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Boundary Element Analysis of Curved Cracked Panels with Mechanically
Fastened Repair Patches

P. H. Wen1 , M. H. Aliabadi1, A. Young 2

Abstract: In this paper, applications of the bound-
ary element method to damaged and undamaged aircraft
curved panels with mechanical repairs are presented. The
effects of fastened repairs are replaced by uniform dis-
tribution forces in the area of cross-section of the rivet
and can be determined from the compatibility condition
of displacements. A coupled boundary integral formu-
lation of a shear deformable plate and two dimensional
plane stress elasticity is used to determine the bending
and membrane forces on the rivets. Domain integrals
in each integral equation are determined using the dual
reciprocity method. The stress intensity factors due to
bending and membrane loads are evaluated by opening
displacements near the crack tips. Several numerical ex-
amples are presented to demonstrate the accuracy of the
proposed method. It is shown that the bending behav-
ior and plate curvature have significant influence on the
magnitude of the stress intensity factors.

keyword: Fracture, fastened repair, boundary element
method, shell, stress intensity factor.

Notation

a half–length of central crack or length
of edge crack

cK
αβ;c

V
ik jump terms

Dm number of rivets on the patch m
E Young’s modulus

Fml
β ;Fml

β concentrated forces in rivets

f
m
β ; f m

β applied body forces for plate and
patches

H height of plate
h;hm thickness of plate and patches
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Kbend
k ;Kmem

β bending and membrane stress
intensity factors

KI ;KII;KIII stress intensity
factors along thickness

kαβ curvatures
H;G;D coefficient matrices of BEM
L number of nodes on the boundary or

number of rivets in the domain
Mαβ;Qα components of moment and shear

for bending
Nαβ components of membrane forces
N0 applied tension load
p fastener’s pitch
pk traction on the boundary for bending

Q
ml
β ;Qml

β concentrated forces in rivets
qm

k ;qm
k applied body forces for plate

and patches
q0 uniform pressure load
Tαβ fundamental solution of traction
tβ traction on the boundary for two

dimensions
Uαβ fundamental solution of displacement
uα displacements of two dimension

elasticity
xk coordinate system
x collocation point on the boundary
X domain point
W width of plate
wk rotations and deflection of plate

bending
Γ boundary of plate
Ω domains
Φ diameter of rivet
ΦK ;ΦV coefficients of rivet
∆uα;∆wk discontinuities of displacements

on crack surface
σ0 uniform tension
ν Poisson’s ratio
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1 Introduction

Mechanically fastened repair patches are efficient design
solutions for repair of damage panels in aircraft struc-
tures, as the stress intensity factors at crack tips can be
reduced, and hence, fatigue life increased. There is grow-
ing use of adhesive bonding, however mechanical fas-
teners such as rivets and bolts remain the most common
technique for attaching patches to structures. Mechani-
cally fastened joints are the recommended repair meth-
ods for heavily loaded components while adhesive bond-
ing is preferred for the repair of lightly loaded compo-
nents.

It is generally difficult to analyse cracked panels with me-
chanically fastened repairs by the finite element method
due to the necessity of modelling the rivet and the in-
teraction between the panel and rivet. Analysis by the
finite element method (FEM) of the bending effect was
carried out by Chu and Lin (1993) for a composite sheet
and patch. They reported a reduction in the efficiency of
the patching with increasing out-of-plane deflection of
the plate. The analysis of crack in aging aircraft struc-
tures and composite patch repairs can be found in [Park,
Ogiso, Atluri (1992); Chow, Atluri (1997)] The bending
behavior can be found in lap joints structures; this was
comprehensively studied by Fawaz (1997) by the finite
element method using three dimension modelling. The
boundary element method (BEM) is now an established
method for analysing fracture mechanics problems [see
Aliabadi (1998)]. The application of the boundary el-
ement method to mechanically fastened repairs and lap
joints has been reported by Salgado and Aliabadi (1997)
using a two-dimensional formulation.

In this paper, BEM is applied to curved panels with me-
chanically fastened repair patches and the coupled ef-
fect of the membrane and out-of-plane bending forces
are considered by using Reissner’s plate and two dimen-
sional stress plane theories. The influence of attachments
on a sheet are replaced by the distribution of body forces
which include two body forces in the plane, two mo-
ments body forces and one out-of-plane force through
the cross-section of the rivets. Coupled boundary integral
equations are established for the analysis of curved pan-
els and domain integrals in each equation are transferred
to boundary integrals using the dual reciprocity method.
A comparison was made with the results obtained by the
finite element method.
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Figure 1 : Coordinate system.

2 Boundary integral equations for a shallow shell

Consider a shallow shell with a quadratic middle surface
given by

z =�1
2
(k11x2

1 +k22x2
2) (1)

where z denotes the position of middle surface of the
shell, k11 and k22 are the principal curvatures of the shell
in the x1 and x2 directions respectively (see Figure 1).
The elasticity relations between stresses and displace-
ments are given by Shi and Hagendorf (1997).

Nαβ =
1�ν

2
B

�
uα;β+uβ;α +

2ν
1�ν

uγ;γδα;β

�
+B[(1�ν)kαβ +νkφφδαβ]w3

Qα =
1�ν

2
Dλ2(wα +w3;α) (2)

Mαβ =
1�ν

2
D

�
wα;β +wβ;α +

2ν
1�ν

wγ;γδα;β

�

where Nαβ(α;β = 1;2) denotes the stress resultants for
two dimensional plane stress elasticity, M αβ and Qα are
the bending moment and shear force stress resultants
for plate bending problems, uβ and wk(k = 1;2;3) rep-
resent displacements, rotation (k = 1;2) and deflection
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(k = 3) [see definitions Wen, Aliabadi, Young (1999)].
B=Eh=(1�ν2) is tension stiffness; D= Eh3=12(1�ν2)
is bending stiffness of the shell; λ =

p
10=h is the plate

factor and h is the thickness of the shell; E and ν are the
elastic constants.

The boundary integral equations for the shallow shell
problem can be written as [Wen, Aliabadi, Young (2000)]

cK
αβ(x

0)uβ(x
0)+

Z
Γ
�T K

αβ(x
0;x)uβ(x)dΓ�

Z
Γ
UK

αβ(x
0;x)tβ(x)dΓ

+B[(1�ν)kβγ+νkφφδβγ]
Z

Γ
UK

αγ(x
0;x)nβ(x)w3(x)dΓ

�B[(1�ν)kβγ+νkφφδβγ]
Z

Ω
UK

αβ(x
0;X)w3;γ(X)dΩ

=
Z

Ω
UK

αβ(x
0;X) f β(X)dΩ (3)

where
R� denotes a Cauchy principal-value integral, x2 Γ

and X 2Ω are the field points and tβ = Nαβnα;nα denotes
the component of the outward to the boundary, f β repre-
sents the body forces, x0 2 Ω is the source point. cK

αβ(x
0)

is a function of the geometry variation at the boundary
point, which can be determined by rigid body move-
ments. UK

αβ and T K
αβ are displacement and traction funda-

mental solutions respectively for the plane stress problem
[see for example Aliabadi (1998)]. For plate bending, the
boundary integral equation can be written as in Wen, Ali-
abadi and Young (1999)

cV
ik(x

0)wk(x0)+
Z

Γ
�T V

ik (x
0;x)wk(x)dΓ�

Z
Γ

UV
ik(x

0;x)pk(x)dΓ

+B[(1�ν)kαβ +νkφφδαβ]
Z

Ω
UV

i3(x
0;X)uα;β(X)dΩ (4)

�B(k2
11 +k2

22 +2νk11k22)
Z

Ω
UV

i3(x
0;X)w3(X)dΩ

=
Z

Ω
UV

ik(x
0;X)qk(X)dΩ

where pβ = Mαβnα; p3 = Qαnα and cV
αβ(x

0) is a function
of the geometry variation at the boundary point, and q k
are the body forces. UV

i j and T V
i j are displacement and

traction fundamental solutions respectively for the plate
bending problem given by Vander (1982).

For the dual boundary element method, the traction
boundary integral equations are applied on the crack sur-
face x0+ and can be obtained as follows:

1
2
[tα(x0+)� tα(x0�)] = nβ(x

0+)
Z

Γ
UK

αβγ(x
0+;x)tγ(x)dΓ

�nβ(x
0+)

Z
Γ
� T K

αβγ(x
0+;x)uγ(x)dΓ

�nβ(x
0+)B[(1�ν)kθγ+νkφφδθγ]

Z
Γ
UK

αβγ(x
0+;x)nθ(x)w3(x)dΓ

+nβ(x
0+)B[(1�ν)kθγ+νkφφδθγ]

Z
Ω
UK

αβγ(x
0+;X)w3;θ(X)dΩ

+nβ(x
0+)

Z
Ω

UK
αβγ(x

0+;X) f γ(X)dΩ (5)

for in-plane stress, where
R
= denotes a Hadamard

principal-value integral, and

1
2
[pi(x0+� pi(x0�)] = nβ(x

0+)
Z

Γ
U p

iβk(x
0+;x)pk(x)dΓ

�nβ(x
0+)

Z
Γ
� T V

iβk(x
0+;x)wk(x)dΓ

�nβ(x
0+)B[(1�ν)kγθ+νkφφδγθ]

Z
Ω

UV
iβ3(x

0+;X)uγ;θdΩ

+nβ(x
0+)B(k2

11 +k2
22 +2νk11k22)

Z
Ω

UV
iβ3(x

0+;X)w3dΩ

+nβ(x
0+)

Z
Ω

UV
iβk(X

0;X)qk(X)dΩ (6)

for plate bending. Consider the properties of fundamen-
tal solution as

Uαβ(x
0+;x) =Uαβ(x

0�;x); Uαβγ(x
0+;x) =Uαβγ(x

0�;x)

and

Tαβ(x
0+;x) =�Tαβ(x

0�;x); Tαβγ(x
0+;x) = �Tαβγ(x

0�;x)

The boundary displacement integral equations (1) and (8)
can be rewritten, if t+β + t�β = 0 for two dimensions and

p+i + p�i = 0 , as
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αβ(x

0)uβ(x
0)+

Z
Γ0

� T K
αβ(x

0;x)uβ(x)dΓ

+
Z
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αβ(x
0;x+)∆uβdΓ�

Z
Γ0

UK
αβ(x

0;x)tβ(x)dΓ

+B[(1�ν)kβγ+νkφφδβγ](
Z
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αγ(x

0;x)nβ(x)w3dΓ

+
Z

C+
UK

αγ(x
0;x)nβ(x)∆w3(x)dΓ)

�B
Z

Ω
UK

αβ(x
0;X)[(1�ν)kβγ+νkφφδβγ]w3;γ(X)dΩ

=
Z

Ω
UK

αβ(x
0;X) f βdΩ (7)
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and

cV
ik(x

0)wk(x0)+
Z

Γ0

� T V
ik (x

0;x)wk(x)dΓ

+
Z

C+
T V

ik (x
0;x+)∆wkdΓ�

Z
Γ0

UV
ik(x

0;x)pk(x)dΓ(x)

+B[(1�ν)kαβ +νkφφδαβ]
Z

Ω
UV

i3(x
0;X)uα;βdΩ

�B(k2
11 +k2

22 +2νk11k22)
Z

Ω
UV

i3(x
0;X)w3dΩ

=
Z

Ω
UV

ik(x
0;X)qkdΩ (8)

and the traction equations

1
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2

tα(x�) = nβ

Z
Γ0

�UK
αβγ(x

+;x)tγ(x)dΓ

�nβ(x
0+)

Z
Γ0

T K
αβγ(x

0+;x)uγ(x)dΓ�nβ(x
0+)

Z
C+

= T K
αβγ(x
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Z
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UK
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+
Z

C+
UK

αβγ(x
+;x)nθ(x)∆w3dΓ)

+nβB
Z

Ω
UK

αβγ(x
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+nβ

Z
Ω

UK
αβγ(x

+;X) f γdΩ (9)

and
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pi(x+)� 1
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pi(x�) = nβ

Z
Γ0

�UV
iβk(X

+;x)pk(x)dΓ

�nβ

Z
Γ0

T V
iβk(X

+;x)wk(x)dΓ

�nβ(x
0+)

Z
C+

= T V
iβk(x

0+;x+)∆wkdΓ

�nβB[(1�ν)kγθ+νkφφδγθ]
Z

Ω
UV

iβ3(x
+;X)uγ;θdΩ

�nβB(k2
11 +k2

22 +2νk11k22)
Z

Ω
UV

iβ3(x
+;X)w3dΩ

�nβB[(1�ν)kγθ+νkφφδγθ]
Z

Ω
UV

iβ3(x
+;X)uγ;θdΩ

Boundary and one of the crack surfaces, Equations (3) and (4)

Domain collocation points, Equations (3) and (4)

One of  the crack surfaces, Equations (5) and (6)

Γ
Ω

A m

Γ m
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rivet patch

crack

0

C +

C
-

Figure 2 : Strategy of the dual boundary element method

�nβB(k2
11 +k2

22 +2νk11k22)
Z

Ω
UV

iβ3(x
+;X)w3dΩ

+nβ

Z
Ω

UV
iβk(x

+;X)qkdΩ (10)

where Γ0 = Γ �C+ �C� is the boundary, excluding
crack surfaces, C+ and C� represent the upper and lower
crack surfaces and ∆uβ and ∆wk are the discontinuities
of displacements and defined as ∆uβ = u+β � u�β and

∆wk = w+
k �w�

k . In this case, the unknowns can be re-
duced to the displacements or traction on the boundary
Γ0 and the discontinuity of displacement on the crack
surface C. Applying the displacement integral equation
on the boundary Γ0 and the traction equation on the crack
surface C+ gives a linear system to determine all un-
knowns, including the discontinuitydisplacements on the
crack surface ∆uβ and ∆wk. The strategy of DBEM is il-
lustrated in Figure 2.

3 Evaluation of domain integrals

Let F
mn
α (Xn) and Q

mn
k (Xn) represent the five concentrate

forces on the middle plane of the sheet in the area of at-
tachment m; with rivet geometry central point Xn and
Am(= πφ2=4) denoting the section area of the rivets on
the mth patch (see Figure 3), φ denotes the diameter of
the rivet, thus

f
m
α (X) = f

0
α +

Fmn
k (Xn)

Am
;



Boundary element analysis of curved cracked panels with mechanically fastend repair patches 5

φ

h

h m

Q
3

md

Fα
md

Fα
md

Q
3

md

Qα
md

Qα
md

Figure 3 : Rivet and interaction forces.

qmn
k (X) = q0

k +
Q

mn
k (Xn)

Am
X 2 Am

where f
0
α;q0

k are applied body forces in the domain Ω.
Domain integrals containing f β and qk in equations (3)-
(6) can be evaluated in the way shown in Wen, Aliabadi
and Young (2000). In the boundary integral equations,
(3)-(6), there are eight domain integrals if body forces
for two-dimensional and bending problems are f

0
α = 0;

q0
α = 0 (α = 1;2) and q0

3 = q; as follows:

I
(1)
i =

Z
Ω

UV
i3w3dΩ; I(2)iαβ =

Z
Ω

UV
i3

∂uα

∂xβ
dΩ;

I(3)i =
Z

Ω
UV

i3qdΩ; I(4)αβγ =
Z

Ω
UK

αβ
∂w3

∂xγ
dΩ; (11)

I(5)i = nβ

Z
Ω

UV
iβ3w3dΩ; I(6)iγθ = nβ

Z
Ω

UV
iβ3

∂uγ

∂xθ
dΩ

I(7)i = nβ

Z
Ω

UV
iβ3qdΩ; I(8)αγθ = nβ

Z
Ω

UK
αβγ

∂w3

∂xθ
dΩ:

All of above domain integrals can be transformed into
boundary integrals Using of dual reciprocity method [see
Wen, Aliabadi, Young (2000) for details].

4 Numerical implementation

4.1 Analysis of rivet

Consider the equilibrium of fasteners. Suppose there are
M patches on the repaired shell, therefore there should be

5∑M
m=1 Ld

m equations related to the concentrated forces on
rivet Xn :

F
mn
α +F mn

α = 0;

Q
mn
3 +Qmn

3 = 0

Q
mn
α +Qmn

α � h+hm

2
Fmn

α = 0 (12)

n = 1; ;2:::Nm; m = 1;2; :::;M

for α = 1;2, where Nm represents the number of rivets on
the mth patch. The displacements, rotations and deflec-
tions on the rivets Xn at the sheet and a corresponding
point at patch m are compatible with the shear deforma-
tion of the rivets. Therefore M sets of connection condi-
tions can be derived:

un
α�umn

α = ΦK F
mn
α � h+hm

2
wn

α ; α = 1;2 (13)

wn
k �wmn

k = ΦV Q
mn
k k = 1;2;3 (14)

where un
α;w

n
k are the displacements of the sheet on rivet

Xn, umn
α ;wmn

k are the displacement of the mth patch, F
mn
α

and Q
mn
k represent the body forces in the section area Am

of rivets on the mth patch. For the patches on the top sur-
face of the sheet, the + sign is selected. ΦK is defined as
the coefficient of shear deformation of the fasteners used
to connect the sheet and the patch and can be determined
from the empirical equation derived by Swift (1974):

ΦK =
1

ERφ
fa0+a1φ[

1
h
+

1
hm

]g (15)

where ER is the Young’s modulus of the rivets, h and h m

denote the thicknesses of sheet and the mth patch respec-
tively. The constants a0 and a1 are chosen as 5.0 and
0.8 respectively to correspond to aluminium rivets [Swift
(1974)]. ΦV are the coefficients of bending and axial de-
formation of rivet and in the following analysis they are
ignored, i.e. ΦV = 0.

4.2 Discretization of integral equations

The displacement boundary integral equation for re-
paired shell can be re–arranged, in terms of rivet forces,
as

cK
αβ(x

0)uβ(x
0)+

Z
Γ
� T K

αβ(x
0;x)uβ(x)dΓ

�
Z

Γ
UK

αβ(x
0;x)tβ(x)dΓ
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+B[(1�ν)kβγ+νkφφδβγ]
Z

Γ
UK

αγ(x
0;x)nβ(x)w3(x)dΓ

�B[(1�ν)kβγ+νkφφδβγ]I
(4)
αβγ

=
M

∑
m=1

Ld
m

∑
d=1

UK
αβ(x

0;Xd)F
md
β (16)

and

cV
ik(x

0)wk(x0)+
Z

Γ
� T V

ik (x
0;x)wk(x)dΓ�

Z
Γ

UV
ik(x

0;x)pk(x)dΓ

+B[(1�ν)kαβ+νkφφδαβ]I
(2)
iαβ�B(k2

11 +k2
22 +2νk11k22)I

(1)
i

(17)

= I(3)i +
1
h

M

∑
m=1

Ld
m

∑
d=1

UV
ik(x

0;X)Q
md
k

The traction integral equation on the crack surface is

1
2
[tα(x0+)� tα(x0�)] = nβ(x

0+)
Z

Γ
UK

αβγ(x
0+;x)tγ(x)dΓ

�nβ

Z
Γ
(x0+)� T K

αβγ(x
0+;x)uγ(x)dΓ

�nβ(x
0+)B[(1�ν)kθγ+νkφφδθγ]

Z
Γ
UK

αβγ(x
0+;x)nθ(x)w3(x)dΓ

+B[(1�ν)kθγ+νkφφδθγ]I
(8)
αγθ

+nβ(x
0+)

M

∑
m=1

Ld
m

∑
d=1

UK
αβγ(x

0+;Xd)F
md
γ (18)

and

1
2
[pi(x0+� pi(x0�)] = nβ(x

0+)
Z

Γ
UV

iβk(x
0+;x)pk(x)dΓ

�nβ(x
0+)

Z
Γ
� T V

iβk(x
0+;x)wk(x)dΓ

�B[(1�ν)kγθ+νkφφδγθ]I
(6)
iγθ�B(k2

11+k2
22+2νk11k22)I

(5)
i

+I(7)i +nβ(x
0+)

M

∑
m=1

Ld
m

∑
d=1

UV
iβk(X

0;Xd)Q
md
k (19)

After the collocation point passes through all the collo-
cation nodes on the boundary (including crack surfaces)
and in the domain, equations (16)-(19) give the following
linear equations in matrix form:

�
HK Hw

Hu HV

��
u
w

�
=

�
GK 0
0 GV

��
t
p

�
+

�
bK +∑DK

mFm

bV +∑DV
mQm

�
(20)

where HK ;HV ;GK and GV are the standard boundary ele-
ment influence matrices for plane stress elasticity and the
plate bending problem respectively, Hw;Hu are coupling
matrices caused by the shell curvatures k11;k22, matri-
ces bK ;bV are domain integrals caused by applied body
forces, matrices DK

m;DV
m are determined by the displace-

ment fundamental solution. Similar integral equations
can be obtained for the mth patch (m = 1;2; :::M) in the
form

�
HKm Hwm

Hum HV m

��
um

wm

�
=

�
GKm 0

0 GVm

��
tm

pm

�
+

�
DKm

m Fm

DVm
m Qm

�
(21)

Also the equilibrium equation and displacement compat-
ibility equations can be arranged, in the matrix form, as

fFm;Qg+C1fFm;Qmg= 0

fu;wg+C2fm +C3fum;wmg= 0 (22)

where Ck are constants. Suppose there are L0 bound-
ary element nodes on the Γ of the sheet, Lm on the
boundary Γm and Ld

m domain points (including rivets
points) in the patch area Am, the total number of un-
knowns should be 5� (L0 + ∑Lm) + 4� 5� ∑Ld

m for
the sheet and patch. The number of boundary integral
equations including displacement and traction equations
is 5�(L0+∑Lm)+2�5�∑Ld

m and the number of equi-
librium equations and displacement compatibility condi-
tions in the patch area Am should be 2�∑Ld

m. The un-
knowns on the boundaries of the sheet and patches, dis-
placement in the patch areas and forces on the rivets can
be obtained.

4.3 Determination of stress intensity factors

By solving the linear system (21)-(23), the displacement
discontinuities ∆uα and ∆wk can be obtained. If the crack
is parallel to x1 the relationships between discontinuity
displacements and stress intensity factors can be written
as [see Dirgantara and Aliabadi (1999)]:

∆u1 = u+1 �u�1 =
8
p

r

E
p

2π
Km

2
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∆u2 = u+2 �u�2 =
8
p

r

E
p

2π
Km

1

∆w1 = w+
1 �w�

1 =
48
p

2r
Eh3 Kb

2 (23)

∆w2 = w+
2 �w�

2 =
48
p

2r
Eh3 Kb

1

∆w3 = w+
3 �w�

3 =
24(1+ν)

p
2r

5Eh
Kb

3

where + and � denote the upper and lower crack sur-
faces, r represents the distance from the calculation point
on the crack surface to the crack tip, Km

1 and Km
2 are mem-

brane stress intensity factors and K b
1 ;K

b
2 and Kb

3 are bend-
ing stress intensity factors. The mixed mode of stress in-
tensity factors along the thickness of the plate are given
as

KI(x3) = Km
1 +

12x3

h3 Kb
1

KII(x3) = Km
2 +

12x3

h3 Kb
2 (24)

KIII(x3) =
3

2h

"
1�

�
2x3

h

�2
#

Kb
3 :

It is clear that the maximum and minimum values of
stress intensity factors KI and KII occur on either the up-
per surface of the sheet or the lower surface and KIII oc-
curs on the mid-plane of the sheet. To obtain more ac-
curate solutions of the displacement in the crack front,
special elements [Dirgantara, Aliabadi (1999)] are used.

5 Numerical examples

Example 1. Clamped rectangular cylindrical shell with
patch

A rectangular cylindrical clamped shell subjected to uni-
form pressure q0 as shown in Figure 4 is analysed. The
material constants for the shell and the patch are the
same, with Young’s modulus E = 210GPa and Poisson’s
ratio ν = 0:3. The shell is of dimensions �6p � x 1 �
6p;�9p � x2 � 9p and thickness h0 =1.6 mm, where p
is the pitch of rivet and is chosen as 25.4 mm. The di-
ameter of the rivet is φ= 4mm and thickness h1 = h0.
Curvatures k11 = 1=60p;k22 = 0 and the uniform load
q0 = 1MPa. All four sides of the cylindrical shell are
clamped, that is uα = wi = 0 on all boundaries.

The boundaries of the shell and patch are divided into 24
and 20 continuous quadrature elements respectively; 98

x1

x2

q0

2W

2H

2W1

2H1 2a

patch

shell

crack

p

DRM points

Boundary nodes

Rivet position

Figure 4 : Patched rectangular segment of a cylindrical
shell and BEM mesh with distribution of domain point.
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domain points including 54 rivet points are used and the
distribution of domain points is shown in Figure 4. The
numerical results for deflections, moments and mem-
brane forces of shell along x2 are plotted in Figures 5-7.
The results for the patched and non–patched cases is also
shown in these figures. A reduction of deflection and in-
ternal forces can also be seen. Comparisons have also
been made with the finite element method for deflection,
moment and membrane forces. Excellent agreement is
achieved.

0
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12

0 50 100 150 200 250

No patch

Patch

Finite element method

Finite element method

w
  

  
(m

m
)

3

x2

position of patch

Figure 5 : Deflection along the x2 axis (mm).
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m

m
  
  
)

2

No patch

Patch

Finite element method

Finite element method

M11

M22

position of patch

Figure 6 : Distribution of moments along the x 2 axis.

Example 2. Centrally cracked cylindrical shell with cir-
cular patch

Consider a centrally cracked rectangular cylindrical shell
(k11 = 0;k22 6= 0), as shown in Figure 8, subjected to ei-
ther a moment load or a membrane load at two ends of
the shell. The simply supported boundary condition is

x2

N
  

  
( 

G
P

a-
m

m
  

)

No patch

Patch

Finite element method

Finite element method

N 11

N 22

0.0E+00

3.0E+02

6.0E+02

9.0E+02

1.2E+03

1.5E+03

1.8E+03

0 50 100 150 200 250

position of patch

Figure 7 : Membrane forces along the x2 axis.

applied only to the top and bottom sides of the sheet and
the other two sides are traction free. The boundary con-
ditions for the cylindrical shell are defined as

p1 = p2 = w3 = 0; t2 = σ0 on x2 =�W

and the traction free condition for all the other boundaries
of the shell and on the boundary of circular patch. The
geometries are: width of the shell 2W (= 2� 90mm),
the circular patch radius R = 30 mm and thickness h =
h1 = 1:5 mm; material constants: E = E1 = 70 GPa,
ν = ν1 = 0:3: The boundary element meshes (48 ele-
ments are used for shell boundary including the crack
surfaces, 32 element on the circular patch, and 94 do-
main points including 18 rivet points in the patch area)
and the rivet distribution are shown in Figure 8. The nu-
merical results of the maximum normalized stress inten-
sity factors Kmax

I on the bottom of the patched shell under
a moment load M0 and membrane load N0 on the ends
are plotted against the curvature of the shell in Figures 9
and 10 respectively for different crack lengths. Because
of the patch, the normalized stress intensity factors de-
crease for longer cracks. It is interesting to note that the
stress intensity factors for different crack lengths are al-
most the same and have a linear relation with curvature
k22. By changing the value of the patch thickness h 1, the
curves of the maximum stress intensity factors against
the curvature of shell due to moment load and membrane
load at two ends are plotted in Figures 9 and 10 .

6 Conclusion

A boundary element method coupled with the two-
dimensional stress plane problem and bending problem
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0

R

2W

x1

x2

p

Simply support on four sides

Central crack

Figure 8 : Cracked square segment of a cylindrical shell
with a circular patch and BEM mesh.
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Figure 9 : Normalized maximum stress intensity factors
due to moment load M0 and tension load N0 varied with
curvature k22 and crack length a.
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Figure 10 : Normalised maximum stress intensity factors
due to moment load M0 and tension load N0 varied with
curvature k22 and thickness of patch h1.

has been developed for the analysis of cracked curved
panels with a rivet repair. Domain integrals occurring
in the boundary integral equations are transformed to
boundary integrals using the dual reciprocity method.
The effect of the rivet patches is replaced by distribu-
tional forces on the cross-section of the rivets. It was
shown that the dual boundary element method is an effec-
tive method to deal with cracked curved panels repaired
with mechanically fastened patches.
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