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On aMeshfree Method for Singular Problems

Weimin Han and Xueping Meng!

Abstract: Interestsin meshfree (or meshless) methods
have grown rapidly in the recent years in solving bound-
ary value problems arising in mechanics, especially in
dealing with difficult problems involving large deforma-
tion, moving discontinuities, etc. Rigorous error esti-
mates of a meshfree method, the reproducing kernel par-
ticle method, for smooth solutions have been theoreti-
cally derived and experimentally tested in Han, Meng
(2001). In this paper, we provide an error analysis of
the meshfree method for solving problems with singular
solutions. The resultsare presented in the context of one-
dimensional problems. Theerror estimatesare of optimal
order and are supported by numerical results.

1 Introduction

The finite element method has been the dominant nu-
merical method in computational mechanics for severa
decades. Since 1994, a new family of methods, collec-
tively called meshfree methods, has attracted much inter-
est in the community of computational mechanics. This
new family of numerical methods is designed to inherit
the main advantages of the finite element method such as
compact supports of shape functionsand function (poly-
nomials, singular functions, etc.) reproducing properties,
while at the same time, overcome the main disadvan-
tages of the finite element method owing to the mesh-
dependence. The meshfree methods share a common
feature that no mesh is needed and shape functions are
constructed from sets of particles, thus eliminating the
need for time-consuming mesh generation. These meth-
ods can handle more effectively problems with large de-
formations, moving discontinuities, severe mesh distor-
tions and other problems the finite element method ex-
periences difficulty. The meshfree methods are hailed as
numerical methods of the next generation (cf. Preface of
Liu, Belytschko, Oden (1996)).

1Department of Mathematics,
University of lowa
lowaCity, |A 52242, U.SA.

A variety of numerical methods found in the literature
belongs to the family of meshfree methods, e.g. Smooth
Particle Hydrodynamics (SPH) methods (Lucy (1977);
Monaghan (1982, 1988)), Diffuse Element Method
(DEM) (Nayroles, Touzot, Villon (1992)), Element Free
Galerkin Method (EFG) (Belytschko, Gu, Lu (1994);
Belytschko, Lu, Gu (1994)), Reproducing Kernel Par-
ticle Method (RKPM) (Liu, Jun, Li, Adde (1995); Liu,
Jun, Zhang (1995); Chen, Pan, Wu, Liu (1996)), Moving
Least-Square Reproducing Kernel Method (Liu, Shao-
fan, Belytschko (1997); Li, Liu (1996)), h-p-Clouds
(Duarte, Oden (1996a,b)), Partition of Unity Finite Ele-
ment Method (Babuska, Melenk(1997)), Meshless Local
Petrov-Galerkin Method (MLPG) (Atluri, Zhu (1998);
Atluri, Kim, Cho (1999); Atluri, Zhu (2000)). In most
of these methods, interpolation functions are constructed
in a meshfree manner; however, background meshes are
still needed for numerical integration in the construction
of stiffnessmatricesand load vectors. MLPG isamethod
that is completely mesh independent.

A rigorouserror analysisfor the Reproducing Kernel Par-
ticle Method (RKPM) has been done recently in Han,
Meng (2001). In that paper, conditions are identified
for the method that lead to optimal order error estimates.
The error estimates are comparable to those for the finite
element method. Numerical results support the optimal
order convergence. The error estimates in Han, Meng
(2001) are stated and proved under the assumption of suf-
ficient smoothnessof the solution. Here, wewill take one
step further by deriving error estimates and showing nu-
merical examples for boundary value problemswith sin-
gular solutions. One-dimensional sample problems are
used for our discussion. The results will be useful as
an insight for analysis of meshfree methods in solving
higher dimensional boundary val ue problemswith geom-
etry singularities. We natice that meshfree methods have
been used for computer simulationsof singular problems
in engineering literature, e.g., in Kim, Atluri (2000);
Ching, Batra (2001), MLPG is used to solve problems
involving cracks and other singularities.
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The paper is organized as follows. In the following sec-
tion, we briefly review the method and some theoretical
results. In the third section, we derive meshfree interpo-
lation error estimates for singular functions. In Section 4,
we derive some error estimates for meshfree approxima-
tions of one-dimensional boundary value problems with
singular solutions. In the final section, we present some
numerical results. The numerical examples are of two
different types. Thefirst typeisdesigned for the purpose
of demonstrating the theoretical error estimates. For the
second type, we experiment on particle distributions in
order to achieve better convergence order for singular so-
lutions.

2 Reproducing Kernel Particle Approximation

In this section, we provide another point of view for the
development of the reproducing kernel particle approxi-
mation and review some theoretical results on error esti-
mates for smooth functions.

Let Q ¢ RY be a nonempty, open bounded set with a
Lipschitz continuous boundary. In the one-dimensional
case, d = 1, we choose Q = (0,L) for someL > 0. A
generic point in RY is denoted by x = (xq,...,%4)T or
z=(z,...,24)". We use the Euclidean norm to measure
the vector length:

Xl = (émﬁ)

For x € RY and r > 0, we use B;(x) for the closed ball
centered at x with radius r in RY; in particular, B is the
closed unit ball centered at the origin in R9. Through-
out the paper we use the multi-index notation for partial
derivatives and indices. The symbol P, = P(Q) rep-
resents the space of the polynomials of degree less than
or equal to p on Q. The dimension of the space P, is
Np = (p+d)!/(pid!).

Let {xi}|_; C Q be aset of points, caled particles. The
idea of the particle approximation is to use particle func-
tion valuesfor approximation:

1/2

[
u(x) ~ ;wi (X)u(x;). (1)

Here {W;}!_, are the shape functions associated with the
particles {x; }|_,. These functions can be constructed by
a moving least-squares procedure (Belytschko, Gu, Lu
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(1994); Belytschko, Lu, Gu (1994)), or by a corrected
reproducing kernel particle procedure (Liu, Jun, Li, Adde
(1995); Liu, Jun, Zhang (1995)). We take a new point of
view for the construction of these shape functions.

As we mentioned in Introduction, we want to keep the
main advantages of the finite element method. The first
requirement isthen that each shape function should have
a compact support. This requirement is satisfied by in-
cluding a function of the form

N X=X
D (X—Xj) = CD( - )
as a factor for W;. The function @ is called a generat-
ing function or awindow function, and has the following
properties:

supp® = By,

@ is continuous,
®(x) > Ofor ||x|| < 1.

A normalization condition
/ d(x)dx=1
B

is usualy used in the description of the derivation of re-
producing kernel particle approximations, but this condi-
tion is not essential and is thus excluded from the outset.
The number r;j > 0 is small and represents the support
size of the function ®. For different particles, we may
use different window functions. For example, asingular-
ity can be introduced in the window functions for parti-
cles on the boundary in order to treat Dirichlet boundary
values (see Chen, Wang (2000)).

There are infinite many possible choices for the generat-
ing function. We first list some generating functions in
one dimension. A popular choicein engineering compu-
tations is the cubic spline, that has the smoothness C?2.
Another popular choiceis

/(Z-1)
d(z) = { gl ’

This function isinfinitely smooth. One family of gener-
ating functionsis given by the formula

|z < 1,
1zl > 1.

_ (1_22)|7 |Z|§17
qJI(Z)—{q 2> 1.

We observe that ®; € C'~1.
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Any one-dimensiona generating function ®(z) can be
used to create a d-dimensional generating function either
in the form ®(||z||) or by atensor product 1%, ®(z).

The second requirement on the shape function is that the
approximation (1) should be able to reproduce polyno-
mials (and other special functions) in order to achieve
convergence with optimal orders. For definiteness, here
we consider the polynomia reproducing property only.
Thus we are inclined to choose a polynomia as another
factor for W;. Moreover, we choose the coefficients of
the polynomial to be the same for all the shape functions
{Wi}_; but alow the coefficients to depend on x. Asa
result, we use the following form for the shape functions

{Wil_y:

)= Br(x) 5 (X)), 1<i<l @
loa[<p

Here a = (01,...,0q), 0; > 0 integer, is a multi-index.
The quantity [a| = T, a; is the length of a. The ex-
pression X stands for x* - - -xJ¢. Since the domain Q is
assumed to be Lipschitz continuous, it is locally on one
side of the boundary. In case the particle x; lies on or
close to the boundary so that B, () N0Q = 0, we rede-
fine the function value @, (x — ;) to be zero outside that
side of Q on which the particle x; lies. Thisisimplicitly
assumed throughout the paper.

Imposing the polynomial reproducing conditions on the
formula (1),

u(x):I;‘Pi(x)u(xi) Yue Py, 3
we have

3 Mgl Bal) = S0, [BI< P, @
where

w<x>=i:'zi¢n<x—xi><x—xi>% jal < p. 5)

are the discrete moment functions. The conditions (4)
can be written as a consistency condition for the shape
functions {W;(x) }:

|
Zi‘“i (X) (x—x)P =80, Bl <P

(6)
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Denote the discrete moment matrix from the system (4)
by M(x). Then

M(x):_thbri(x—xi)h(x—xi)h(x—xi)T7 7)

where
h(Z) = (Za)|a|§p - [RNP.

To describe conditionsunder which the method is defined
(i.e. the system (4) is uniquely solvable for any x € Q),
we bring in a definition.

Definition 2.1 A point x € Q is said to be covered by m
shapefunctionsif therearemindicesi 1, .. ., im such that

HX_Xin<rij7 J:177m

It can be shown that for any x € Q, anecessary condition
for M(x) to be invertible is that x is covered by at least
N, shape functions. In the one-dimensional case, the dis-
crete moment matrix M (x) isinvertibleif and only if X is
covered by at least p+ 1 shape functions.

For the method to work well, we need conditionsstronger
than the nonsingularity of the discrete moment matrix
M(x). The notion of an (r, p)-regular family of particle
distributions to be introduced and discussed later is one
such condition. The (r, p)-regularity leads immediately
to sufficient conditionsfor the nonsingularity of the dis-
crete moment matrix.

Assume M(x) is nonsingular. Then the shape functions
{W;}_, are uniquely determined from (2) and the fol-
lowing properties hold:

1. The shape functions have compact supports:
suppWi C By (Xi).

2. The shape functions {W;}!_, form a partition of
unity.

3. IfdecCk thenW, eCKi=1,...,1.
4. Assume® € CX. Then

_'le“wi (X)(x—x)P = (~1)Ip1 &g ¥]a] <k, [B < p.
i ®

Here &y equals 1if B = a, and is zero otherwise.
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So unlike the finite element method, in the meshfree
method it is easy to construct shape functions of any de-
gree of smoothness. Thus the solution of higher order
differential equations does not present any special diffi-
culty in the construction of conforming meshfree shape
functions. The relations (8) are consistency relations of
derivatives of the shape functions and are derived from
the consistency condition (6).

2.1 Regularity of Particle Distributions

Asin Han, Meng (2001), we consider the case of qua-
siuniform support sizes, i.e. there exist two constants
C1,C2 € (0,) such that

I; ..
qsfSQ Vi, j.
j

For such particle distributions, there exists a parameter
r > 0 such that

~ . .
Clg?ISCZ Yi.

L et usintroduce the scaled discrete moment matrix

Mo<x>=igq’(xﬂxi)“(X_rxi)“(x_rxi)T-

Definition 2.2 A family of particle distributions
{{xi}_} is said to be (r, p)-regular (or we simply say
the particle distributions are (r, p)-regular) if thereis a
constant Lq such that

max||Mo(x) "2 < Lo
xeQ

for all the particledistributionsin the family.

Since on afinite dimensional space all norms are equiva
lent, the spectral norm || - ||2 in the above definition can be
replaced by any other matrix norm. We observe that the
essential point is to have Mo(x)~1 uniformly bounded,
or equivalently, the vectors {h((x—x;)/r)}, for which
D((x—xi)/r) > co > 0, are “uniformly” independent.
The next several results concerning the regularity of par-
ticle distributionsare shown in Han, Meng (2001).

Proposition 2.3 A family of particle distributions is
(r, p)-regular ifitis(r, p+ 1)-regular, but not conversely.
Theorem 2.4 Assume there exist two constants cg > 0,
0o > 0 such that for any x € [0,L], thereareig < i1 <
-+ <ipwith

min qn(x_)ql') > >0 )
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and
i#k r

> 0p > 0. (20
Then the family of particle distributions {{x;}/_,} is
(r, p)-regular, i.e. there exists a constant L(cp,0p) such
that

Mo(x) " Y> < L i
o?fng” 0(X) ]2 < L(co, o)

(11)

Notice that the first condition (9) is a strengthened ver-
sion of the necessary condition that any point must be
covered by p+ 1 shape functions. The condition (10)
can be equivalently written as

min i 7% > ap > 0.

0<j<p-1 r

A geometrical interpretation of the condition (10) is that
inany local region, at least p+ 1 particlesdo not coal esce
asthe refinement goes (i.e. asr — 0).

Asafurther remark, assume equal supportsizer;=---=
r, =r and consider the situation where ® isincreasing on
[—1,0] and decreasing on [0, 1], and is symmetric with
respect to 0, as is the case in actual computations. If for
any X, wecan findi_1 <ip < --- < ips1 suchthat

|X_Xij|§r7 _1§j§p+l
with

min i =% > 0g > 0,
-1<j<p r

then (9) isautomatically satisfied with
Co > cD(l - O'o) .

Theorem 2.5 A family of particledistributions{ {x;}!_,}
inRYis(r, 1)-regular if there exist two constantsc g, & >
0 such that for any x € Q, there are d + 1 particles
Xigs - - - Xiy SALISfying

X—Xij

)>w>0

and the d-simplex with the vertices xj,, . . ., X, hasa vol-
ume larger than &or¢.

We have the following result for bounds on the shape
functionsand their derivatives.
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Theorem 2.6 Assumethe particledistributionsare (r, p)-
regular and the generating function @ is k-times contin-
uoudly differentiable. Then there exists a constant ¢ such

that
c

max max [[DPWill. < —, 0<I<k.
1<i<1 3=l r
2.2 Interpolation Error Estimates for Smooth Func-

tions

Assume ® € CK. Given a continuousfunctionu on Q ¢
RY, we define its meshfree interpolant by the formula
|

ZiU(Xi) Y, (X)7 X e Q.

i=
Notice that in general, u'(x;) # u(x;), so u' is an inter-
polant of uin a generalized sense.

Let usintroduce the following hypothesis.

u'(x) =

Hypothesis (H). There is a constant integer | such that
for any x € Q, there are at most | of x; satisfying the
relation ||x — Xi|| < rj, i.e. each pointin Q is covered by
at most | ¢ shape functions.

The hypothesis (H) is quite natural since otherwise as
the number of shape functions covering alocal area in-
creases, the shape functions tend to be more and more
dependent in the local area.

Thefollowing result is proved in Han, Meng (2001).

Theorem 2.7 Assumethe particledistributionsare (r, p)-
regular, ® € CX, and the hypothesis (H) holds. Let m> 0,
g€ [1,0] with (m+1)g>difg>1 or m4+1>dif
q= 1. Then for any u € W™14(Q), we have the optimal
order interpolation error estimates

HU _ uI le,q(Q) S Crmin{m+l,p+1}—| |U|Wmin{m+1,p+1},q(Q)
VI < min{m+1,p+1,k}. (12)

Notice that when m > p and @ € CK is chosen so smooth
that k > p+ 1, then the error estimate (12) reducesto

Ju—u'[lwiagy < P ulweisag) V1< p+ 1

3 Interpolation Error Estimatesfor Singular Func-
tionsin One Dimension

We assumefor thefunctionu, thereisanon-integer A > 0
such that

U < c(**4+1) fork=0,1,..., (1)
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where ¢ is a constant depending on k. The assump-
tion (1) mimicscorner singularitiesof solutionsto elliptic
boundary value problems (cf. Grisvard (1985)).
We are interested in estimating the error for the interpo-
lation

|

ZiU(Xi) q—’i (X)

u'(x) =

Recall the Taylor theorem for areal-valued function

(X_Xo)j (1) i X _ #\ng(n+l)
3 F e+ [ o
)

Using the formula (2) we have

e (=X

. X
U(J)(X)_|_i/ (x —t)PruP 1 (t) ot
pa! Jx
©)
where p, < p is determined later. For an integer | > 0,

let
|

5 w09 - (g

a(u)(x) = U -l =

denote the Ith derivative of the interpolation error. Then
using (3) and the consistency property of the shape func-
tionswe obtain
1 ey [ (pr+1)
a9 =1y w0 [ x-PuP g @
p)\! i= X

Theorem 3.1 Consider the case of quasiuniformsupport
sizes. Assumethe family of particledistributionsis (r, p)-
regular, and the hypothesis (H) isvalid. For a function u
with the behavior (1), we have the error estimates

(U = W[ La0q) < crmnir+i/aptl-l,

(5)
where g € [1, »] and when g = o, we adopt the conven-
tion1/g=0.

PROOF. Since support sizes are quasiuniform, we have

Cir <ry<Gr Vi.

Let us prove the error estimate (5) for the case g € [1, ).
Let py, = min{[A + 2/q] — 1, p}, where [x] denotes the
largest integer less than x. We notice that

min{A, px +1} +1/9> min{A+1/q, p+1}. (6)
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Because of the hypothesis (H), we derive from (4) that

(X)]9<c le "

Using Holder’sinequality we get
& (U) ([ <

;}W 091 =X [ by /PP et

t)pxu(prl-l dt‘

Thus

/Ia

where

()

(x)]%dx < CZI

/|L|J |q|x. X|q 1/|x| t|p)\q|u p)\+1 |th‘dx

[0 N[x—ri,X+ri]

We first estimate | (i) for those i with x;
have

i) <

where
(i, 1) = /|w' (%)[9(x —x)9-
[ =PI ) o

[ - xr

X
/ (t =) P9[u(PD) ) 9t dx.

X

€ [0,28r]. We

[(i,1)+1(i,2),

1(,2)

These terms are bounded as follows.

1i,1) < cr<pr'>Q/0Xi (% — x)q—l/xxi |uP) ¢ 9dlt dx
- cr<pr'>Q/0Xi u(Pr) (t)|c1/0t (% — x)9 Lt
= or @79 [ e 00— 1)

/0 " a1t e (1) ot

Using the bound (1), we have

(i, 1) < cr(p”l")q‘l/Xit (tA-Pag 1) o,
0

< Cr(p)\_l)q
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Therefore,

1(i,1) < cr(min(+2/a pm+1+2/a)-1)a,

(8)

We aso have
Xi+rj X+
1(i,2) < / cr<1—'>q—1dx/ (t —x) P9 ulP+D) (1) |9t
Xi Xi

—cr(l- I)Q/ri sPA|uP+L) (x; 4-5)|9ds
0

< Cr(l—l)Q/ri sPd (S(%—prl)q_l_l) ds.
0

Therefore,

1(i,2) < cr(mn(+1/a p+i+1/a}-1)a,

9)
Combining (8) and (9), we see that if x; € [0,28&,r], then
(i) < cr(mntA+1/a pt1+l/a-lq

Since the number of x; in[0, 2&,r] isbounded from above
by a constant, we have

(i) <cr
i:x€[0,2&r]

(min{A+1/q, pr+1+1/a}-1)q, (10)

Then we estimate those | (i) with x; > 2&r. We have

mm{x.+r. 1}
ﬂw (1% - AQW/w.wm%uW”<Wm

mln{x.+r.,1} min{x+r;,1}
S/Cr(l_l)q_ldx/rp)\Q|u(p)\+l)(t)|th

Xj —Trj Xi —Trj

min{x+r;,1}
= Cr(p)\+1_|)q/|u(p)\+1) (t)|th.
Xi—Tj
So

(i) < cr(P+1-a T (o g 9
I(i ) / ) dt.
i:xi;égr IX,ZCZI’ Xi—Ti

Because of the hypothesis(H), we have

/min{xi+ri,1}
Xi—Tj

Using the bound (1) we obtain

1
uP) )9t < ¢ / |u(P) (1)t
Cor

i >28r

Z (i) < cr(MnfA+1/g, pr+1+1/at-1)q (11)
1:X>2Cor N
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We can combine (10) and (11),

Ha (U) HLq(o 1) < Crmin{)“"l/% p)\+1+l/q}—|‘

By (6), (5) followsfrom this estimate.

Taking the limit g — o in (5), we see that it holds for
gq= o aso.

4 Reproducing Kernel Particle Method and Error
Analysis

The Reproducing Kernel Particle Method is a Galerkin
method combined with the use of reproducing kernel par-
ticle spaces. To explain the method in aconcrete problem
setting, we take alinear elliptic boundary value problem
asan example. Itisequally fine to consider nonlinear el-
liptic BV Psif wewish. Since nonhomogeneousDirichlet
boundary conditions can be rendered homogeneousin a
standard way (see Han, Reddy (1999)) or one of many
texts on modern PDE), we will assume Dirichlet bound-
ary conditions, if any, are homogeneous. The weak for-
mulationis

ueV: a(uv)=~»Vv) VYveV. (1)
HereV isa Sobolev space. For Neumann boundary value
problems, V isacomplete Sobolev space without bound-
ary condition congtraints, e.g., H(Q) for second-order
problems, and H?(Q) for fourth-order problems, Q be-
ing the spatial domain of the differential equation. Oth-
erwise, V isasubspace of acomplete Sobolev space (e.g.
H&(Q)). Thebilinear form a(-, -) is continuousand ellip-
ticonV, and ¢ isalinear continuousform on V. By the
Lax-Milgram lemma, the variational problem (1) has a

unique solutionu € V.

On Q, introduce a set of particles {x;}|_;, some of the
particles lie on the boundary. Also introduce {ri}l_;,
ri > 0, and construct functions {W;}/_; in the form of
(2) where {by (X) }ja|<p are computed from (4). The re-
producing kernel paticle spaceis

VrR=span{W¥;, 1<i<I}nNV.
Then the RKPM is
WReVr: aRv)=((v) YVE W

(2)

This problem admits a unique solution uR € Vg, again
following the Lax-Milgram lemma. For error estimates
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of the RKP solution uR € Vy defined in (2), we have Céa's
inequality

R .
— < —V|v.
lu=ully < c inf flu=Vviy 3
In the rest of the section, we assume the (r, p)-regularity
and hypothesis(H). Then we can use the error estimates
for RKP interpolants derived in the previous section.

4.1 Error Estimatesfor BVP without Dirichlet Condi-
tion

For a boundary value problem without Dirichlet bound-
ary condition,

Assume the solution u is continuous. Then its reproduc-
ing kernel particle interpolant

iswell defined and u' € Vg. Then from (3), we have

lu—ullv < cllu—u'y

(4)

and the question of error estimation for the RKP solution
uR is reduced to that for the RKP interpolant u'. As a
sample result, we can state the following result.

Theorem 4.1 Let us employ the RKPM to solve the
second-order BVP of the type (1) without Dirichlet
boundary condition. Assume the solution u is continu-
ous and has the behavior (1). Assume ® € C1, and the
(r, p)-regularity and hypothesis (H) are valid. Then we
have the error estimate

min{A—1/2, p}‘

()

lu—uR|yaq) < cr

4.2 Error Estimatesfor BVP with Dirichlet Condition

When the boundary value problem includes a Dirichlet
condition, derivation of rigorous error estimatesis much
more difficult. Sincein general u' ¢ Vg, and we need to
replace (4) by

lu=ufflv <clju—dlv,

(6)

where ' € Vgisamodification of u'. Thisapproach can-
not be carried out in case d > 2, sinceafunction from Vg
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does not vanish on a part of the boundary even wheniitis
zero at al the particles on that part of the boundary.

In one-dimensional case, though, it is possible to derive
rigorous error estimates. In the following, we consider a
general linear ellipticBVPon [0, L] with Dirichlet bound-
ary conditions

u(0) =up, u(L)=u. (7
Let the weak form of the problem be: Find u € H(0,L)
satisfying (7) such that

a(u,v) Yve HG(O,L).

= (V) (8)

Let the RKP space be

Then the RKPM for the problem is; Find uR € Vi satis-
fying such that uR(0) = up, uR(L) = u, and

a(uR v) =£(v) VYveVrnHO,L). 9)

For an error estimate, Céa’'s inequality (3) is modified to

lu—uRllv < cinf{|[u=V|v : VE Vr, V(0) = U, V(L) =u_}.

(10)

For the RKP interpolant, we have

u'(x) = u(x) + Rp(x),
where
= Wi (x / —t)PulP+D(t) dt.
0= ¢
In particular,
u' (0) = u(0) -3 le / £)PuP+) (1) ct.
Then

HO-uol<c 3 [ P
i-|x§<n /0

Since there are at most Iy pointsx; with |x| < rj, we have

[u'(0) —u(0)] < erPH/2|ulP ]| zq . (11)
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Similarly,

Ju' (L) — u(L)] < erPH 2 ulPtd)]] o). (12)
Under the assumption u(P*D) € L*(0,L), the estimates
(11) and (12) can be sharpened,

u'(0) - u(L)] < crPH[uPH|q,,

u(0)|+[u'(L) —

Define a corrected RKP interpolant,

We have @' (0) =
tions can be reproduced,
have

u(0), d'(L) = u(L). Since linear func-
' € Vr. By (11) and (12), we

o' —u wacory < Crp+l/2HU(p+l)HLZ(O,L)7
| > Ointeger, g € [1,]. (13)
The definition of the corrected RKP interpolant and the
related error estimate can be easily modified to adapt to
the case with a Dirichlet condition at only one end of the
interval [0,L]. Then from (10), we have

l[u— Ul < Cflu—T'|lyaoy) <

¢ [Jlu=u'llyon) + 110" — U flyzony] - (14)
Using (14), (13) and the estimate for u— u' from the pre-
vious section we get the next result.

Theorem 4.2 Let us employ the RKPM to solve the
second-order BVP (8) with a solution u with the behav-
ior (1). Assume ® € C%, and the (r, p)-regularity and
hypothesis (H) are valid. Then we have the error esti-
mate

< Crmm{)\—l/z, p}‘

lu—u HHl (15)

Applying the well-known Aubin-Nitsche’stechnique, we
can show that under the conditionsstated in Theorem 4.2,
the following L2-norm error estimate holds:

< Crmm{)\—l/z, p}+1‘

Ju— Rl 20 (16)
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5 Numerical Results

In thissection, we present some numerical resultson con-
vergence orders of RKPM. The numerical results support
the theoretical error estimates presented in the previous
sections.

The boundary value problem we solveis

_ U"(X) —
{ u(0) =0,

The exact solutionis

“AA=1)x2,
u(l) =1

x € (0,1),

u(x) = x.

The parameter A is chosen to be larger than 1/2 so that
the solution u € H1(0,1). The smaller the parameter A,
the stronger the singularity. For various values of A, we
will report numerical results on the L2-norm errors of
meshfree solutions and their derivatives, as well as the
L2-norm errors of meshfree interpolantsand their deriva-
tives.

Wefirst use uniform particledistributionswith equal sup-
port size. We divide the interval [0, 1] into N = 20, 30,
40, 50 and 60 equal parts, and leth=1/N. Weuser =
(p+2.1) hasthe support size. Thischoice of the support
size guarantees the satisfaction of both (r, p)-regularity
and hypothesis(H). Sincer isproportional to h, we show
figuresfor errors compared against h (rather thanr itself)
in the log-log scale. Numerical results for A = 0.6, 1.5
and 2.5 are shown in Figures 1-3. These results support
the theoretical convergence order min{A — 1/2, p} in the
H1-norm (see (16)) and order min{A —1/2, p} + 1inthe
L?-norm (see (16)) for the meshfree solution and mesh-
free interpolation errors.

To increase the accuracy of the meshfree solutions in
solving singular problems, it is natural to use more par-
ticles near the singularity points. To see the effects, we
discussalocal particle enhancement techniquefor the 1D
model problem. Given anatural number n and a parame-
ter a€ (0,1), we define aparticle distribution as follows:
First, we introduce the nodes (1 - n~3)1, j = 0,1,...,n.
Since (1-n=3)"1_ (1-n=3)" < (1 - n=3)", we fur-
ther divide [0, (1 — n~#)"] into subintervals with lengths
nearly equal to (1—n=3)""1— (1 - n~3)", The support
size of the shape function corresponding to a particle
is chosen to be (2.1+ p) times the larger length of the
two subintervals containing the particle. This condition
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guarantees the invertibility of the discrete moment ma
trix. The parameter a controls the strength of the particle
enhancement for the singularity. A smaller value for a
indicates a more dense particle distribution near the sin-
gularity.

The results of the particle enhanced meshfree solutions
(indicated by “o") are compared with those with uniform
particle distributions (indicated by “+"); see Figures 4—
7. Inthesefigures, N isthe total degrees of freedom.
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Numerical results for using the meshfree method to
solve elliptic boundary value problems on higher dimen-
sional corner domains exhibit ssimilar properties. Asone
such example, we solve a boundary value problem for
the Laplace equation — Au = 0 on the crack domain
(=1,1)2\{{0} x [0,1)}. The solution of the problem is
chosen to be

u(x) = [|x||*/2sin(6/2),

where 0 is the angle variable (6 = 0 corresponds to the
x-axis). Due to the symmetry, we solve a half domain
problem on the rectangle (—1,1) x (0,1). Homogeneous
Neumann condition is specified on (—1,0) x {0}, and
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Figure 8 : Uniform particle distributions, crack problem

Dirichlet condition is specified on the rest of the bound-
ary. Uniform particle distributionsare used. The numer-
ical resultsfor the crack problem are shown in Figure 8.
The numerical results suggest the following convergence
order

1B(u=uF)leq) = O3,

Ju— R L2(q) = O(r¥?),

irregardless of value of the reproducing order p. There-
sults also suggest that for the meshfree interpolation,

10(u—u')lz(q) = O(r*/?),
[u—u'[| 20y = O(r").

Thus the convergence order for the interpolation in the
L2(Q) norm is twice that in the H1(Q) norm, while the
convergence order for the meshfree solutioninthe L2(Q)
norm is one higher than that in the H1(Q) norm.

Similar numerical experiments are done for an L-shape
domain problem. Again we solve aboundary value prob-
lem for the Laplace equation. This time, the domain is
chosen to be (—1,1)2\{[0,1) x (—1,0]}. The data are
chosen such that the exact solution has the form

u(x) = ||x||*3sin(26/3).

Numerical results of the meshfree method corresponding
to uniform particle distributions are shown in Figure 9.
The numerical results suggest the following convergence
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lem

order

10(u—uR)| 20y = O(r?/3),
[Ju—uR]|2(q) = O(r®/3),

I0(u—u") |l 2(q) = O(r%/3),
Ju—u'[|z(q) = O(r*3).

Again, we observe that the convergence order for the in-
terpolation in the L?(Q) norm istwice that in the H(Q)
norm, while the convergence order for the meshfree so-
lution in the L?(Q) norm is one higher than that in the
H(Q) norm.
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