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A Meshless Local Petrov-Galerkin Method for Solving the Bending Problem of a
Thin Plate

Shuyao Long1, S. N. Atluri2

Abstract: Meshless methods have been extensively
popularized in literature in recent years, due to their flex-
ibility in solving boundary value problems. The mesh-
less local Petrov-Galerkin(MLPG) method for solving
the bending problem of the thin plate is presented and
discussed in the present paper. The method uses the
moving least-squares approximation to interpolate the
solution variables, and employs a local symmetric weak
form. The present method is a truly meshless one as it
does not need a mesh, either for the purpose of inter-
polation of the solution or for the integration of the en-
ergy. All integrals can be easily evaluated over regularly
shaped domains (in general, spheres in three-dimensional
problems) and their boundaries. The essential boundary
conditions are enforced by the penalty method. Sev-
eral numerical examples are presented to illustrate the
implementation and performance of the present method.
The numerical examples presented in the paper show that
high accuracy can be achieved for arbitrary nodal distri-
butions for clamped and simply-supported edge condi-
tions. No post processing procedure is required to com-
pute the strain and stress, since the original solution from
the present method, using the moving least squares ap-
proximation, is of C2 type.

1 Introduction

Meshless methods have become very attractive and effi-
cient for the development of adaptive methods for solv-
ing boundary value problems because nodes can be eas-
ily added and deleted without a burdensome remeshing
of the entire structure [Kim and Atluri (2000)]. The main
advantage of meshless methods is to get rid of or at least
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alleviate the difficulty of meshing and remeshing the en-
tire structure. Recently, a meshless local Petrov-Galerkin
(MLPG) approach (Atluri and Zhu (1998, 2000); Atluri,
Kim, and Cho (1999b); Atluri, Cho, and Kim (1999a)],
based on the local symmetric weak form over a local sub-
domain, and the shape function from the moving least-
squares (MLS) approximation, has been successfully de-
veloped. The generality of the MLPG approach, based on
either symmetric or unsymmetric weak-forms, and using
5 different types of meshless interpolations of trial func-
tions, as well as 6 different types of meshless interpola-
tion test functions, has been comprehensively discussed
by Atluri and Shen (2002a, b).

The MLPG is a truly numerical meshless method for
solving linear and non-linear boundary value problems,
as no mesh is required in this method, either for purposes
of interpolation of the solution variables, or for the inte-
gration of the energy. All integrals can be easily evalu-
ated over regularly shaped domains (in general, spheres
in three-dimension problems) and their boundaries.

The MLPG approach is also more flexible and easier in
dealing with non-linear problems than the conventional
FEM, EFG and BEM, as domain integrals will not cause
any difficulty in implementing this method.

In the present work, the local Petrov-Galerkin approach
will be developed for solving the bending problem of
a thin plate. As has been illustrated in Atluri and Zhu
(1998), and in Gu and Liu for plate problems (2001),
the MLPG approach is a real meshless method, which
needs absolutely no domain or boundary elements. Only
domain and boundary integrals over very regular sub-
domains and their boundaries are involved in the formu-
lation. These integrals are very easy to evaluate, due to
the very regular shapes of the sub-domains (generally n-
dimensional spheres) and their boundaries. The essential
boundary condition in the MLPG approach is enforced, a
posteriori, by a penalty formulation.

In the present paper, all explanations of terminology,
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such as the support of a source point (node) ξ i , the do-
main of definition of a MLS approximation for the trial
function at any point xand the domain of influence of
node ξi,are based on definitions in Atluri and Zhu (1998).

2 The meshless local Petrov-Galerkin (MLPG) ap-
proach for solving the bending problem of a thin
plate

The MLPG approach is first proposed by Atluri and Zhu
(1998) for solving linear potential problems. MLPG
approach uses either a local symmetric weak form, or
an unsymmetric weak-form as in the case of the Local
Boundary Integral Equation method. The generality of
the MPLG, based on either symmetric or unsymmetric
weak-forms, and a variety of meshless trial and test func-
tions, is discussed comprehensively in Atluri and Shen
(2002a,b). In the present paper, we use the MLS approxi-
mation to develop a truly meshless method, based on a lo-
cal symmetric weak-form. As the MLS approximation is
used to construct shape functions, the essential boundary
conditions in the MLPG approach are enforced, a poste-
riori, by a penalty formulation.

A standard Kirchhoff formulation of the plate equation,
which results in a biharmonic equation in the transverse
displacement, is used. The governing equation of the
Kirchhoff plate in the transverse displacement may be
written as

D∇ 4w(x1;x2) = q(x1;x2);(x1;x2) 2Ω; (1)

where q(x1;x2)is the prescribed distributed load per unit
area normal to the plate, the w(x1;x2)is the plate deflec-
tion (along x3 axis), and ∇ 4 is a biharmonic operator,
which may be written as in a Cartesian coordinate sys-
tem

∇ 4 =
∂4

∂x4
1

+2
∂4

∂x2
1∂x2

2

+
∂4

∂x2
2

; (2)

D is the flexural rigidity being given as (E is the Young0s
modulus, νis the Poisson constant, and h is the plate
thickness)

D =
Eh3

12(1�ν2)
: (3)

The plate domain Ω is enclosed by Γ with the following
boundary conditions:

The essential boundary conditions are:

w = w; on Γu1; (4)

∂w
∂n

= θn; on Γu2: (5)

The natural boundary conditions are:

Mn = Mn; on Γt1; (6)

Vn =V n; on Γt2: (7)

where symbols w;θn;Mn;V n denote the prescribed de-
flection, rotation angle about the tangent to the bound-
ary Γ,bending moment and effective shear force, respec-
tively, suffix n denotes the outward normal direction to
the boundary Γ.

A generalized local weak form of the differential equa-
tion (1) and the boundary conditions (4) and (5), over a
local subdomain Ωs(2Ω) ,can be written as

Z
Ωs

(D∇ 4w�q)vdΩ+α1

Z
Γu1

(w�w)vdΓ

+α2

Z
Γu2

(
∂w
∂n

�θn)vdΓ = 0; (8)

where w and v are the trial and test functions, respec-
tively, Γu1 and Γu2 is a part of the boundary ∂Ωs of Ωs,
over which the essential boundary conditions are spec-
ified, and α1;α2(>> 1) are penalty parameters used to
impose the essential boundary conditions.

Using Green’s identity and the divergence theorem in
equation (8) yield the following expression:
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Z
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∂x2
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+
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]�qvgdΩ
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[
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Mn(w)�vVn(w)]dΓ

+∑
T

[Mt(w)]
+
�

v+α1

Z
Γu1

(w�w)vdΓ

+α2

Z
Γu2

(
∂w
∂n

�θn)vdΓ = 0; (9)

where ∂Ωs is the boundary of the subdomain Ω s and n is
the outward unit normal to the boundary ∂Ω s.

The local boundary ∂Ωs is further divided into two parts,
i.e. ∂Ωs = Ls[Γs, where Ls is a part of ∂Ωs, on which no
boundary conditions are specified; and Γ s is also a part of
∂Ωs,over which boundary conditions are specified. Thus
equation (9) can be written as

Z
Ωs

fD∇ 2w∇ 2v�D(1�ν)[
∂2w

∂x2
1

∂2v

∂x2
2

+
∂2w

∂x2
2
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∂x2
1

�2
∂2w

∂x1∂x2

∂2v
∂x1∂x2

]�qvgdΩ

+
Z

Ls

[
∂v
∂n

Mn(w)�vVn(w)]dΓ

+
Z

Γs

[
∂v
∂n

M(w)�vVn(w)]dΓ+α1

Z
Γuι

(w�w)vdΓ

+α2

Z
Γu2

(
∂w
∂n

�θn)vdΓ+∑
T

[Mt(w)]
+
�

v; (10)

The symbol [Mt(�)]
+
�

denotes a value of the jump twist-
ing moment at a corner, T is the number of corners. The
meanings of other symbols in equation (10) are as fol-
lows:

Mn(w) = �D
2 (1�ν)[ 1+ν

1�ν ∇ 2w
+cos2βL1(w)+2sin2βL2(w)];
Mt(w) = D(1�ν)[ 1

2 sin2βL1(w)
�cos2βL2(w)];
Vn(w) = Qn(w)+

∂Mt
∂s

=�D ∂
∂n(∇

2w)+L3(Mt):

9>>>>>>>=
>>>>>>>;

(11)

where

∇ 2 = ∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂θ2 ;

L1 =
∂2

∂r2 �
1
r

∂
∂r �

∂2

r2∂θ2 ;

L2 =
∂
∂r (

1
r

∂
∂θ);

L3 =�[sinβ ∂
∂r �cosβ ∂

r∂θ
+( cosβ

r � 1
ρ)

∂
∂β]:

9>>>>>=
>>>>>;

(12)

in which ρ is the radius of curvature of the boundary Γ s,
and ρ located on the convex side of a curve is assumed
to be positive. n; tdenote the outward normal and tagent
directions of a boundary curve, and r;θ are polar coordi-
nate axes. β is a angle between the direction of rand the
outward normal nof the boundary.

In the following development, the Petrov-Galerkin
method is used. Unlike in the conventional Galerkin
method in which the trial and the test functions are cho-
sen from the same space, the Petrov-Galerkin method
uses the trial and the test functions from different spaces.
In particular, the test functions need not vanish on the
boundary where the essential boundary conditions are
specified. In the present work, the trial function w is
approximated by the MLS approximation, while the test
function v will be chosen from known functions.

As the test function is chosen from known functions, the
above equation (10) can be further simplified by deliber-
ately selecting the test function v and its normal deriva-
tive ∂v=∂n such that they vanish over Ls, the circle (for
an internal node) or the circular arc (for a node on the
global boundary Γ). This can be easily accomplished by
using the weight function in the MLS approximation as
also a test function, with the radius r i of the support of the
weight function being replaced by the radius r 0 of the lo-
cal domain Ωs, such that the test function and its normal
derivative vanish on Ls. In general, no boundary condi-
tions are enforced for an internal node, i.e. Ls � ∂Ωs.
While the weight function from the MLS scheme is used
as the test function in the present paper, one may use
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any one of a variety of test functions discussed in Atluri
and Shen (2002a,b), in constructing alternate MLPG ap-
proaches for the plate problem. In particular, the use of
a Heaviside step function as a test function, for the plate
problem, appears to be a good choice. Results from such
an MLPG approach, for the plate problem, will be pre-
sented shortly.

The integral term along Γ s vanishes in equation (10), and
the term in equation (10) representing the value of jumps
at the boundary corners also vanishes, when there are no
corners on local boundary Ls. Equation (10) becomes as

Z
Ωs

fD∇ 2w∇ 2v�D(1�ν)[
∂2w

∂x2
1

∂2v

∂x2
2

+
∂2w

∂x2
2

∂2v

∂x2
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�2
∂2w
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∂2v
∂x1∂x2

]�qvgdΩ

+α1

Z
Γu1

(w�w)vdΓ

+α2

Z
Γu2

(
∂w
∂n

�θn)vdΓ = 0: (13)

For a node on the global boundary Γ;Lsis a circular arc,
on which the test function v and its normal derivative
∂v=∂n vanish, while Γ s is a section of the global bound-
ary Γ of the original problem domain, along which the
test function and its normal derivative would not vanish
any more. Further, Γs is divided into Γ u and/or Γt ,where
Γu is a part, on which the essential boundary conditions
(4) and /or (5) are also specified. Imposing the natural
boundary conditions (6) and (7) in equation (10) we ob-
tain

Z
Ωs
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Z
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Rearranging equation (14) ,we obtain the following local
symmetric weak form (LSWF) in the bending problem
of a thin plate, as

Z
Ωs

fD∇ 2w∇ 2v�D(1�ν)[
∂2w
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1

∂2v

∂x2
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+
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Mn(w)�vVn(w)]dΓ

�
Z

Γt1

vVn(w)dΓ+
Z

Γt2

∂v
∂n

Mn(w)dΓ

+α1

Z
Γu1

wvdΓ +α2

Z
Γu2

∂w
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vdΓ
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[Mt(w)]
+
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Z

Ωs

qvdΩ

�
Z

Γt1

∂v
∂n

Mnd+
Z

Γt2

vV ndΓ

+α1

Z
Γu1

wvdΓ +α2

Z
Γu2

θnvdΓ: (15)

3 The MLS approximation

This section gives a brief summary of the MLS approx-
imation. For details of the MLS approximation, see Be-
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lytschko , Lu and Gu (1994), Atluri and Zhu (1998).

Consider a sub-domain Ωx, the neighborhood of a point
x, which is located in the problem domain Ω. To approx-
imate the distribution of function w in Ω x, over a number
of randomly located nodes fx ig; i = 1;2; : : :;n, the mov-
ing least square approximant wa(x) of w, 8x 2 Ωx, can
be defined by

wa(x) = pT (x)a(x);8x2Ωx;x = [x1;x2]
T ; (16)

where pT (x) = [p1(x); p2(x); : : :; pm(x)] is a complete
monomial basis of order m, and a(x) is a vector contain-
ing coefficients a j(x); j= 1;2; : : :;m, which are functions
of the space coordinates x = [x1;x2]

T . For example, for a
2-D plate problem,

pT (x) = [1;x1;x2]; linear basis;m = 3; (17a)

pT (x) = [1;x1;x2;x2
1;x1x2;x2

2];
quadratic basis; m = 6:

(17b)

The coefficient vector a(x) is determined by minimizing
a weighted discrete L2 norm, defined as

J(x) =
n
∑

i=1
gi(x)[pT (x)a(x)� ŵi]

2

= [P �a(x)� ŵ]T �G � [P �a(x)� ŵ]; (18)

where gi(x) is the weight function associated with node i,
with gi(x)> 0 for all x in the support of gi(x), xi denotes
the value of x at node i, n is the number of nodes in Ω x for
which the weight functions gi(x)> 0, and the matrices P
and G are defined as

P =

2
664

pT(x1)
pT(x2)
� � �
pT(xn)

3
775 (19)

G =

2
664

g1(x) 0
g2(x)

� � �
0 gn(x)

3
775 (20)

and

ŵT = [ŵ1; ŵ2; � � � ; ŵn]: (21)

Here it should be noted that ŵi; i = 1;2; � � � ;n in equa-
tions (18) and (4) are the fictitious nodal values, and not
the nodal values of the unknown trial function w a(x) in
general.

The stationarity of J in equation (18) with respect to a(x)
leads to the following linear relation between a(x) and ŵ.

A(x)a(x)= B(x)ŵ; (22)

Where matrices A(x) and B(x) are defined by

A(x) = PTGP = B(x)P

=
n
∑

i=1
gi(x)p(xi)pT(xi);

(23)

B(x) = PTG
= [g1(x)p(x1);g2(x)p(x2); � � � ;gn(x)p(xn)]:

(24)

The MLS approximation is well defined only when the
matrix A in equation (5) is non-singular. It can be seen
that this is the case if and only if the rank of P equals m.
A necessary condition for a well-defined MLS approx-
imation is that at least mweight functions are non-zero
(i.e. n � m) for each sample point x 2 Ω and that the
nodes in Ωx will not be arranged in a special pattern such
as on a straight line. Here a sample point may be a nodal
point under consideration or a quadrature point.

Solving for a a(x) from equation (5) and substituting it
into equation (1) gives a relation which may be written as
the form of an interpolation function similar to that used
in the FEM, as

wa(x) = ΦT (x) � ŵ =
n
∑

i=1
Φi(x)ŵi;

wa(xi)� wi 6= ŵi;x 2Ωx;
(25)

Where
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ΦT(x) = pT(x)A�1(x)B(x)
;

(26)

or

Φi(x) =
m

∑
j=1

p j(x)[A�1(x)B(x)] ji: (27)

Φi(x) is usually called the shape function of the MLS
approximation, corresponding to nodal point ξ i. From
equations (6) and (9), it may be seen that Φi(x) = 0
when gi(x) = 0. In practical applications, gi(x) is gen-
erally chosen such that it is non-zero over the support of
nodal point ξ i. The support of the nodal point ξ i is usu-
ally taken to be a circle of radius ri, centered at ξi. The
fact Φi(x) = 0 for x not in the support of nodal point ξ i

preserve the local character of the Moving Least Square
approximation.

The smoothness of the shape functions Φ i(x) is deter-
mined by that of the basis functions and of the weight
functions. Let Ck(Ω) be the space of k-th continuously
differentiable functions. If gi(x) 2 Ck(Ω) and p j(x) 2
Cl(Ω); i = 1;2; : : :;n; j = 1;2; : : :;m, then Φi(x) 2
Cr(Ω) with r = min(k; l).

The partial derivatives of Φi(x) are obtained as

Φi;k =
m

∑
j=1

[p j;k(A�1B) ji+ p j(A�1B
;k +A�1

;k B)ji]; (28)

Φi;kl =
m
∑
j=1

[p j;kl(A�1B) ji + p j;k(A�1
;l B

+A�1B
;l) ji + p j;l(A�1

;k B+A�1B
;k) ji

+ p j(A�1
;kl B+A�1

;k B
;l +A�1

;l B
;k +A�1B

;kl) ji];

(29)

Φi;klr =
m
∑
j=1

[p j;klr(A�1B) ji+ p j;kl(A�1
;r B

+A�1B
;r) ji + p j;lr(A�1

;k B+A�1B
;k) ji

+ p j;kr(A�1
;l B+A�1B

;l) ji+ p j;k(A�1
;lr B

+A�1
;l B

;r +A�1
;r B

;l +A�1B
;lr) ji

+ p j;l(A�1
;kr B+A�1

;k B
;r +A�1

;r B
;k +A�1B

;kr) ji

+ p j;r(A�1
;kl B+A�1

;k B
;l +A�1

;l B
;k +A�1B

;kl) ji

+ p j(A�1
klrB+A�1

kl B
;r +A�1

kl B
;l +A�1

;lr B
;k

+A�1
;k B

;lr +A�1
;l B

;kr +A�1
;r B

;kl +A�1B
;klr) ji];

(k; l;r = 1;2): (30)

in which A�1
;k = (A�1)

;k represents the derivative of the
inverse of A with respect to xk, which is given by

A�1
;k = �A�1A

;kA�1; (31)

where, (�)
;i denotes ∂(�)=∂xi. A�1

;kl and A�1
;klr are similar to

A�1
;k .

4 Discretization and numerical implementation

Here transverse deflection w is interpolated using MLS
approximation, i.e.

wa(x) = ΦŴ =
N

∑
j=1

φj(x)ŵ j; (32)

where wj is the unknown fictitious nodal values, N is the
total number of nodes in a local domain Ω s for which the
weight functions gi(x)> 0.

The shape functions of internal forces are obtained using
equation (11)

Ma
n(x) =

N

∑
j=1

Mn j(x)ŵ j; (33)

Ma
t (x) =

N

∑
j=1

Mt j(x)ŵ j; (34)

V a
n (x) =

N

∑
j=1

Vn j(x)ŵ j; (35)

where

Mn j(x) =�D[vφj;pp +(1�ν)nknlφj;kl]; (36)

Mt j(x) = �D(1�ν)(�1)lnkn3�lφj;kl; (37)

Vn j(x) = �D[φj;ppknk +(1�ν)(�1)l+m

nkn3�ln3�mφj;klm]:
(38)

in equations (36)�(38),p;k; l;m = 1;2:

In implementing the MLS approximation for transverse
deflection w, the basis functions and weight functions
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should be chosen at first. Both Gaussian and spline
weight functions with compact supports can be consid-
ered. For the MLPG approach of the thin plate problem,
the weight function in the MLS approximation is cho-
sen as a test function, with the radius r i of the support
of the weight function being replaced by radius r 0 of the
local domain of Ωs, such that the test function and its
normal derivative vanish on Ls. The spline weight func-
tion possesses the above required properties, but for the
Gaussian weight function there are not those properties,
as the normal derivative of the Gaussian weight function
does not vanish on Ls. It should be noted that there exists
the third order derivative in equation (15) at the bound-
aries of supports of sub-domain Ωs, but the derivatives of
the quartic spline weight function, higher than the second
order, are discontinuous at the boundaries of supports of
sub-domain Ωs. In this work, the quintic spline weight
function is considered for the MLPG approach of the thin
plate problem.

A quintic spline weight function is defined as

gi(x) =

8<
:

1�10( di
ri
)2+20( di

ri
)3�15( di

ri
)4 +4( di

ri
)5;

0 � di � ri;
0; d � ri:

(39)

where di = kx�xik,and ri is the size of the support for the
weight function gi and determines the support of node xi.

Substituting equations (32)�(35) into equation (15) for
boundary node on the global boundary Γ and equation
(13) for internal nodes. Leads to the following dis-
cretized system of linear equations:

N

∑
j=1

Ki jŵ j = fi; i = 1;2; � � � ;N; (40)

where N is the total number of nodes,

Ki j =
Z

Ωs

[Dφj;kkgi;ll�D(1�ν)(�1)k+lφj;klgi;(3�k)(3�l)]dΩ

+
Z

Γu1

[
∂gi

∂n
Mn j �giVn j]dΓ+

Z
Γu2

[
∂gi

∂n
Mn j �giVn j]dΓ

�
Z

Γt1

giVn jdΓ+
Z

Γt2

∂gi

∂n
Mn jdΓ

+α1

Z
Γu1

φjgidΓ+α2

Z
Γu2

φj;ngidΓ+∑
T

[Mt j]
+
�

gi; (41)

fi =
Z

Ωs

qgidΩ�
Z

Γt1

∂gi

∂n
MndΓ +

Z
Γt2

giV ndΓ

+α1

Z
Γu1

giwdΓ+α2

Z
Γu2

θngidΓ: (42)

in which gi = gi(x) = g(x;xi)and is the value of the
weight function, corresponding to node i,evaluated at the
point x. It should be noted that for those interior nodes
located inside the domain Ω;Ls � ∂Ωs, and the boundary
integrals involving Γ u1;Γu2 and Γt1;Γt2 vanish in equa-
tions (10) and (42).

Here, it should also be noted that two among the four
boundary integrals involving Γ u1;Γu2 and Γt1;Γt2 are
chosen according the boundary conditions of the consid-
ered problem. If there exist corners on the boundary Γ of
the considered problem, the term involving ∑

T
[Mt j]

+
�

gi in

equation (10) should also be chosen. For example, two
boundary integrals involving Γ u1 and Γt1 should be cho-
sen for a plate with all edges simply-supported.

5 Numerical examples

The square plate under various loads is a well-known
benchmark with a large number of numerical and an-
alytical solutions to compare with. The present re-
sults were compared with results of the global bound-
ary element method (Costa, 1986), and analytical
method(Timoshenko & Woinowsky-Krieger, 1959).

The basis functions and the weight functions are cho-
sen at first in implementing the MLS approximation for
the MLPG approach. In the present computation, cu-
bic [m=10], quartic [m=15] and quintic [m=21] bases, as
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well as the quintic spline weight function are employed
to ensure the desired C1 continuity within the support, as
well as C2 continuity on its boundary in equations (41)
and (42). The resulting approximation is governed by the
continuity of the weigh function. Due to the properties
of the quintic spline weight function, C 2 trial functions
are constructed. Thus, smooth moments can be obtained
without any re-interpolation or smoothing.

In the formulation, the size of each local sub-domain
should be big enough such that the union of all local
sub-domains covers as much as possible of the global do-
main. In all the following examples, the size (radius) of
the local sub-domain of each internal node is taken as
the 2.5 times minimum nodaldistance, and that of each
boundary node is taken as the 2.5 times maximum nodal
distance. In the computation, 9 Gauss points are used on
each section of Γs, and 6�9 points are used in each local
domain Ωs for numerical quadratures.

5.1 A square plate with all edges clamped

A square plate subjected to a uniformly distributed load
with all edges clamped is analyzed firstly to verify the
reliability of the present method. Regular meshes of
25(5� 5);81(9� 9);289(17� 17) nodes (full plate) are
used to compare with Costa’s (1986) results. Table.1 pro-
vides results of the present method for the central de-
flection and some important bending moments. It can
be seen from this table that the present results are in ex-
cellent agreement, contrast with those obtained by Costa
(1986) using the global boundary element method and
quoted by Timoshenko et al. (1959), which are also ap-
pear in this table.

In Table 1 the quartic basis and quintic spline weight
function are used for present method, and linear bound-
ary elements with 32 boundary nodes of full plate are
employed for Costa (1986).The meanings of symbols in
Table 1 are: q is a uniform load distribution, a is the side
length of a square plate, Dis the flexural rigidity of equa-
tion (3). Because of the symmetry, results of the bending
moment and equivalent shear force on the boundary are
presented for only half of one edge of the plate in Fig.1
and 2. As can be appreciated from the graphs in these
figures, the results obtained by the present method for all
grid nodes, even for 5�5 grid nodes, are in good agree-
ment , compared with those given by Costa (1986).
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Figure 1 : Bending moment on half an edge of a uni-
formly loaded square plate with all edges clamped
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Figure 2 : Equivalent shear on half an edge of a uni-
formly loaded square plate with all edges clamped
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Table 1 : Deflections and bending moments in a uniformly loaded squate plate with all edges clamped
Method Deflection at the center

(�D=qa4)
Bending moment at the
center (�1=qa2)

Bending moment at half of
the edge(�1=qa2)

Present method
5�5 0.001250 0.02275 0.05170
9�9 0.001253 0.02280 0.05145
17�17 0.001257 0.02288 0.05142

Costa (1986) 0.01255 0.02282 0.05140
Timoshenko (1959) 0.01260 0.02310 0.05130

5.2 A square plate with all edges simply-supported

A square plate subjected a uniformly distributed load
with all edges simply-supported is analyzed to illustrate
the convergence of the present method. For the purpose
of error estimation and convergence studies, the deflec-
tion and energy norm, kwk and kek ,are calculated, These
norms are defined as

kwk= [
Z

Ω
w2dΩ]

1
2 ; (43)

kek= [
D
2

Z
Ω
(∇ 2w)2dΩ]

1
2 : (44)

The relative error for kwk and kek are defined as

rw =
kwn�wek

kwek
; (45)

re =
ken�eek

keek
; (46)

where kwk and kek denote the numerical deflection and
the strain energy obtained by the present method, re-
spectively. we and ee denote the exact deflection and
the energy by the analytical method (Timosheuko &
Woinowsky-Krieger, 1959), respectively, for which the
exact solution of the deflection is

w =
16q
π6D

∞

∑
m=1;3;���

∞

∑
n=1;3;���

sin mπx
a sin nπy

a

mn(m2

a2 +
n2

a2 )
; (47)

where q is a uniformly distributed load, and a is the side
length of a square plate.
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Figure 3 : Relative errors and convergence rates for de-
flection norm kwk for the square plate with all edges
simply-supported.

Regular meshes of 49(7�7);81(9�9)and 289(17�17)
nodes are used, and the MLS approximation with Cu-
bic, quartic and quintic basis as well as the quintic spline
weight function are employed in the computation.

The convergence with mesh refinement of the present
method is studied for this problem. The results of rel-
ative errors and convergence rates are shown in Figures 3
and 4 for deflection and strain energy, respectively. These
figures show that the present meshless method based the
MLPG approach has high rates of convergence for norms
kwk and kek, and give reasonably accurate results for the
unknown deflection and its derivatives.

In this example, it can be seen that the quintic basis yields
somewhat of a better result than the cubic and quartic
bases while three bases possess high accuracy.
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Figure 4 : Relative errors and convergence rates for en-
ergy norm kek for the square plate with all edges simply-
supported.

5.3 Convergence of the central deflection for different
basis

A square plate with all edges simply-supported under
central force is here solved to study the convergence of
deflections. Regular meshes of 49(7�7),81(9�9) and
289(17�17)nodes are used, and the MLS approximation
with cubic, quartic and quintic bases, as well as the quin-
tic spline weight functions are employed in the computa-
tion.

The convergence with mesh refinement of the present
method is studied for this problem. The results are shown
in Fig.5. It can be seen that the present meshless method
based upon the MLPG approach has high rates of con-
vergence for the central deflections and gives reasonably
accurate results. It can also be noted that quintic basis
function gives also higher accuracy.

6 Conclusions

The basic concept and implementation of the MLPG ap-
proach for solving thin (Kirchhoff) plates have been pre-
sented in the present work. The numerical implementa-
tion of the approach may lead to an efficient meshless
discrete model. Convergence studies in the numerical
examples show that the present method possesses an ex-
cellent rate of convergence for the deflection and strain
energy. Only a simply numerical manipulation is need
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Figure 5 : Convergence with mesh refinement for differ-
ent basis

for calculating internal forces, as the original approxi-
mated trial solution is smooth enough to yield reason-
ably accurate results for internal forces. numerical re-
sults show that using the quintic spline weight function,
and the quintic basis in approximation function, can give
quite accurate numerical results.

While the finite element construction of C 1 numerical
approximation is difficult and unsatisfactory so far, and
while various devices to avoid the need for C 1 ab initio
are employed (discrete Kirchhoff theory, hybrid stress,
or even transition to C0 theory), the current moving least
square method achieves C1 and even C2 approximations
in a very straightforward manner.

Isotropic material law and uniform plate thickness were
assumed for simplicity in the present work, the results ap-
ply directly to any material law and any thickness varia-
tion, however. Besides, the current formulation possesses
flexibility in adapting the density of the nodal points at
any place of the problem domain such that the resolu-
tion and fidelity of the solution can be improved easily.
This is especially useful in developing intelligent, adap-
tive algorithms based on error indicators for engineering
applications.
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