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Boundary Element Analysis of Curved Cracked Panelswith M echanically

Fastened Repair Patches

P.H. Wen! , M. H. Aliabadi', A. Young 2

Abstract: In this paper, applications of the bound-
ary element method to damaged and undamaged aircraft
curved panelswith mechanical repairsare presented. The
effects of fastened repairs are replaced by uniform dis-
tribution forces in the area of cross-section of the rivet
and can be determined from the compatibility condition
of displacements. A coupled boundary integral formu-
lation of a shear deformable plate and two dimensional
plane stress elasticity is used to determine the bending
and membrane forces on the rivets. Domain integrals
in each integral equation are determined using the dual
reciprocity method. The stress intensity factors due to
bending and membrane loads are evaluated by opening
displacements near the crack tips. Several numerical ex-
amples are presented to demonstrate the accuracy of the
proposed method. It is shown that the bending behav-
ior and plate curvature have significant influence on the
magnitude of the stress intensity factors.

keyword: Fracture, fastened repair, boundary element
method, shell, stressintensity factor.

Notation

a half-ength of central crack or length
of edge crack

Cap Cik jump terms

Dm number of rivets on the patch m

E Young'smodulus

Egi ) FBml concentrated forcesin rivets

g, (0 applied body forces for plate and
patches

H height of plate

h, hm thickness of plate and patches
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bending and membrane stress
intensity factors

stressintensity

factors along thickness

curvatures

coefficient matrices of BEM

number of nodes on the boundary or
number of rivetsin the domain
components of moment and shear
for bending

components of membrane forces
applied tension load

fastener’s pitch

traction on the boundary for bending

concentrated forces in rivets
applied body forces for plate
and patches

uniform pressure load
fundamental solution of traction
traction on the boundary for two
dimensions

fundamental solution of displacement
displacements of two dimension
elagticity

coordinate system

collocation point on the boundary
domain point

width of plate

rotations and deflection of plate
bending

boundary of plate

domains

diameter of rivet

coefficients of rivet
discontinuitiesof displacements
on crack surface

uniform tension

Poisson’sratio
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1 Introduction

Mechanically fastened repair patches are efficient design
solutions for repair of damage panels in aircraft struc-
tures, as the stress intensity factors at crack tips can be
reduced, and hence, fatiguelifeincreased. Thereisgrow-
ing use of adhesive bonding, however mechanical fas-
teners such as rivets and bolts remain the most common
technique for attaching patches to structures. Mechani-
cally fastened joints are the recommended repair meth-
odsfor heavily loaded components while adhesive bond-
ing is preferred for the repair of lightly loaded compo-
nents.

Itisgenerally difficult to analyse cracked panel swith me-
chanically fastened repairs by the finite element method
due to the necessity of modelling the rivet and the in-
teraction between the panel and rivet. Analysis by the
finite element method (FEM) of the bending effect was
carried out by Chu and Lin (1993) for a composite sheet
and patch. They reported a reduction in the efficiency of
the patching with increasing out-of-plane deflection of
the plate. The analysis of crack in aging aircraft struc-
tures and composite patch repairs can be found in [Park,
Ogiso, Atluri (1992); Chow, Atluri (1997)] The bending
behavior can be found in lap joints structures; this was
comprehensively studied by Fawaz (1997) by the finite
element method using three dimension modelling. The
boundary element method (BEM) is now an established
method for analysing fracture mechanics problems [see
Aliabadi (1998)]. The application of the boundary el-
ement method to mechanically fastened repairs and lap
joints has been reported by Salgado and Aliabadi (1997)
using atwo-dimensional formulation.

In this paper, BEM is applied to curved panels with me-
chanically fastened repair patches and the coupled ef-
fect of the membrane and out-of-plane bending forces
are considered by using Reissner’s plate and two dimen-
sional stress planetheories. Theinfluence of attachments
on a sheet are replaced by the distribution of body forces
which include two body forces in the plane, two mo-
ments body forces and one out-of-plane force through
the cross-section of therivets. Coupled boundary integral
equations are established for the analysis of curved pan-
elsand domain integralsin each equation are transferred
to boundary integrals using the dual reciprocity method.
A comparison was made with the results obtained by the
finite element method.
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Figure1: Coordinate system.

2 Boundary integral equationsfor a shallow shell

Consider a shallow shell with a quadratic middle surface
given by

z:—}(

5 kixd + ka2%3) D)
where z denotes the position of middle surface of the
shell, ki3 and ky, are the principal curvatures of the shell
in the x; and x, directions respectively (see Figure 1).
The elasticity relations between stresses and displace-
ments are given by Shi and Hagendorf (1997).

1-v 2V
Nog = ——B (Ua,s tUat 7 Uv,v5a,s)

+ B[(1 - V)kgp + VKoedap]Ws3
1-v
?D)\Z(Wa +W37G)
1-v 2v
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Qq (2)

Mgg =

where Nyg (a1, 3 = 1,2) denotes the stress resultants for
two dimensional plane stress elasticity, M o3 and Qq are
the bending moment and shear force stress resultants
for plate bending problems, ug and wi(k = 1,2,3) rep-
resent displacements, rotation (k = 1,2) and deflection
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(k= 3) [see definitions Wen, Aliabadi, Young (1999)].
B=Eh/(1-v?)istensiongtiffness; D = Eh3/12(1-v?)
is bending stiffness of the shell; A = v/10/h is the plate
factor and h isthe thickness of the shell; E and v are the
elastic constants.

The boundary integral equations for the shallow shell
problem can be written as[Wen, Aliabadi, Young (2000)]

UB ‘|‘/
+B[(L— V)kgy+ VkoeDp) /r U, (X, X)ng(x)wi(x)dr
—B[(1— v)kgy + VkoeDpy] /Q UL (X, X)Wy (X)dQ2

:/ugg(x' X)T, €)
Q

where-f denotes a Cauchy principal-valueintegral, x € I
and X € Q arethefield pointsandtg = Nyg Ny, Ny denotes
the component of the outward to the boundary, f g repre-
sents the body forces, x’ € Q isthe source point. c op (X)
is a function of the geometry variation at the boundary
point, which can be determined by rigid body move-
ments. U;B and T, are displacement and traction funda-
mental solutionsrespectively for the plane stressproblem
[seefor example Aliabadi (1998)]. For plate bending, the
boundary integral equation can be written asin Wen, Ali-
abadi and Young (1999)

(X', x)ug(x)dr— /UOIB (X', X)tg(x)dr

(X)dQ

G WX 1+ [ =T O w0 [ (¢ ) peyar

+B{(L=V kg + Vkogdop] [ UBX X)tag(X)dQ (4

_B(K2, + K2+ 2vkyika2) /Q U (', X )wa(X)dQ

= [ Uk xadx
Q

where pg = Mygha, P3 = QuNg and C\éB(XI) isafunction
of the geometry variation at the boundary point, and q,
are the body forces. U and Tjj are displacement and
traction fundamental sol utlons r&pectively for the plate
bending problem given by Vander (1982).

For the dua boundary element method, the traction
boundary integral equations are applied on the crack sur-
face x'* and can be obtained as follows:

1
ﬁ[ta(xl ) —ta(X X") /Uan

)dQ

,(x)dr

—ng(x'") f apy (X T X)uy(x)dr
gl BI(L=) Koy Vo] U, (X' X el we(
+ng (X" B[ (1-v)Key+ VkpePoy] /uqBy X X )Wa(X)dQ

+ng(x'*) / Uk, (X X)T ®)

for in-plane stress, where # denotes a Hadamard
principal-valueintegral, and

)] =ng(x") /UIBk

—ng(x'") 7/ i (XX wi(x)dr

(X)dQ

1
ST —pi(x k(x)dr

(X B[(1—V) ye+v|<<p@5ye/u|33 X+, X )Uy60Q

+ng(X*)B(KE; + K3, + 2vkagkao) /UIBB (X', X)w3dQ

+ng(x'") /UIBk (6)

for plate bending. Consider the properties of fundamen-
tal solutionas

(X)dQ

UGB(XH',X) =Uqp(X'7,X%), UGBV(X'+7X) = Ugpy (X', X)
and
Tap (XF,X) = =Top (X7, %), Tapy(X'*,X) = =Tapy (X7, X)

Theboundary displacement integral equations(1) and (8)
can be rewritten, if tg 5 = 0 for two dimensions and

P +p=0,as

UB —|—7/ xqu dr

K
+TB

(X, x*+) Dugdl — /r Uz (¢ Xt
BV gy + VgD (| Ul(X X))
+/ Ug, (X', X)ng(x) dwi(x)r )

=B | Ul (X, X)[(1=V)kpy-+ Vi ay (X) 02

_/u (X, X)TpdQ 7
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and
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and the traction equations
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rivet patch

A Domain collocation points, Equations (3) and (4)

o Boundary and one of the crack surfaces, Equations (3) and (4)

° One of the crack surfaces, Equations (5) and (6)

Figure2: Strategy of the dual boundary element method

Bk, + K, + 2vkazkso) /Q U Xpwade2

+ng /Q Ul (X", X)5d0 (10)

where Mg = I — C* — C~ is the boundary, excluding
crack surfaces, C* and C~ represent the upper and lower
crack surfaces and Aug and Awy are the discontinuities
of displacements and defined as Aug = ug —Ug and
Awic = W —wj_. In this case, the unknowns can be re-
duced to the displacements or traction on the boundary
Ny and the discontinuity of displacement on the crack
surface C. Applying the displacement integral equation
on the boundary I ¢ and the traction equation on the crack
surface C* gives a linear system to determine all un-
knowns, including the discontinuity displacementson the
crack surface Aug and Awk. The strategy of DBEM isiil-
lustrated in Figure 2.

3 Evaluation of domain integrals

Let Fqo (X") and QEH(X”) represent the five concentrate
forces on the middle plane of the sheet in the area of at-
tachment m, with rivet geometry central point X" and
Am(= Ti@/4) denoting the section area of the rivets on
the mth patch (see Figure 3), ¢ denotes the diameter of
therivet, thus
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Figure 3: Rivet and interaction forces.

Qe (X"
Am
where Tg,qg are applied body forces in the domain Q.
Domain integrals containing f 5 and G in equations (3)-
(6) can be evaluated in the way shown in Wen, Aliabadi
and Young (2000). In the boundary integral equations,

(3)-(6), there are eight domain integrals if body forces
—0

ae(X) =T+ X € An

for two-dimensional and bending problems are f ; = 0,
g2 =0 (o =1,2) and g = g, asfollows:
Oug
_ /Qu wsd0, 1 = [ Ut 9
/ Usade. 1) = / ugg$d9 (11)

(6) Ouy
= ”B/ UjpaW3dQ, '.ye = ”B/ U|\é36 dQ

(8) 5W3
= ”B/ UIBSqu7 Ia ”B/ Uana
All of above domain integrals can be transformed into
boundary integrals Using of dual reciprocity method [see
Wen, Aliabadi, Young (2000) for details].
4 Numerical implementation
4.1 Analysisof rivet

Consider the equilibrium of fasteners. Suppose there are
M patches on the repaired shell, therefore there should be

5yM . LY equationsrelated to the concentrated forces on
rivet X":

Fo +FM=0,

QG+ =

_ h+h

Qu +QM+ sza”“:o (12)
n=1,2..Nn, m=12.. M

for a = 1,2, where Ny, represents the number of rivetson
the mth patch. The displacements, rotations and deflec-
tions on the rivets X" at the sheet and a corresponding
point at patch m are compatible with the shear deforma-
tion of therivets. Therefore M sets of connection condi-
tions can be derived:

_ h
ug—ug“:quFg“iM—mw;; a=12 (13)
Wl —w" = ovQy" k=1,2,3 (14)

where ug,w; are the displacements of the sheet on rlvet
X", ug“,w'lj“ are the displacement of the mth patch, F
and Qk represent the body forces in the section area Am
of rivets on the mth patch. For the patches on the top sur-
face of the sheet, the + signis selected. ®« isdefined as
the coefficient of shear deformation of the fasteners used
to connect the sheet and the patch and can be determined
from the empirical equation derived by Swift (1974):
o = e+ awdlp + o) (15)
where Eg isthe Young's modulus of therivets, h and h,
denote the thicknesses of sheet and the mth patch respec-
tively. The constants ag and a; are chosen as 5.0 and
0.8 respectively to correspond to aluminium rivets [ Swift
(1974)]. @V are the coefficients of bending and axial de-
formation of rivet and in the following analysis they are
ignored, i.e. ¥V =0.

4.2 Discretization of integral equations

The displacement boundary integral equation for re-
paired shell can be re—arranged, in terms of rivet forces,
as

¢ (X ) Ug(x) +7fr T, (X X)up(x)r

/U XXtB
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(1= V)kgy+ Viipadpy) | Uty (X 30ng (sl

—~B{(1- ) kgy + Vkoipyl

MLd

CZU XXd

(16)

and
G0 )wlX) 4 T (X X w0 dr— | U ) pear

(K21 + K3, + 2vky ko) 1Y
(17)

B~ kg + VpePag]153B

L L
—|—— Uy (x' X)Q
m:ldZ Ik

The traction integral equation on the crack surfaceis
1
ﬁ[ta(xl ) —ta(X X") /Uan

X B2 oy-+ VK] [ Ui, (¢ X ma(x)wa ()
+B[(l_v)k9V+Vk<P‘969V]|ay9

MLd

+
GZUGBV X", Xa)F

,(x)dr

/+ TK

oy (X T x)uy(x)dr

(18)

and

IR = X)) = (%) [ Ul (X 0pilx)dr

—ng(X'") 7/ i (X x)wi(x)dr

—B[(l—V)kye+V'<<pcp5ye]'iye

MLd

dz Uit (X', Xa)Q

After the collocation point passes through al the collo-
cation nodes on the boundary (including crack surfaces)
and in the domain, equations(16)-(19) givethefollowing
linear equationsin matrix form:

(kll—l— k 50+ 2Vk11k22) Ii(S)

+( +”B (29
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H*HY)] fu)] _[GxO0 ] [t b 45 DFm
HuHY [ \wf =1 06vf \pJ " b+ 3 DYOm
(20)

where Hx  HY Gk and GV are the standard boundary ele-
ment influence matrices for plane stress elasticity and the
plate bending problem respectively, H" H"Y are coupling
matrices caused by the shell curvatures ki1, koo, matri-
ces br, bV are domain integrals caused by applied body
forces, matrices DY,, Dy, are determined by the displace-
ment fundamental solution. Similar integral equations
can be obtained for the mth patch (m=1,2,...M) in the
form

HxmHYM) fu™)  (Gem 0 ) (™) . (D
HUHvm [ lw™f | 0 Gvm ) | p™ DyrQm
(21)

Also the equilibrium eguation and displacement compat-
ibility equations can be arranged, in the matrix form, as

{ﬁmv 6} + Cl{Fm7 Qm} =0
{u,w} +Cof y+Ca{u™,w™} =0 (22)

where Cy are constants. Suppose there are Ly bound-
ary element nodes on the I' of the sheet, Ly, on the
boundary ', and LY, domain points (including rivets
points) in the patch area Am, the total number of un-
knowns should be 5 x (Lo + ¥ Lm) +4 x 5x S LY, for
the sheet and patch. The number of boundary integral
equations including displacement and traction eguations
iS5% (Lo+ ¥ Lm) +2x 5x 5 L4 and the number of equi-
librium equations and displacement compatibility condi-
tions in the patch area Ap, should be 2 x 5 LY. The un-
knowns on the boundaries of the sheet and patches, dis-
placement in the patch areas and forces on the rivets can
be obtained.

4.3 Determination of stressintensity factors

By solving the linear system (21)-(23), the displacement
discontinuitiesAuy and Awy can be obtained. If the crack
is parallel to x; the relationships between discontinuity
displacements and stress intensity factors can be written
as [see Dirgantaraand Aliabadi (1999)]:

_ 8
Aup=uf —u] = E\/\[_n
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Aup=uf —u; = E8\/\[_n

Awy =wf —wj = 485\f<3_ K3 (23)
Ay = W5 —w, = 485\f<3_ K
Am:wé’—wg:%@

where + and — denote the upper and lower crack sur-
faces, r represents the distance from the cal cul ation point
onthecrack surfacetothe crack tip, K" and KJ' are mem-
brane stressintensity factorsand K2, K2 and K$ are bend-
ing stress intensity factors. The mixed mode of stressin-
tensity factors along the thickness of the plate are given
as

12x
Ki(x3) = K"+ h3K1
12x
Kir(xa) = KI'+ —5 =K (24)
3 2X3
K|||(X3) 2h 1-— ( h ) ]K3

It is clear that the maximum and minimum values of
stressintensity factors K, and K;; occur on either the up-
per surface of the sheet or the lower surface and K, oc-
curs on the mid-plane of the sheet. To obtain more ac-
curate solutions of the displacement in the crack front,
special elements [Dirgantara, Aliabadi (1999)] are used.

5 Numerical examples

Example 1. Clamped rectangular cylindrical shell with
patch

A rectangular cylindrical clamped shell subjected to uni-
form pressure gp as shown in Figure 4 is analysed. The
material constants for the shell and the patch are the
same, with Young'smodulus E = 210GPaand Poisson’s
ratio v = 0.3. The shell is of dimensions —6p < x; <
6p, —9p < Xz < 9p and thicknesshg =1.6 mm, where p
is the pitch of rivet and is chosen as 25.4 mm. The di-
ameter of the rivet is @ = 4mm and thickness h; = hg.
Curvatures ki3 = 1/60p, ko, = 0 and the uniform load
0o = 1MPa. All four sides of the cylindrical shell are
clamped, that isug = w; = 0 on all boundaries.

The boundaries of the shell and patch are divided into 24
and 20 continuous quadrature elements respectively; 98

o Boundary nodes

e DRM points

e  Rivet position

Figure 4 : Patched rectangular segment of a cylindrical
shell and BEM mesh with distribution of domain point.
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domain pointsincluding 54 rivet points are used and the
distribution of domain pointsis shown in Figure 4. The
numerical results for deflections, moments and mem-
brane forces of shell along x, are plotted in Figures 5-7.
Theresultsfor the patched and non—patched casesis also
shown in these figures. A reduction of deflection and in-
ternal forces can also be seen. Comparisons have also
been made with the finite element method for deflection,
moment and membrane forces. Excellent agreement is
achieved.

12 iy
L D—D—D—D—D—D-D_Dﬁ\

(mm)

position of patch

w
3

- - -No patch
4 —— Patch
| O Finite element method

O Finite element method

0 50 100 150 200 250

X2

Figure5: Deflection along the x axis (mm).

400

E
g
£
O
= position of patch
= -200 + - - -No patch
— Patch
-400 4 O Finite element method
O Finite element method
-600 T T T .
0 50 100 150 200 250
X2
Figure 6 : Distribution of moments along the x, axis.

Example 2. Centrally cracked cylindrical shell with cir-
cular patch

Consider a centrally cracked rectangular cylindrical shell
(k11 = 0,ko2 # 0), as shown in Figure 8, subjected to ei-
ther a moment load or a membrane load at two ends of
the shell. The simply supported boundary condition is

CMES, vol.3, no.1, pp.1-10, 2002
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- - -No patch

O -
Ly DD\

156403 4y o oo o4
] —— Patch

1.2E+03 A Nu

}

position of patch

9.0E+02 -

O Finite element method

N (GPa-mm )

6.0E+02 - O Finite element method

OO0O0O0O0O0O00
'O-o--o_o
3.0E+02 -

0.0E+00

100 150 200
X2

250

Figure 7 : Membrane forces along the x, axis.

applied only to the top and bottom sides of the sheet and
the other two sides are traction free. The boundary con-
ditionsfor the cylindrical shell are defined as

pr=p2=w3=0, tp=0p on xp =W

and thetractionfree conditionfor all the other boundaries
of the shell and on the boundary of circular patch. The
geometries are: width of the shell 2W (= 2 x 90mm),
the circular patch radius R = 30 mm and thickness h =
h; = 1.5 mm; materia constants; E = E; = 70 GPa,
v = v; = 0.3. The boundary element meshes (48 ele-
ments are used for shell boundary including the crack
surfaces, 32 element on the circular patch, and 94 do-
main points including 18 rivet pointsin the patch area)
and therivet distribution are shown in Figure 8. The nu-
merical results of the maximum normalized stress inten-
sity factors K™ on the bottom of the patched shell under
a moment load Mg and membrane load Ng on the ends
are plotted against the curvature of the shell in Figures 9
and 10 respectively for different crack lengths. Because
of the patch, the normalized stress intensity factors de-
crease for longer cracks. It isinteresting to note that the
stress intensity factors for different crack lengths are al-
most the same and have a linear relation with curvature
ko,. By changing the value of the patch thicknessh1, the
curves of the maximum stress intensity factors against
the curvature of shell due to moment load and membrane
load at two ends are plotted in Figures9 and 10 .

6 Conclusion

A boundary element method coupled with the two-
dimensional stress plane problem and bending problem
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Simply support on four sides

X2
Central crack

.l X

K™ /(M h¥na)
o
8

/ 0.80

0.02 0.04 0.06
Ky W

0.1

8.00
6.00 -
3 , "
T 400 -
< i
s -O—a=2mm -} a=4mm
M 1 = —A—a=6mm —O—a=8mm
2.00
| —><—a=10mm
0.00 T ; T T T
0 0.02 0.04 0.06 0.08
KW

curvature kp; and crack length a.

Figure 8 : Cracked square segment of a cylindrical shell
with a circular patch and BEM mesh.

0.1

Figure 9 : Normalized maximum stress intensity factors
due to moment load Mg and tension load Ng varied with
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1.60

1.20
-~
g
> 7”
<. 080
i | ~0-h,=0.3mm - h, =0.6mm
;5_ —A— h,=0.9mm —o— h,=1.2mm
<040 1 ¢ hy=1.5mm
0.00 ; T T T T
0 0.02 0.04 0.06 0.08 0.1
KnW
12.0
—O— h,=0.3mm {1 h;=0.6mm
9.0 | —— h,=0.9mm  —— h,=1.2mm
= —>¢ h;=1.5mm
§O
&)
<
E 6.0
o
3.0

0.0 T T T
0 0.02 0.08 0.1
Figure 10: Normalised maximum stressintensity factors
due to moment load Mg and tension load Ng varied with
curvature kp, and thicknessof patch h;.

has been developed for the analysis of cracked curved
panels with a rivet repair. Domain integrals occurring
in the boundary integral equations are transformed to
boundary integrals using the dual reciprocity method.
The effect of the rivet patches is replaced by distribu-
tional forces on the cross-section of the rivets. It was
shownthat the dual boundary element method is an effec-
tive method to deal with cracked curved panels repaired
with mechanically fastened patches.
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