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Element Free Galerkin Method for Three-dimensional Structural Analysis

Wen-Hwa Chen1 and Xhu-Ming Guo2

Abstract: An Element Free Galerkin Method is devel-
oped for the analysis of three-dimensional structures. A
highly accurate and reliable relation between the num-
ber of the quadrature orders nQ and nodes in a three-
dimensional cell nc; nQ � 3

p
nc + 3; is established to

accomplish the required integral calculation in the cell.
Based on the theory of topology, the generation of nodes
in the solution procedure consists of three sequential
steps, say, defining the geometric boundary, arranging
inside of the body, and improving numerical accuracy.
In addition, by selecting the Dirac Delta function as the
weighting function, a three-dimensional scattering sub-
domain is devised by linking the node studied to neigh-
bor nodes. Since the size of this newly defined sub-
domain is adjustable with the nodal density, the three-
dimensional scattering sub-domain can execute the mov-
ing least square approximation resiliently, but excellent
accuracy is still maintained. Several numerical examples
have been studied successfully to demonstrate the pro-
posed techniques.

1 Introduction

In most of actual engineering problems, the analytical so-
lutions are hardly derivable and even nonexistent because
of their complicated geometry conditions. In dealing
with such problems, finite element method has demon-
strated its high versatility and efficiency. However, the
accuracy of the finite element method sometimes has its
own limitations, especially in solving the problems with
curved boundaries or specific complicated surfaces. To
improve the results, a very detailed finite element mesh
is usually required.

Recently, the Element Free Galerkin Method (EFGM,
Belytschko et al., 1994) has become an interesting and

1 Professor, corresponding author
Department of Power Mechanical Engineering
National Tsing Hua University
Hsinchu, Taiwan 30043, Republic of China
E-mail : whchen@pme.nthu.edu.tw

2 Graduate student

promising method in solving partial differential equa-
tions or structural mechanics problems due to its vast
flexibility in practical applications. Unlike finite ele-
ment method, EFGM requires only nodal data and the
nodal interpolation functions are derived by the mov-
ing least squares approximation.However, to generate
the“stiffness matrix”or the evaluation of the“energy”,
the EFGM method still uses back ground cells.A new
class of truly meshless methods, one based on the local
symmetric weak-form called the Meshless Local Petrov-
Galerkin (MLPG) Method, and the other based on the
Local Boundary Integral Equation (LBIE), have been re-
cently proposed by Atluri and his research collaborators
(Atluri et al., 1998a,b,c;1999;2000a,b,c,d;2001)(See also
Chung and Batra (2001)).

Starting from the original idea of Nayroles et al. (1992),
Belytschko et al. (1994; 1996a) popularized the EFGM
to the analysis of various structural mechanics prob-
lems. Those include the stress analysis of cantilever
beam, plate and shell. Several approaches were further
studied for enforcing the essential boundary conditions
by Lagrange multiplier method (Belytschko et al., 1994;
1995), modified collocation and penalty method (Zhu et
al., 1998) and the combined FEM-EFGM method (Be-
lytschko et al., 1995; 1996b; Hegen, 1996; Mukherejee
et al., 1997). In addition, the continuity of nodal interpo-
lation functions adopted and convergence of EFGM so-
lutions were also analyzed. (Belytschko et al., 1996c;
1997).

In those literatures as mentioned above, all the investiga-
tions were limited to one or two-dimensional problems,
or simplified as plate and shell structures. However, in
practical engineering applications, a three-dimensional
analysis is imperative for most structures. Besides, a cir-
cle sub-domain for two-dimensional problems is adopted
in those literatures for executing the moving least squares
approximation. (However, in Atluri et al. (1999), ellip-
tical and rectangular subdomains were used, for the first
time, in generating the moving least squares approxima-
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tions, as well as in enforcing the local Petrov-Galerkin
weak form.) In general, the radius of the circle sub-
domain is a pre-decided parameter and will affect the
bandwidth of stiffness matrix and, therefore the compu-
tational efficiency seriously. This is mainly induced from
including unnecessary nodes in some circle sub-domains
with higher density of neighbor nodes. The deficiency
will be enlarged in three-dimensional analysis. To im-
prove this, a new computational scheme which can be
used for dealing with three-dimensional cells and nodal
generations needs to be developed.

One of the objectives of this work is to extend the EFGM
to the analysis of three-dimensional structural problems.
To remove the size and shape constraints of the circle
sub-domain used in literatures, a three-dimensional scat-
tering sub-domain is devised in this work. In addition,
a new integration relation for defining the numbers of
the quadrature orders nQ and nodes existing in the three-
dimensional cell nc is established as nQ = 3

p
nc + 3 .

Based on the theory of topology, the nodal set X con-
sists of three subsets, say, boundary description X boundary,
body arrangement Xbody, and numerical improvement
Ximprovement. That is, X=Xboundary + Xbody + Ximprovement.

To demonstrate the applicability and versatility of the
present techniques developed, three numerical examples
are analyzed. For the comparison of computational ef-
ficiency between EFGM and finite element method, a
three-dimensional stress concentration analysis around
a circular cylinder subjected to uniform loading at both
ends is first performed. A sphere under a diametrical
loading at two poles is then analyzed to display the flex-
ibility of EFGM presented. The last example, which
simulates the forward motion of a screwdriver, is fo-
cused on the demonstration of the novelty of the three-
dimensional scattering sub-domain in executing moving
least squares approximation even among nodes with dif-
ferent densities. These should be of help for EFGM in
three-dimensional structural problems.

2 Formulation of EFGM

As shown in Fig.1 consider a three-dimensional linear
elastic structure Ω, enclosed by the boundary Γ. As the
system is in static equilibrium condition, the governing
equation can be written as follows:

∇ �σ+b = 0 in Ω,

Ω
Γ

Γ

u

t

u

n

y

x

z

Γ t

Figure 1 : Three-dimensional structural analysis by
EFGM

where σ is the stress tensor and b is the body force vector.
The corresponding boundary conditions are

σ �n = t on Γt ,

and

u = u on Γu,

in which t is the prescribed traction vector acting on the
traction boundary Γt , u is the prescribed displacement on
the displacement boundary Γu, and n is the outward unit
normal to the boundary Γ.

Based on the principle of minimum total potential energy
(Cook et al., 1989),

Π = U-W = min; (1)

in which U is the strain energy of the system, and W is
the work done by external loads. Assume the structure
has no initial stress or initial strain, then

U =
1
2

Z
Ω

σεdΩ =
1
2

Z
Ω

εTEεdΩ (2)

and

W =
Z

Ω
uTbdΩ+

Z
Γt

uTtdΓ; (3)
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where E is the material property matrix and ε is the strain
tensor. Substituting Eqns(2) and (3) into Eqn.(1), Eqn.(1)
becomes

Π =
1
2

Z
Ω

εTEεdΩ�
Z

Ω
uTbdΩ�

Z
Γt

uTtdΓ = min (4)

Following the similar formulation procedure for one or
two-dimensional structural problems (Belytschko et al.,
1994 etc.) 3, the present three-dimensional displacement
field u can be expressed as a function of nodal displace-
ments such that

uT =
�

u(x) v(x) w(x)
	
; (5)

where

u(x) =
N
∑

i=1
φi (x) ûi;

v(x) =
N
∑

i=1
φi (x) v̂i;

and

w(x) =
N
∑

i=1
φi (x) ŵi:

In the above expressions, fu(x) v(x) w(x) g denote
the displacement components at location x in x, y and
z directions, respectively. fûi v̂i ŵig are the nodal
displacement components in three different directions of
node i and N is the total amount of nodes taken in the
analysis model. φi (x) is the nodal interpolation function
of node i, which is derived by a moving least squares
approximation and will be discussed in the next sec-
tion. Now, the three-dimensional displacement field u
of Eqn.(5) can be rewritten in the global form as

u = Ψ(x)D; (6)

where

Ψ(x) =2
64

φ1 (x) 0 0 φ2 (x) 0 0 � � � φN (x) 0 0

0 φ1 (x) 0 0 φ2 (x) 0 � � � 0 φN (x) 0

0 0 φ1 (x) 0 0 φ2 (x) � � � 0 0 φN (x)

3
75

3�3N

3 It should be remarked that while the EFGM uses the global
weak form δΠ = 0 from Eqn.(4), the MLPG and LBIE meth-
ods pioneered by Atluri and his collaborators (1998 a,b,c; 1999;
2000a,b,c,d; 2001) use a local weak form over non-overlapping
subdomains, and thus generate a truly meshless method.

and

DT =
�

û1 v̂1 ŵ1 û2 v̂2 ŵ2 � � � ûN v̂N ŵN
	

1�3N

By the strain-displacement relation, one has

ε = ∂u = ∂Ψ(x)D = B(x)D; (7)

where the partial differential operator ∂ and the strain-
displacement matrix B(x) are defined as

∂=

2
6666664

∂
Æ

∂x 0 0
0 ∂

Æ
∂y 0

0 0 ∂
Æ

∂z
∂
Æ

∂y ∂
Æ

∂x 0
0 ∂

Æ
∂z ∂

Æ
∂y

∂
Æ

∂z 0 ∂
Æ

∂x

3
7777775

6�3

and

B (x) =

2
66666666664

φ1;x (x) 0 0 � � � φN;x (x) 0 0

0 φ1;y (x) 0 � � � 0 φN;y (x) 0

0 0 φ1;z (x) � � � 0 0 φN;z (x)

φ1;y (x) φ1;x (x) 0 � � � φN;y (x) φN;x (x) 0

0 φ1;z (x) φ1;y (x) � � � 0 φN;z (x) φN;y (x)

φ1;z (x) 0 φ1;x (x) � � � φN;z (x) 0 φN;x (x)

3
77777777775

6�3N:

The weak form of Eqn. (4) leads to the following total
potential energy in matrix form as

Π =
1
2

DTKD�DTR; (8)

where the stiffness matrix K and load vector R are shown
as K =

R
Ω B(x)T EB(x)dΩ;

and

R =
R

Ω Ψ(x)T bdΩ+
R

Γt
Ψ(x)T tdΓ:

Among all admissible configurations of the present con-
servative system, since the strain energy density is posi-
tive definite, those that satisfy the system of equilibrium
will make the total potential energy minimum. Thus,
from the stationary condition of Eqn.(8) one obtains
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Figure 2 : The circle sub-domain

KD = R (9)

By solving the system of linear algebraic equations of
Eqn.(9), the global nodal displacement vector D is deter-
mined. Finally, all the unknowns u and ε, and therefore
σ, can then be computed from Eqn.(6) and Eqn.(7), re-
spectively.

3 Three-dimensional Scattering Sub-domain

To construct the nodal interpolation function φ i (x) of
node i, a circle sub-domain around node i is usually
adopted to choose the neighbor nodes within the circle as
the domain influential basis (Belytschko et al., 1994). As
seen in Fig.2, Ωi and Ωk denote the circle sub-domains
of inner nodes i and k, while the boundary node j is sur-
rounded by a portion of circle sub-domain Ω j. Since
the radius of circle sub-domains is pre-decided and un-
changeable, different amounts of nodes may exist in each
sub-domain. Hence, much wider bandwidth will occur
in the sub-domains having more neighbor nodes. This
will decrease the computational efficiency seriously, es-
pecially for three-dimensional structural analysis.

To overcome this deficiency, a simple but efficient three-
dimensional scattering sub-domain is devised in this

Ω i

node i l

z

x

y

Figure 3 : The three-dimensional scattering sub-domain

work. The nodal connections between node i and its
neighbor nodes are displayed in Fig.3. For a specific
direction, say x > 0, the nearest neighbor node l is se-
lected as the domain influential basis. Therefore, the
present three-dimensional scattering sub-domain devel-
oped for inner nodes always contains six linkages be-
tween node i and the nearest neighbor node in respec-
tive directions (�x; �y;and� zdirections). For bound-
ary nodes, the sub-domain may contain one to five neigh-
bor nodes. Apparently, this three-dimensional scattering
sub-domain has the following advantages:

(a) The pre-decided radius of circle sub-domain is not
necessary. Since each node has one to six neighbor nodes
for three-dimensional structural problems, the bandwidth
of stiffness matrix can be accurately predicted and flexi-
bly controlled even when the nodes are distributed in the
medium randomly.

(b) To derive the nodal interpolation functions, simpler
weighting function is sufficient.

(c) The nodes can be added or deleted freely without
destroying the entire linkages. The adjustment only
changes the moving least squares approximation of cor-
responding neighbor nodes.

Without loss of generality, the nodal interpolation func-
tions can be derived based on the displacement com-
ponent in x direction u(x). According to the three-
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dimensional scattering sub-domain established, u(x) in
the sub-domain Ωi can be expressed by

u(x) = pT (x)a(x) ; 8x 2Ωi (10)

where pT (x) = fp1 (x) ;p2 (x) ;p3 (x) ; � � � pm (x)g1�m is a
complete monomial basis of order m, a(x) is a coefficient
vector aT (x) = fa1 (x) ;a2 (x) ;a3 (x) ; � � �am (x)g1�m. x =�

x y z
	T

is a vector of space coordinates. Hence, for a
three-dimensional problem, for example,

pT (x) = f1;x;y;zg1�m; linear basis; m = 4;

pT (x) =
�

1;x;y;z;x2
;y2

;z2
;xy;yz;zx

	
1�m; quadratic basis;

m = 10;

. . . . . .

The coefficient vector a(x) can be determined by mini-
mizing a weighting discrete L2 norm, which is defined as
(Belytschko et al., 1994)

J (x) =
n

∑
i=1

wi (x)
�
pT (xi)a(x)� ûi

�2

= [ Pa(x)� û]TW[Pa(x)� û]; (11)

where wi (x) and xi are the weighting function and co-
ordinate associated with the node i, û i is the nodal dis-
placement component in x direction of node i, and n is
the number of nodes in the sub-domain Ω i. The nodal
displacement fields in x direction of all nodes û in the
sub-domain can be expressed as

ûT = [û1;û2; � � � ûn]1�n:

Matrices P and W are defined as

P=

2
664

pT (x1)
pT (x2)
� � �
pT (xn)

3
775

n�m

,

and

W =

2
4 w1 (x) � � � 0
� � � � � � � � �
0 � � � wn (x)

3
5

n�n

:

The stationary condition of weighting discrete norm J (x)
in Eqn.(11) with respect to the coefficient vector a(x)
leads to the relation

A(x)a(x) = C(x) û; (12)

where

A(x) = PTWP= C(x) P =
n
∑

i=1
wi (x)p(xi)pT (xi),

and

C(x)=PTW=[w1(x)p(x1);w2(x)p(x2); � � �wn(x)p(xn) ]m�n.
a(x) in Eqn.(12) has unique solution only when the ma-

trix A(x) in Eqn.(12) is non-singular, if and only if the
rank of matrix P equals m. This can be achieved by
choosing appropriate weighting functions. Solving for
a(x) from Eqn.(12), one obtains

a(x) = A�1 (x)C(x) û: (13)

Substituting Eqn.(13) into Eqn.(10) one obtains

u(x) = Φ(x) û

where

Φ(x) = pT (x)A�1 (x)C(x)

or

Φ(x) = [φ1 (x) ;φ2 (x) ; � � �φn (x)]1�n

and

φi (x) =
m
∑
j=1

p j (x)
�
A�1 (x)C(x)

�
ji:

The nodal interpolation function φ i (x) of node i can
be thus derived. Unlike the exponential or conical
weighting functions used in literatures (Belytschko et
al., 1994), due to the three-dimensional scattering sub-
domain adopted, the Dirac Delta function seems to be
an appropriate choice for weighting function and is thus
taken in this work. Much simpler form of interpolation
functions φi (x) and corresponding differential term in
B(x)of Eqn.(7) is observed.

4 Computational Scheme

To execute EFGM, although one need not calculate the
element property like finite element method, the structure
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Figure 4 : A three-dimensional cell with uniform nodal
collocation

need be divided into smaller cells and, similarly, the cell
property is integrated by the Gaussian quadrature (Stroud
et al., 1996).

For three-dimensional structural problems, for conve-
nience, those cells can be viewed as cuboid. Because
the selection of the quadrature orders nQ plays an impor-
tant role on the accuracy of EFGM, the relation between
the total number of nodes in a cell nc and the quadrature
orders nQ should be explored. As shown in Fig.4, as-
sume the cell is a perfect one (without void or crack) and
the nodes are distributed uniformly. Let m be defined as
the amount of nodes on each line (without counting those
two points located at the interface of cell) along single di-
rection of Euclidean coordinates of the cell. The relation
between nc and m can be found as (Stroud et al., 1966)

m = D
p

nc;

where D is the degrees of dimension for problem. After
mapping φi (x) from global coordinates fx;y;zg to natural
coordinates fξ;η;ζ;�1� ξ;η;ζ� 1g, one has

φi (x) = φi (ξ;η;ζ) =
K

∑
k=1

ckξrηsζt
; (14)

where r;s and t are the dimensional orders and K denotes
the number of terms used for describing the nodal in-
terpolation functions φ i (ξ;η;ζ) (see Appendix A). For
one-dimensional problems, s = t = 0; but for two-
dimensional problems, t = 0. It is noted that the nodal
interpolation function φ i (ξ;η;ζ) of node i should be con-
tinuous in the cell and at the interfaces of neighboring

cells. Hence, the nodal interpolation functions φ i (ξ;η;ζ)
are at least a function of order m+1 for m nodes, no mat-
ter what kind of weighting function w i (x) or influential
basis p(x) is used.

By the implementation of Gaussian quadrature in finite
element method (Stroud et al., 1966),

r+ s+ t � m+D

or

r+ s+ t � D
p

nc +D;

That is, the lowest order of the nodal interpolation func-
tions φi (ξ;η;ζ), r+ s+ t, is D

p
nc +D with respect to the

dimensional orders r;s and t. According to the defini-
tion of Gaussian quadurature (Stroud et al., 1966) and
Eqn.(14), the quadrature orders nQ can be determined as

nQ � O(φi (ξ;η;ζ))�O(continuity)+1;

where O(φi (ξ;η;ζ)) is the orders of nodal interpola-
tion functions φ i (ξ;η;ζ), and O(continuity) is the phys-
ical continuity of the solution. From above discussion,
the lowest order O(φi (ξ;η;ζ)) of interpolation functions
equals D

p
nc + D, and O(continuity) = 1 for the three-

dimensional structural problems tackled. Since the de-
terminant of Jacobian matrix may involve some param-
eters of ξ;η;ζ in mapping process, for reserving enough
order to get sufficient accuracy, the quadrature order nQis
therefore suggested as

nQ � D
p

nc +D (15)

For two dimensional problems D = 2, Eqn.(15) becomes
nQ � p

nc + 2. Once the determinant of Jacobian matrix
equals a constant, nQ =

p
nc + 2. This coincides with

the situation obtained by Belytschko et al. (1994). For
the present three-dimensional structural analysis, D = 3,
Eqn.(15) leads

nQ � 3
p

nc +3:

To perform the integration for evaluating the stiffness
matrix Kand load vector R of Eqn.(9), a set of three-
dimensional cells as indicated by dashed lines in Fig.1
can be arranged. When the structure Ω is split up into a
number of cells Ωci, with boundaries Γti and Γui, several
regulations are held during the arranging process. The
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geometric boundary and cell boundaries should be con-
sistent each other. Each cell should include at least one
node. It is noted that a null node cell will induce trivial
integration.

Belytschko et al. (1994) presented an useful implementa-
tion procedure for the EFGM, which made the computa-
tion systematically and efficiently. This practical proce-
dure is also generalized for the present three-dimensional
structural analysis:

(a) Generate nodes and define basis functions p(x) and
weighting functions wi (x) such that the moving least
squares approximation is well established.

(b) Determine cells for structure Ω and boundaries Γu,
and Γt . If a boundary segment exists in a cell or any link-
age of quadrature points intersects the boundary segment,
divide the cell or modify its shape.

(c) Choose Gaussian quadrature for each cell Ωci by the
relation of Eqn.(15).

(d) Compute nodal interpolation functions φ i (x) and its
derivatives φi; j (x) for those nodes in the cell. Evaluate
and assemble the cell stiffness matrix and load vector to
form Eqn.(9).

(e) Solve the linear system of Eqn.(9) for D.

As discussed above, although EFGM does not involve
elements, but it does need cell structure to evaluate the
stiffness matrix K and load vector R. By assembling the
cell structure, Eqn.(4) can be rewritten as

Π =
Nc

∑
i=1

R
Ωci

�
1
2 εTEε�uTb

�
dΩci�

L
∑

i=1

R
Γti

uTtidΓti = min:

where Nc is the total number of cells and L is the divided
number of traction boundaries.

Although the cells of EFGM are free to collocate in the
structure after taking into account of the cell continuity,
fewer nodes in a cell are usually suggested for computa-
tional efficiency. Besides, modifications for cells some-
times are required for geometric restrictions or com-
putational efficiency improvement, especially for three-
dimensional problems. By the same nodal collocation,
some typical examples of modifications are demonstrated
in Fig.5. No matter what kinds of modifications they are,
null cell is not a clever arrangement.

5 Generation of Nodes

In finite element analysis, nodes are connected by ele-
ments, therefore, they are not able to add or delete freely.

(a) geometric restrictions

(b) efficiency improvement
Figure 5 : Modifications of cells

In EFGM analysis, however, each node of the nodal set
X = fx1;x2; � � �xNg is independent each other. Hence, to
assure the uniqueness of the nodal displacements D, the
mapping between the nodal set X and the nodal displace-
ments D should be homeomorphic. That is, the nodal
set X should be a metric space and satisfy the valuation
theory in the valuation set (the nodal displacements D).

Let d (x1;x2) denote the distance from x1 to x2. For a
three-dimensional structure satisfying the compatibility
condition, the nodal set X is a metric space if it satisfies
the following conditions (Mendelson 1962):

(a) d (x1;x2)� 0 for all x1;x2 2 X,

(b) d (x1;x2) = 0 if and only if x1 = x2,

(c) d (x1;x2) = d (x2;x1) for all x1;x2 2 X,

and

(d) d (x1;x3)� d (x1;x2)+d (x2;x3) for all x1;x2;x3 2X.

Because the Euclidean coordinate system is adopted, all
material points of the structure form a metric space and,
therefore, the nodal set X should be a metric space. In
addition, since each node has three components of nodal
displacements which form the valuation set (the nodal
displacements D), the nodal set X also satisfies valuation
theory.

Consequently, the nodal displacements D exist and
unique no matter how the nodal set X is divided for
EFGM analysis. In this work, the nodal set X is divided
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into three independent subsets. These three subsets come
from three sequential steps for generating nodes in the
solution procedure, say, defining the geometric bound-
ary, arranging inside of the body, and improving numeri-
cal accuracy, if any. The nodal subsets corresponding to
those three sequential steps are represented as Xboundary,
Xbody, and Ximprovement . The combined nodal set X is then
found as

X = Xboundary +Xbody +Ximprovement (16)

The nodal subset of numerical improvement X improvement

can be applied freely without destroying the linkages of
the three-dimensional scattering sub-domains, except the
sub-domain relating to the changed nodes.

6 Results and Discussions

To evaluate the validity and efficiency of the EFGM pre-
sented, three examples are examined. The first example
is presented for demonstrating the merits of this work for
three-dimensional structural analysis. The comparison
of computational efficiency between the present EFGM
and finite element method is also shown. The second
example exhibits the flexibility of the present EFGM
for analyzing a sphere subjected to a diametrical load-
ing. The last example shows the superiority of the three-
dimensional scattering sub-domain devised in this work.
All structures are manufactured by steel with Young’s
modulus E=200 GPa and Poisson ratio v = 0.3.

A short beam containing a circular cylinder subjected to
uniform loading at both ends as shown in Fig.6 is first
analyzed. The finite element models using 8-node brick
elements and 20-node quadratic elements as seen in Fig.7
(a) and (b) are carried out. The computed stress concen-
tration factors Kσ near the positions A and B are listed
in Table1 and compared with those quoted by Peterson
(1974). For comparison purposes, the same nodal col-
locations as the linear and quadratic element discretiza-
tions are also adopted for the present EFGM computa-
tion. As seen from Table1, it is obvious that the present
EFGM is much more accurate but with a little expen-
sive CPU times. In fact, such nodal collocations can not
demonstrate the advantages of the present EFGM in deal-
ing with three-dimensional structural problem. An alter-
native nodal collocation with 198 nodes (much less) as

A

B

L =30 σ =  MPa

R = 2.5
W = 0

W = 0

σ =  MPa

Unit: cm

Figure 6 : Three-dimensional stress concentration anal-
ysis

displayed in Fig.8 (a) is generated by the two steps of
defining the geometric boundary and arranging inside of
the body. To Further improve the accuracy of the stress
concentration factors Kσ, the third step of improving nu-
merical accuracy is made by adding nodes near A and
B (see Fig.8 (b)). Excellent efficiency with difference
0.93% and 54 CPU sec. is achieved.

A sphere under a diametrical loading at two poles as
seen in Fig.9 is then solved. Also shown in Fig.9 is
the nodal collocation at various sections of the sphere
with 63 nodes. Although finite element method has been
widely used, sometimes, the geometric boundary can not
be treated whenever a specific properly element type is
used. To deal with the problem like this example, much
refined mesh as accompanies by ill shape elements is of-
ten employed. This example also presents the flexibil-
ity of the EFGM developed in solving three-dimensional
structural problems. Fig.10 displays the constant von
Mises stress contours on the surface of the sphere. Also
shown for comparison purposes is the analytical solution
on the spherical surface based on the theory of elasticity
(Timoshenko et al., 1970), which is derived as

σz = � P
8π(1�ν)

�
(1�2ν)(R2

�3z2)
R4 +

3z2(3R2
�5z2)

R6

�
;

σr =
P

8π(1�ν)

�
(1�2ν)(R2

�3z2)
R4 � 3(R2

�z2)(R2
�5z2)

R6

�
;

σθ =
P(1�2ν)(R2

�3z2)
8πR4(1�ν) ;

τrz = � P
8π(1�ν)

�
3z(1+2ν)

p
(R2

�z2)

R4 � 15z3
p
(R2

�z2)

R6

�
;

and

τrθ = τθz = 0:

More accurate results in the neighborhood of two loading
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Table 1 : The comparisons for FEM and EFGM
Cells Elements nodes Kσ differences CPU(sec)

Peterson (1974) - - - 2.16 - -
FEM I(8 nodes) - 192 325 1.76 18.51% 181

II(20 nodes) - 192 1,145 2.06 4.63% 428
EFGM I 325 - 325 2.02 6.48% 292

II 1,145 - 1,145 2.14 0.93% 1,421
Original 198 - 198 1.98 8.33% 32
Modified 218 - 218 2.14 0.93% 54

B

A

elements: 192
nodes: 325
(a) 8-node brick element

B

A

elements: 192
nodes: 1,145
(b) 20-node quadratic element

Figure 7 : Finite element discretizations for stress con-
centration problem

A

B

nodes: 198
(a) original

A

B

nodes: 218
(b) modified
Figure 8 : Different node collocations for the EFGM
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A

B

C

P= 0 kN

section A

section B

section C

nodes : 63

P= 0 kN

R= 0

z

r

θ

Figure 9 : A sphere under a diametrical loading at two
poles

a = 0.795

d

EFGM

b = 0.614

c = 0.424

d = 0.318

Unit: MPa 

Timoshenko et al. (1970)a

a
b

b

c

c

present}

Figure 10 : The von Mises stress contours on the spher-
ical surface

0
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2

5

5

4

7

5

R = 5

5

σ= MPa

fixed

Unit: mm

z x

y

Figure 11 : The forward motion of a screwdriver

poles can be achieved by further modified node genera-
tion.

To demonstrate the novelty of the three-dimensional scat-
tering sub-domain devised in executing moving least
squares approximation among nodes with different den-
sities, the forward motion of a screwdriver as described
in Fig.11 is finally analyzed. Since the bottom end
needs more nodes to achieve finer stress resolution, the
nodal generation differs from other positions. The three-
dimensional scattering sub-domain fully exhibits its su-
periority by the changeable size of linkages. The com-
puted results and those calculated by the mechanics of
strength of materials are drawn in Fig.12. The latter ap-
proximated solution can be written as

σy =
5
A
; (17)

where A is the area of various cross sections of the screw-
driver paralleling to x� z plane. These differences per-
haps are caused by the stress concentration around cor-
ners, which can not be accounted for by Eqn.(17). By this
example, the present EFGM shows its advantages and
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a

a

a

a

a

b

c

d

c = 0. 79

Eqn.(17)

b = 0. 43

a = 0.2

d = 0.333

Unit: MPa

EFGM

} present

Figure 12 : von Mises stress contours of a screwdriver

flexibility in changing the size of linkages and number of
nodes in the three-dimensional scattering sub-domains.

7 Conclusions and Recommendations

An accurate and efficient EFGM has been success-
fully established to deal with three-dimensional struc-
tural problems. The three-dimensional scattering sub-
domain with changeable size of linkages demonstrates its
superiority in minimizing the bandwidth of stiffness ma-
trix but maintaining the accuracy. The relation between
the quadrature orders nQ and the number of nodes in a
cell nc is rigorously examined. The flexibility of gener-
ating nodes for the present three-dimensional structural
analysis is also developed. The present EFGM tech-
nique can be further extended to analyze other three-
dimensional structural problems, for examples, the prob-
lems with geometric/material nonlinear behaviors, etc.

Appendix A. The nodal interpolation functions
φi (ξ;η;ζ)

In this work, a cubic cell with a node i at its center is con-
sidered. After mapping from global coordinates fx;y;zg
to natural coordinates fξ;η;ζ;�1 � ξ;η;ζ � 1g, one has

φi (x) = φi (ξ;η;ζ) =
K
∑

k=1
ckξrηsζt

=
�
1�ξ2

� �
1�η2

� �
1�ζ2

�
= 1�ξ2 �η2 �ζ2 +ξ2η2 +η2ζ2 +ζ2ξ2 �ξ2η2ζ2;

where the number of terms K equals 8. The order of
nodal interpolation function φ i (ξ;η;ζ) is

r+ s+ t = 6� m+D = 4: (m = 1;D = 3)

The quadrature orders nQ is therefore determined by

nQ � D
p

nc +D = 4: (nc = 1)

As mentioned above, since each cell used in this work
is always with a node at its center, hence, the quadrature
orders nQ is taken as 4 for all calculations. As curved
surface becomes part of the cell, higher quadrature orders
nQ is a better choice for such cell.
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