and re-
move carbon dioxide by diffusion and chemical reac-
tions, and for this purpose blood is spread out into very
thin layers or sheets so that the blood-gas interfacial area
becomes very large. Each sheet of blood, bounded by
two membranes, forms an inter-alveolar septum. Several
billion septa form a space structure like a honeycomb or
a bowl of soap bubbles. The smallest unit of air space
bounded by inter-alveolar septa is called the alveolus.

The close interconnectivity among capillaries in the
inter-alveolar septa prompted Fung and Sobin (1969) to
propose a sheet-flow model, which consists of two elastic
and narrowly spaced membranes connected by a uniform
array of tissue posts. Forced by higher pressure in the ar-
teriole, blood plasma and red blood cells enter the sheet
and pass through the tortuous space among the posts and
exit to the venule. Because of the membrane elasticity,
the gap between the two membranes can expand with in-
creasing blood pressure. The flow speed is typically low,
so the fluid mechanical problem is that of a flow through
a deformable porous medium. Since the exchange of
oxygen or carbon dioxide between air in the alveoli and
blood in the alveolar sheet depends on the blood flow,
the first fluid mechanical task is to determine the pres-
sure/discharge relationship on the macroscale. The sec-
ond task is to model the gas exchange across the alveolar
walls and in the plasma and red blood cells. In either task
simplified models can help qualitative understanding and
quantitative estimation.

In the theoretical model for pure blood plasma flow with-
out red blood cells, Fung and Sobin (1969) began with
Dracy’ law and the macroscopic viewpoint of the charac-
teristics of groundwater seepage, in that only the average
quantities such as pressure and the average seepage ve-
locities (Ux;Uy) parallel to plane of the walls are consid-
ered. A relation between the local pressure gradient and
the seepage velocity is
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where µ is the apparent viscosity of blood and η is an
empirical factor depending weakly on the ratio of sheet
thickness h to the interpostal distance L(for all practical
purposes, η can be taken as 12); f i j is a function of the
sheet geometry, which is called geometric friction factor
(Fung, 1997). With an additional approximation on the
wall elasticity that

h =

�
h0+α(p� p0) p > p0

0 p < p0
(2)

where α is called the compliance coefficient of the pul-
monary capillary bed, the governing differential equation
for blood flow is derived as
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where κ is the filtration coefficient, p� is the pressure in
the alveolar space, and fi j is taken to be a diagonal tensor
( fx = f11, fy = f22).

The sheet-flow model proposed by Fung and Sobin
(1969) is especially advantageous for the description of
capillary elasticity. Theoretical predictions based on the
sheet-flow model have shown very good agreement with
experimental measurements over a wide range of condi-
tions in steady flow (Zhuang, Fung and Yen, 1983; Yen,
Zhuang, Fung and Zeng, 1984; Fung and Yen, 1986; Yen
and Sobin, 1986) and in pulsatile flow (Fung, 1972; Gan
and Yen, 1994; Olman, Gan, Yen, Villespin, Maxwell,
Pedersen, Konopka, Debes and Moser, 1994; Huang,
Tian, Gao and Yen, 1998; Gao, Huang and Yen, 2000).
The geometric friction factor fi j is needed to be exactly
determined before we study the steady flow (∂h=∂t = 0)
or the pulsatile flow (∂h=∂t 6= 0) using Eq. (3). The geo-
metric friction factor fi j have been experimentally ob-
tained (Yen and Fung, 1973) or theoretically approxi-
mated (Lee, 1969).

In this paper we reexamine the sheet-flow model of Fung
and Sobin (1969) from the micromechanical point of

view and calculate the geometric friction factor by a nu-
merical approach. The pulmonary alveolar sheet is as-
sumed to be of a periodic microstructure with hexago-
nal cells and then a two-scale theory of homogenization
is used to establish the canonical equations for the unit
cell. The microscale solution is obtained by means of
finite element method and then the macroscopic pres-
sure/discharge relationship for the flow in the pulmonary
alveolar sheet is found through an average over the unit
cell. We find that the posts have a strong nonlinear ef-
fect on the flow resistance. When h=a is large, the flow
resistance is mainly from the posts and the permeability
reduces rapidly as h=a increases. For the post configu-
ration considered, at the post volume of 4.5% of the cell
and h=a = 5, the permeability is only about 30% of the
Couette flow. The effect is even more pronounce for the
sheet flow with denser posts. At the post volume of 20%
and h=a = 5, the permeability drops to about 5% of the
Couette flow.

2 Formulation

In this paper, to simplify writing, the repetition of a sub-
script in a term will denote a summation with respect
to that subscript from 1 to 3 unless specified otherwise.
We consider the flow of pure plasma so that the Navier-
Stokes equations for incompressible Newtonian fluids
are appropriate

∂ui

∂xi
= 0 (4)
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where µ is the viscosity and ρ the density of pure plasma.

Let ω�1 be the time scale, U the velocity scale, ∆P the
scale of pressure variations, l the typical inter-postal dis-
tance, and L the size of the alveolar sheet. Then for low
speed flow we expect the pressure gradient to be compa-
rable to the viscous stress, hence

∆P
L
� µU

l2

The ratios of acceleration and convective inertia to the
viscous stress are
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(i not summed) where W0 is the Womersley number and
Re the Reynolds number. Taking for estimate

l=10�3cm; ν=10�2cm2=s; ω=2π=s; U=0:1cm=s;

we get W0 � O(10�2)<< 1 and Re = 10�2 << 1. Nor-
malizing all coordinates by l, we then have
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l2
Ll
µU = L

l >> 1; (i not summed).

Since L � O(1cm), we define a small parameter ε =
l=L << 1, and assume Re = O(ε) and W0 = O(ε). For
ease of identification, we rewrite Eq. (5) according to the
relative magnitude of respective terms (using ε to express
the relative magnitude) as (Mei, Auriault and Ng, 1996):
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Let the posts be cylindrical and bounded by Γ. We as-
sume, by ignoring their transverse deformation,

ui = 0 on Γ (7)

Let us define the surfaces F� = z�h(x;y; t)=2. The lower
and upper membrane surfaces correspond to F� = 0. We
allow seepage at these surfaces and express the difference
between the normal components of the blood velocity u
and the membrane velocity q in terms of the pressure dif-
ference on two sides of the alveolar membrane. Accord-
ing to Starling’s hypothesis, the filtration is

ρ(u�q) �n = �κ(p� p�) at z =�h=2; (8)

where κ is the filtration coefficient and p� is the pressure
of the alveoli.

Equation (8) can be a nonlinear function of h. The normal
velocity of the membrane is

q �n =
q � ∇ F
j∇ F j =�∂F=∂t

j∇ F j ; (9)

in which we have made use of the kinematic condition on
the membrane

∂F
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+q � ∇ F = 0 (10)

It follows from Eq. (8) that
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on the membrane z =�h=2, where ux = u1;uy = u2;hx =
∂h=∂x;hy = ∂h=∂y. As will be shown shortly, the lead-
ing order of the blood pressure varies according to the
macro length scale L of the sheet. We assume the same
for the longitudinal variation of h in order to be consistent
with Eq. (2). This amounts to neglecting the local inden-
tations at places where the posts join the sheet. Since
O(h) = l, we have

∂h=∂t
uz

=
ωl
U

=
W 2

0

Re
= O(ε)

Also we assume that filtration through the membrane is
slow so that κ(p� p�) = O(∂h=∂t). It follows that, on
z = �h=2, Eq. (12) can be rewritten according to the
relative magnitude as follows:
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It can be found in the next section that the assumption,
κ(p� p�) = O(∂h=∂t), will lead to the derivation of the
governing equation for blood flow, Eq. (3) or Eq. (33).
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3 Two-scale expansions

The important characteristics of the above problem are
the existence of two vastly different length scales: the
microscale l, which characterizes the typical inter-postal
distance, and the macroscale L, which characterizes the
size of the alveolar sheet. The perturbation method of
multiple scales is particularly suitable for problems in-
volving contrasting scales (Mei, Auriault and Ng, 1996;
Tong and Mei, 1992; Bush, 1992; Kalamkarov, 1992;
Parton and Kudryavtsev, 1993; Carvelli, Maier and
Gastaldi, 2000; Michel, Moulinec and Suquet, 2000).
Let ε= l=L << 1, we introduce two coordinates defined
by

x = (x; y; z) X = (εx; εy; z) (14)

where the lower-case and upper-case coordinates repre-
sent microscale (fast) and macroscale (slow) variations
respectively. The two-scale expansions are assumed as
follows:

ui = u(0)
i +εu(1)

i +ε2u(2)
i + � ��

p = p(0)+εp(1)+ε2 p(2)+ � �� (15)

where

u
(n)
i = u(n)

i (x;X; t); p(n) = p(n)(x;X; t); n = 1;2;3:

Substituting (15) into the continuity equation, Eq. (4), we
obtain the perturbation equations for orders O(1), O(ε),
O(ε2),. . . , respectively:
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::::

Similarly, from the momentum equation, Eq. (6), we get
the perturbation equations of the corresponding orders
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All velocity components vanish on the walls of all posts

u(0)
i = u(1)

i = u(2)
i = � � �= 0; i= 1;2;3 on Γ: (18)

The boundary conditions on the membranes will be ap-
plied on z=�h=2. Thus the horizontal components van-
ish at all orders

u(0)
i = u(1)

i = u(2)
i = � � �= 0 i = 1;2; z =�h=2 (19)

As for the vertical components, we expand Eq. (13) and
obtain

u(0)
z = 0

�u(1)
z = 1

2
∂h
∂t +

κ
ρ(p(0)� p�)

�u(2)
z = κ

ρ p(1)

::::

(20)

on z= �h=2.

Note that Eqs. (6) and (13) include time dependent terms,
while Eqs. (17a) – (17c) do not. This is because the time
dependent term is of the order O(ε3) and does not appear
in the perturbation equations of lower orders.

Now we can examine the perturbation problems at suc-
cessive orders.

4 Macroscale equations

From Eq. (17a) we get at O(1)
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p(0) = p(0)(X; t) (21)

implying that at the leading order pressure is just the av-
eraged pressure independent of the microscale coordi-
nates.

At the order O(ε), u(0)
i with i = 1;2;3 and p(1) are gov-

erned by Eqs. (16a) and (17b), subject to the non-slip
boundary condition on z = �h=2 and Γ. In addition, we

define a unit cell Ω and require Ω-periodicity for u (0)
i and

p(1). Because of the linearity of (17b), u(0)
i and p(1) can

be assumed as (Mei, Auriault and Ng, 1996)

u(0)
i = �ki j

∂p(0)

∂Xj
(22)

and

p(1) =�A j
∂p(0)

∂Xj
(23)

where ki j and A j are Ω-periodic and unknown functions
of xi and Xi. It follows from (16a) and (17b) that ki j and
A j must satisfy

∂ki j

∂xi
= 0 (24)

µ
∂2ki j

∂xk∂xk
� ∂A j

∂xi
= �δi j (25)

in the unit cell (xi 2 Ω), for i = 1;2;3 and j = 1;2. The
boundary conditions on the boundaries z = �h=2 and Γ
are

ki j = 0: (26)

Equations (24) and (25) constitute a set of Stokes prob-
lems in Ω.

The solution for A j is unique only to a constant. Thus we
impose further



A j
�
= 0 (27)

where h f i denotes the cell average of f defined as

h f i= 1
Sbh

Z h=2

�h=2
dz
ZZ

Sb

f dxdy (28)

in which f can be a scalar, vector or tensor, and Sb is the
base area of Ω. This condition ensures that p (0) is the
average pressure with error at most of O(ε2).

Once unknown functions ki j and A j are determined, we
obtain Darcy’ law

D
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; (29)

where
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is the permeability.

It can be shown that
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in which we have accounted for the Ω-periodicity condi-

tion of u
(0)
i and u(1)

i that

Z
∂Ω

n �u(0)ds =
Z

∂Ω
n �u(1)ds = 0;

where ∂Ω is the cross-sectional boundary of Ω at con-
stant z. It follows from Eqs. (16b) and (31b) that
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Using Darcy’ law Eq. (29), we get
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It can be seen that Eqs. (29) and (33) agree with Eqs. (1)
and (3) if we express the geometric frictional factor as

fi j =
h2

µη
K�1

i j ; (34)

where K�1
i j is the inverse of the permeabilityKi j.

We have now deduced Fung and Sobin’ macroscale the-
ory of the flow in capillaries in the pulmonary alveolar
sheet from micromechanical point of view. The advan-
tage of the present approach is the theoretical predictabil-
ity of Ki j by solving Eqs. (16a) and (17b) in a unit cell for
any periodic geometry. With predicted Ki j , one can solve
Eq. (34) in the regular manner. Once p(0)is solved, the
local velocity field in each cell is known from Eq. (22).
Thus aside from the theoretical advantage of deducing
the macroscale theory from micromechanical approach,
the present technique gives detailed flow information on
the microscale.

It can be shown that Ki j =Kji and that the quadratic func-
tion Ki jxix j is always greater than zero for any nonzero
xi, i.e., Ki j is positive definite. In general, Ki j are not
diagonal.

Note that the assumption, κ(p� p�) = O(∂h=∂t), lead to
the derivation of the governing equation for pulsatile and
permeable blood flow, Eq. (3) or Eq. (33).

5 Numerical solution for unit cell

On the microscale, the posts are assumed to be period-
ically spaced, with a height of h and a circular cross-
section of diameter a, as shown in Fig. 1. A local
coordinate system is used where the posts are in the
z�direction. There are a number of ways that the pul-
monary alveolar sheet can be divided into periodic unit
cells. In the following calculation, we choose a hexagon

with a post at the center as a unit cell Ω. The dimensions
of the hexagon can be expressed in terms of post spacing
(x0;y0):

l1 =
1
2

�
y0+

x2
0

y0

�
; l2 =

1
2

�
y0� x2

0

y0

�
: (35)

The vascular-space tissue ratio (VSTR), defined as the
ratio of the vascular lumen volume to the circumscribing
volume of the cell (Fung, 1997), can be obtained as

VSTR = 1� πa2

8(l1+ l2)x0
= 1� πa2

8x0y0
: (36)

We shall determine the permeability Ki j by solving Eqs.
(16a) and (17b) in the unit cell, with non-slip boundary
conditions on the membranes, z = �h=2 and the wall of
the post, Γ. It is difficult to obtain the exact solution to
Eqs. (16a) and (17b). Hence, a simple and approximate
solution technique will be proposed as follows:

Combining Eqs. (16a) and (17b) leads to

µ(u(0)
i; j j�u(0)

j; ji)� p(1)
;i +Fi = 0; (37)

where ( :); j= ∂( :)=∂x j and Fi = �∂p(0)=∂Xi. Note that
Fi is independent of the microscale coordinate xi and that
it is to be determined from the macroscale solution.

Equation (37) is the same as the Navier equation for elas-
ticity if µ (the viscosity coefficient) is taken as the shear
modulus, Fi as the body force per unit volume, u(0)

i as the
displacement and p(1) as the hydrostatic pressure,

p(1) = �(λ+2µ)u(0)
j; j =�2µ(1�ν)

1�2ν
u(0)

j; j (38)

with λ and ν being Lame’s constant and Poisson’s ratio.
Therefore the flow of an incompressible Newtonian fluid
can be modeled by the elastic deformation of an incom-
pressible medium subjected to a body force.

In the present study, instead of solving the problem of
an incompressible material, i.e., Eqs. (16a) and (37),
we treat the material as nearly-incompressible. In other
words, we approximate the problem by Eqs. (37) and
(38) with ν nearly equal to 0.5. The specific value of
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Figure 1 : Periodically distributed posts and unit cell

ν is determined by numerical experimentation of letting
ν ! 0:5.

We use the finite element method to solve the elastic
problem of the unit cell subjected to constant body forces
Fi = �∂p(0)=∂Xi, which is constant in the microscale co-
ordinates. The boundary conditions are zero displace-
ments on the membranes at z = �h=2 and on the walls
of the post Γ. The periodic condition required that the
displacements and traction on the opposite sides of the
hexagon be equal. The periodic displacement require-
ment is enforced simply by setting the degrees of free-
dom for nodes on corresponding sides to be the same
(Tong and Mei, 1992). In general the periodic traction
condition is implied by the way the degrees of freedom
for the nodes on the cell boundaries are selected. The
traction condition is satisfied only in mean in the finite
element method. There are three independent constants
for Fi. This means we have to solve the finite element
equations three times, one for each of the independent
constant. In the present study, we consider only the case
F3(=�∂p0=∂Z) = 0 that there are only two independent

constants. Once the average displacement
D

u(0)
i

E
is ob-

tained from the finite element solution, the permeability
Ki j is easily found from Eq. (29), which is the function
of µ=h2, y0=x0, h=a and VSTR.

As an illustrative example, we consider a special case
of regular hexagon cell (Fig. 1) with y0=x0 =

p
3;a =

6:43µm. We will examine Ki j for different combinations

of h=a and VSTR (vascular-space tissue ratio). The av-

erage displacement
D

u(0)
i

E
in the unit cell is calculated

under unit body force using the commercially available
program ANSIS 5.6. The base of the hexagon cell is
divided into 150 8-node quadrilateral elements and then
extruded along z�axis to build (number of elements in
the z-direction) of 20-node hexahedral elements. We
have examined the convergence of the present calcula-
tion by reducing the current element size to 1/2 and 1/3
of the original element size and found litter changes in
the results. We have also investigated the effect of in-
compressibility. The average displacement in the cell
approaches to a stable value when Poisson’s ratio is be-
tween 0.49990-0.49996. For Poisson’s ratio too close to
0.5, the solution deteriorates due to round-off error. Thus
Poisson’s ratio equal to 0.4999 is used to assure a nearly
incompressible deformation.

Table 1 gives the calculated Ki j for pure blood plasma
flow without red blood cell (µ = 1:2� 10�3Ns=m2) for
h/a= 1, 2, 3, 4, 5, y0=x0 =

p
3 (regular hexagon) and

VSTR=0.90. The numerical results indicate that K11
�=

K22 and K12 = K21
�= 0. This can be expected for a regu-

lar hexagonal cell that it should be transversely isotropic.
That means the flow is insensitive to the flow direction
in the x1;x2-plane. The values of K12 and K21 are much
smaller than that of K11;K22 and can be taken to be zero
in practice. Thus the average flows along two orthogo-
nal directions are decoupled. In Table 1, e denotes the
maximum absolute value of volumeric strains in the cell.
The vanishing values of e indicate that the deformations
in the cell is nearly incompressible which assures the va-
lidity of the calculation.

Figure 2 shows the variation of K11 normalized by K0

with increasing ratio of sheet thickness to post diam-
eter h/a, for different values of VSTR. The constant
K0(= h2

12µ) is the permeability for the Couette flow (the
case without posts and VSTR=1). The figure shows that
for lower VSTR value, the permeability K11 is also lower.
The ratio K11=K0 decreases with increasing h/a, which
indicates increasing flow resistance for fixed K 0. In other
words, permeability decreases (harder to flow) as the post
diameter decreases for fixed vascular-space tissue ratio
and channel height. For the post configuration consid-
ered, with the post volume of 4.5% of the cell, K11=K0

changes from 0.8 to about 0.3 as the sheet gap to post di-
ameter ratio (h/a) increases from 1 to 5. The figure also
reveals that the lower the vascular-space tissue ratio is,
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h / a = 1 h / a = 2 h / a = 3 h / a = 4 h / a = 5
K11 = K22 1:78�10�8 4:47�10�8 6:30�10�8 7:39�10�8 8:07�10�8

(m4=Ns)
K12 = K21 3:60�10�20 9:95�10�20 2:92�10�20 7:61�10�20 1:40�10�20

(m4=Ns)
e 1:73�10�8 3:09�10�8 4:04�10�8 4:59�10�8 4:11�10�8

Table 1 : Calculated Ki j for pure blood plasma flow (µ = 1:2�10�3Ns=m2, VSTR=0.90, y0=x0 = 1:732)

h/a

0 1 2 3 4 5 6

K
1

1
/K

0

0.0

0.2

0.4

0.6

0.8

1.0

VSTR=0.955

VSTR=0.90

VSTR=0.85

VSTR=0.80

Figure 2 : Variation of K11=K0 with h=a for regular
hexagon (y0=x0 = 1:732)

the lower the permeability K11. This means that it is also
more difficult for the blood to flow through a sheet with
denser posts (lower VSTR). The relationship is nonlin-
ear. At VSTR = 0.955 with h=a= 5, i.e. the posts occupy
only 4.5% of the vascular-space, the value of K11=K0 is
less than 0.3 and for VSTR = 0.8, the value is less than
0.05.

Next we consider the case of a non-regular hexagon
(elongated in the y- direction) with

y0=x0 = 3:99; a = 0:643cm; VSTR=0.955, µ =
5N s=m2.

This is configuration used by Yen and Fung (1973) to
experimentally determine the geometric frictional factor
fx. Table 2 gives K11, K22, K21 and K12 for the case of
elongate hexagonal cell when h/a=1, 2, 3, 4, 5.

The calculated results also show that K11 6= K22. Clearly
the elongated hexagonal cell is no longer transversely
isotropic, which means the flow is sensitive to the flow
direction in the x1; x2-plane. The calculated K12 and K21

are practical zero as compared to K11 and K22, which

h/a

1 2 3 4 5

f x

1

2

3

4

5

6

Present calculation

Theoretical results (Lee, 1969)

Experiments (Yen and Fung, 1973)

Figure 3 : Comparison of theoretical and experi-
mental results for elongated hexagon (y0=x0 = 3:99,
VSTR=0.955)

means the average flows along two orthogonal directions
are decoupled.

Accordingly, the geometric frictional factors, f x and fy

are proportional the reciprocals of K11=K0 and K22=K0,
respectively. From Eq. (34)

fx =
h2

µηK11
=

12
η

K0

K11
; fy =

h2

µηK22
=

12
η

K0

K22
; (39)

because K21
�= K12

�= 0. Figure 3 plots the calculated f x

vs. the ratio of sheet thickness to post diameter h=a. For
comparison, the figure also gives the experimental results
of Yen and Fung (1973) as well as the theoretical pre-
dictions of Lee (1969). The present calculated results
are reasonable fittings with Yen and Fung’s experimental
data. However, our results are noticeably different from
Lee’s theoretical results. This is probably because Lee’s
theoretical prediction is based on an approximate solu-
tion valid only for h=a not much larger than unity.

Figure 4 depicts the variation of the normalized per-
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h=a= 1 h=a= 2 h=a= 3 h=a= 4 h=a= 5
K11 5:02�10�7 1:45�10�6 2:25�10�6 2:82�10�6 3:20�10�6

(m4=Ns)
K22 5:45�10�7 1:85�10�6 3:45�10�6 5:02�10�6 6:38�10�6

(m4=Ns)
K21 6:88�10�16 6:80�10�15 2:07�10�14 3:82�10�14 5:54�10�14

(m4=Ns)
K12 7:42�10�16 7:02�10�15 2:10�10�14 3:85�10�14 5:56�10�14

(m4=Ns)
Table 2 : Calculated Ki j for elongate hexagonal cell (y0=x0 = 3:99, a = 0:643cm, VSTR=0.955, µ = 5N s=m2)
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Figure 4 : Variation of K=K0 with h=a under different
hexagonal shapes (VSTR= 0.955)

meability K11=K0 and K22=K0 with h/a for two hexag-
onal cells of the same vascular-space tissue ratio
(VSTR=0.955). One cell is the regular hexagon with
y0=x0 = 1:732. In this care, K11 = K22 and fx = fy. The
other cell is an elongated hexagon with y 0=x0 = 3:99. In
this case, K11 6= K22 and fx 6= fy. The results indicate that
K11(= K22) of the regular hexagon is bounded by K11

and K22 of the elongated hexagon. Thus, the shape of
unit cell has an important influence on the permeability.
In both cases, the permeability,K11 and K22, decreases as
h=a increases:

6 Conclusion

The sheet-flow model proposed by Fung and Sobin
(1969) for blood flow in capillaries in the pulmonary
alveoli is studied from micromechanical point of view.
The pulmonary alveolar sheet is assumed to have a pe-
riodic microstructure of hexagonal cells. We use a two-

scale theory of homogenization to establish the canonical
equations for the unit cell. The microscale solution is ob-
tained by the finite element method and the macroscopic
pressure/discharge relationship for the flow in the pul-
monary alveolar sheet is found through an average over
the unit cell. Up to the order of O(ε), the membrane can
be treated as rigid and its motion can be neglected.

The cell geometry has an important effect on the perme-
ability (geometric friction factor) of the macroflow. For
regular hexagonal unit cell, the permeability tensor is di-
agonal and K11 = K22 (i.e., geometric friction factor ten-
sor is also diagonal and f x = fy). This means that the av-
erage flow is insensitive to the flow direction in the sheet
plane. When the unit cell is an elongated hexagon, even
though Ki j is still diagonal, the diagonal components are
no longer equal (K11 6=K22, fx 6= fy) and the average flow
is directional sensitive. Because Ki j , i.e., fi j, is diagonal,
the average flows along thex1; x2- directions are still de-
coupled.

The tissue posts make it more difficult for blood to flow
through the two parallel sheets. When h=a is large, the
flow resistance is mainly from the posts. The effect is
quite nonlinear. Reducing either the post diameter or
the vascular space tissue ratio will reduce permeability.
For the post configuration considered, with the post vol-
ume of 4.5% of the cell, the ratio of the permeability to
that of Couette flow (K11=K0) changes from 0.8 to about
0.3 when sheet gap to post diameter ratio (h/a) increases
from 1 to 5. The reduction in permeability is even more
pronounce for denser posts. At h=a= 5, K11=K0 is about
0.3 for the post volume of 4.5% of the cell. When the
post volume increases to 20% of the cell, K11=K0drops
to 0.05. The tissue posts have a significant effect on the
flow resistance.
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