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2.5D Green’s Functions for Elastodynamic Problems in Layered Acoustic and
Elastic Formations

António Tadeu and Julieta António1

Abstract: This paper presents analytical solutions,
together with explicit expressions, for the steady state
response of homogeneous three-dimensional layered
acoustic and elastic formations subjected to a spatially
sinusoidal harmonic line load. These formulas are theo-
retically interesting in themselves and they are also use-
ful as benchmark solutions for numerical applications. In
particular, they are very important in formulating three-
dimensional elastodynamic problems in layered fluid and
solid formations using integral transform methods and/or
boundary elements, avoiding the discretization of the
solid-fluid interfaces. The proposed Green’s functions
will allow the solution to be obtained for high frequen-
cies, for which the conventional boundary elements’ so-
lution would require an inordinate computational effort,
ruling out its use. In order to validate the final expres-
sions, the results were compared with those provided
by the Boundary Element Method (BEM) solution, for
which the interfaces between layers are discretized with
boundary elements.

keyword: Green’s functions, analytical solutions, spa-
tially sinusoidal harmonic line load.

1 Introduction

The derivation and development of Green’s functions has
been object of research over the years because these ex-
pressions can be used as benchmark solutions and they
can be incorporated in the development of numerical
methods such as the Boundary Elements Method (BEM)
[Kögl and Gaul (2000); Katsikadelis and Nerantzaki
(2000); Zheng and Dravinski (2000); Polyzos, Dassios
and Beskos (1994)]. This research has been extended
to many areas of engineering, such as fracture mechan-
ics, fluid dynamics, heat transfer, structural mechanics,
elastodynamics [Guimarães and Telles (2000); Melnikov
and Melnikov (2001)]. The present study extends the
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work performed by the authors in the derivation of an-
alytical solutions for the steady state response of a ho-
mogeneous three-dimensional half-space subjected to a
spatially sinusoidal, harmonic line load. In the present
case, this work presents the Green’s functions for calcu-
lating the wavefield in a formation formed by an elas-
tic solid medium, bounded by one or two acoustic flat
fluid media, as in Fig. 3 and Fig. 4, when subjected to ei-
ther a spatially sinusoidal harmonic point load placed in
the solid or a spatially sinusoidal harmonic pressure load
submerged in the fluid. These functions, or fundamental
solutions, relate the field variables (stresses or displace-
ments) at some location in the solid or in the fluid do-
mains caused by a dynamic source located at a different
point in the solid-fluid formation.

The technique presented here requires the knowledge of
solid displacement potentials and fluid pressure poten-
tials. The solid displacement potentials employed to de-
fine the present Green’s functions are those defined by
the methodology used by the authors [Tadeu and Kausel
(2000)] to evaluate the Green’s functions for a har-
monic (steady state) line load with a sinusoidally vary-
ing amplitude in the third dimension in an unbounded
medium. For the fluid pressure potential, a similar tech-
nique is used. All these displacement and pressure po-
tentials are written as a superposition of plane waves
following the approach used first by Lamb (1904) for
the two-dimensional case and then by Bouchon (1979)
and Kim and Papgeorgiou (1993) to calculate the three-
dimensional field by means of a discrete wave number
representation. The Green’s functions for the solid-fluid
formation are then derived, assuming the continuity of
normal displacements and stresses, and ascribing null
tangential stresses at the interface between the solid and
the fluid media. The final Green’s functions are then writ-
ten as the sum of the Green’s function for a full-space
with surface terms, using a technique similar to that de-
scribed by Kawase (1988).
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The fundamental solutions presented here, namely the
Green’s functions for a spatially sinusoidal line harmonic
(steady state) load, or pressure load in a layered solid
fluid formation, often referred to in the literature as the
2.5D problem, are of great value in formulating 3D elas-
todynamic problems, such as those involving the solid-
fluid interaction via boundary elements together with in-
tegral transforms.

This paper describes first how the Green’s functions for
a sinusoidal line load applied in an unbounded solid for-
mation along the x, y and z directions, can be written as a
continuous superposition of homogeneous plane waves.
A similar procedure is applied to the Green’s function for
a sinusoidal line pressure load applied in an unbounded
fluid medium. Next, the Green’s functions for an elas-
tic formation, bounded by one or two flat fluid media,
are established, using the required boundary conditions
at the solid-fluid interfaces. Finally, the full set of expres-
sions is compared with those provided by the Boundary
Element Method, for which a full discretization of the
boundary interfaces is required.

2 Green’s Functions in an Unbounded Medium

2.1 Solid Formation

An infinite homogeneous space is subjected, at the origin
of coordinates, to a spatially varying line load of the form
p � x � y � z � t ��� δ � x � δ � y � ei � ωt � kzz 	 acting in one of the three
coordinate directions. Here, δ � x � and δ � y � are Dirac-
delta functions, ω is the frequency of the load and kz is
the wavenumber in z (see Fig. 1). The response to this

x

z

y

(x0, y0)

Figure 1 : Geometry of the problem: Full-space

load can be calculated by applying a spatial Fourier trans-
form in the z direction to the Helmholtz equations for a

point load (see e.g. Gradshteyn and Ryzhik (1980)). The
z transformed equations are then


∂2Âp

∂x2 � ∂2Âp

∂y2 � k2
αÂp � ��
 iH � 2 	0 � 
 ikzr �

4ρα2

∂2Âs

∂x2 � ∂2Âs

∂y2 � k2
βÂs � � 
 iH � 2 	0 � 
 ikzr �

4ρβ2 (1)

where kα ��� k2
p 
 k2

z with � Im � kα ��� 0 � and kp � ω/α,

kβ � � k2
s 
 k2

z with � Im � kβ � � 0 � and ks � ω � β,

α � � � λ � 2µ � � ρ and β � � µ � ρ are the velocities for
P (pressure) waves and S (shear) waves, respectively, λ
and µ are the Lamé constants, ρ is the mass density,
Âp � x � y � kz � ω � and Âs � x � y � kz � ω � are the Fourier trans-
forms of the two potentials Ap � x � y � z � ω � and As � x � y � z � ω�
for the irrotational and equivoluminal parts of the dis-
placement vector, H � 2 	n ��� are Hankel functions of the sec-
ond kind and nth order, r � � x2 � y2 and i ��� 
 1. From
equilibrium conditions we find Âp and Âs,

Âp � i
4ρω2 � H � 2 	0 � kαr � 
 H � 2 	0 � 
 ikzr ���

Âs � i
4ρω2 � H � 2 	0 � kβr � 
 H � 2 	0 � 
 ikzr ��� (2)

It is now possible to compute displacements Gi j in direc-
tion i due to a load applied in direction j from the relation

Gi j � ∂2 � Âp 
 Âs �
∂xi∂x j

� δi j ∇
2
Âs (3)

in which δi j is the Kronecker delta, x j � x � y � z for
j � 1 � 2 � 3, and ∂

∂z � 
 ikz. We may observe that

Âp 
 Âs � 1
4iρω2 � H � 2 	0 � kβr � 
 H � 2 	0 � kαr � �

∇2
Âs � 1

4iρβ2 H � 2 	0 � kβr � (4)

A full set of Green’s functions, expressions for the strains
and stresses, are presented in Tadeu and Kausel (2000),
which are in complete agreement with the solution for
moving loads given earlier by Pedersen, Sánchez-Sesma
and Campillo (1994) and Papageorgiou and Pei (1998).

These same equations can be expressed as a continu-
ous superposition of homogeneous and inhomogeneous
plane waves when the load acts in the direction x, y and
z.
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2.1.1 Load acting in the direction of the x-axis

The displacement potentials that result from a spatially
sinusoidal harmonic line load along the z direction, ap-
plied at the point � x0 � y0 � in the x direction, are then given
by the expressions,

φx  1
4πρω2 ! ∞"# ∞ $ k

ν
e
# iν % y # y0 % & e

# ik ' x # x0 ( dk

ψx
x
 0

ψx
y
 i �*) ikz �

4πρω2 ! ∞"# ∞

+
e # iγ % y # y0 %

γ , e
# ik ' x # x0 ( dk

ψx
z
 ) sgn � y ) y0 �

4πρω2 ! ∞"# ∞ - e # iγ % y # y0 % . e # ik ' x # x0 ( dk (5)

where ν  / k2
p ) k2

z ) k2 with � Im � ν �10 0 � ,
γ  2 k2

s ) k2
z ) k2 with � Im � γ �10 0 � , and integra-

tion is performed with respect to the horizontal wave
number (k) along the x direction.

The transformation of these integrals into a summation
can be achieved if an infinite number of such sources are
distributed along the x direction, at equal intervals Lx.
The above compressional and rotational potentials can
then be written as

φx  Ea

n 3 ! ∞

∑
n 3 # ∞ $ kn

νn
Eb
& Ed

ψx
x
 0

ψx
y
 Eakz

n 3 ! ∞

∑
n 3 # ∞ $ Ec

γn

& Ed

ψx
z
 ) sgn � y ) y0 � Ea

n 3 ! ∞

∑
n 3 # ∞

� Ec � Ed (6)

where Ea
 1

2ρω2Lx
, Eb

 e # iνn % y # y0 % , Ec
 e # iγn % y # y0 % ,

Ed
 e # ikn ' x # x0 ( , νn

 4/ k2
p ) k2

z ) k2
n with � Im � νn �50 0 � ,

γn
 �2 k2

s ) k2
z ) k2

n with � Im � γn �10 0 � , kn
 2π

Lx
n, which

can in turn be approximated by a finite sum of equations
(N).

The Green’s functions can be expressed in terms of the
compressional and rotational potentials, φx, ψx

x, ψx
y and

ψx
z , from which the following three components of dis-

placement can be calculated,

G f ull
xx

 Ea

n 3 ! N

∑
n 3 # N 6 ) ik2

n

νn
Eb 7 $ ) iγn ) ik2

z

γn

& Ec 8 Ed

G f ull
yx

 Ea
n 3 ! N

∑
n 3 # N 9 ) isgn � y ) y0 � knEb 7

isgn � y ) y0 � knEc : Ed

G f ull
zx

 Ea

n 3 ! N

∑
n 3 # N $ ) ikzkn

νn
Eb 7 ikzkn

γn
Ec
& Ed (7)

The corresponding expressions for forces applied along
the y and z directions can be calculated in the same way.
The derivation of these solutions is then presented, but in
condensed form.

2.1.2 Load acting in the direction of the y-axis

The displacement potentials resulting from a spatially si-
nusoidal harmonic line load along the z direction, applied
at the point � x0 � y0 � in the y direction, are then given, in a
discrete form, by the expressions,

φy  Ea

n 3 ! N

∑
n 3 # N 9 sgn � y ) y0 � Eb : Ed

ψy
x
 Eakz

n 3 ! N

∑
n 3 # N $ ) Ec

γn

& Ed

ψy
y
 0

ψy
z
 Ea

n 3 ! N

∑
n 3 # N $ kn

γn
Ec
& Ed (8)

The Green’s functions for a two-and-a-half dimensional
full space are thus,

G f ull
xy

 G f ull
yx

 
Ea

n 3 ! N
∑

n 3 # N 9 ) isgn � y ) y0 � knEb 7 isgn � y ) y0 � knEc : Ed

G f ull
yy

 Ea

n 3 ! N

∑
n 3 # N 6 ) iνnEb 7 $ iν2

zn

γn

& Ec 8 Ed

G f ull
zy

 Ea
n 3 ! N

∑
n 3 # N 9 ) isgn � y ) y0 � kzEb 7

isgn � y ) y0 � kzEc : Ed

(9)
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2.1.3 Load acting in the direction of the z-axis

Similarly, the discrete form of the displacement poten-
tials resulting from a spatially sinusoidal harmonic line
load along the z direction, applied at the point < x0 = y0 > in
the z direction, is given by the expressions,

φz ? Eakz

n @BA N

∑
n @DC N E Eb

νn F Ed

ψz
x
? Ea

n @�A N

∑
n @GC N H sgn < y I y0 > Ec J Ed

ψz
y
? Ea

n @�A N

∑
n @GC N E I kn

γn
Ec F Ed

ψz
z
? 0 (10)

The Green’s functions for a two-and-a-half dimensional
full space are then,

G f ull
xz

? G f ull
zx

? Ea

n @�A N

∑
n @GC N E I ikzkn

νn
Eb K ikzkn

γn
Ec F Ed

G f ull
yz

? G f ull
zy

?
Ea

n @�A N
∑

n @GC N H I isgn < y I y0 > kzEb K isgn < y I y0 > kzEc J Ed

G f ull
zz

? Ea

n @BA N

∑
n @DC N L I ik2

z

νn
Eb K E I ik2

n

γn
I iγn F Ec M Ed (11)

2.2 Fluid formation

The fluid dilatational potential for a sinusoidal pressure
line load applied at the point < x0 = y0 > can be obtained us-
ing a similar process described above, leading to the ex-
pression

φ f luid < ω = x = y = kz > ?C i
2 E I α2

f
ω2λ f F H N 2 O0 E kα f P < x I x0 > 2 K < y I y0 > 2 F (12)

in which

kα f
? ω2

α2
f
I k2

z = Im kα f Q 0

λ f is the fluid Lamé constant, α f
? P λ f R ρ f is the acous-

tic (dilatational) wave velocity of the medium and ρ f is
the mass density of the fluid.

The discrete form of the fluid dilatational potential, as
described above, can be written in the form,

φ f luid
? I i

Lx

n @BA N

∑
n @DC N SUT I α2

f

ω2λ f V E f

ν f
n W Ed (13)

where E f
? e C iν f

n X y C y0 X , ν f
n
? P k2

p f
I k2

z I k2
n withY

Im
Y
ν f

n Z\[ 0 Z and kp f
? ω R α f .

The Green’s function for a two-and-a-half dimensional
full space can then be written as,

G f ull
f x
? I 1

Lx

n @BA N

∑
n @DC N S]T I α2

f

ω2λ f V kn

ν f
n

E f W Ed

G f ull
f y
? I 1

Lx

n @BA N

∑
n @DC N S]T I α2

f

ω2λ f V sgn < y I y0 > E f W Ed

G f ull
f z
? I 1

Lx

n @BA N

∑
n @DC N S]T I α2

f

ω2λ f V kz

ν f
n

E f W Ed (14)

3 Green’s Functions in a Fluid-solid Formation

3.1 Load in the Solid Formation Acting in the Direc-
tion of the x-axis.

The Green’s functions for a fluid-solid formation can be
expressed as the sum of the source terms equal to those
in the full-space and the surface terms needed to satisfy
the fluid-solid interface conditions (continuity of normal
displacements and stresses, and null tangential stresses).
These surface terms can be expressed in a form similar
to that of the source term, i.e.
Solid medium

φx
0
? Ea

n @�A ∞

∑
n @GC ∞ E kn

νn
Eb0Ax

n F Ed

ψx
x0
? 0

ψx
y0
? Eakz

n @�A ∞

∑
n @GC ∞ E Ec0

γn
Bx

n F Ed

ψx
z0
? I Ea

n @BA ∞

∑
n @DC ∞

< Ec0Cx
n > Ed (15)

Fluid medium

φ f luid
? I i

Lx

n @BA N
∑

n @DC N L^E C α2
f

ω2λ f F E f 0

ν f
n

Dx
n M Ed< when y Q 0 > (16)
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where Eb0 _ e ` iνny, Ec0 _ e ` iγny, E f 0 _ e ` iν f
n y, Ax

n, Bx
n,

Cx
n and Dx

n, are as yet unknown coefficients to be deter-
mined from the appropriate boundary conditions, so that
the field produced simultaneously by the source and sur-
face terms should produce σs

yx _ σ f
yx _ 0, σs

yz _ σ f
yz _ 0,

σs
yy _ σ f

yy and us
y _ u f

y at y _ 0.
Imposing the four stated boundary conditions for each
value of n thus leads to a system of four equations in the
four unknown constants. This procedure is quite straight-
forward, but the details are rather complex, and for this
reason are not presented here. The final system of equa-
tions alone is,a
ax

i j i _ 1 b 4; j _ 1 b 4 ced cx
i i _ 1 b 4f _ d bx

i i _ 1 b 4f (17)

which is described in Appendix B.

Once the constants have been obtained, the motions and
pressures associated with the surface terms may be cal-
culated using the equations which relate potentials to dis-
placements and pressures. Essentially, this needs to con-
sider Eq. 15 and the application of partial derivatives over
the potentials to obtain displacements and pressures. The
Green’s functions for a solid formation are then obtained
from the sum of the source terms and these surface terms.
When this procedure has been carried out, expressions
for the displacements in the solid formation are obtained
in the following form:

G f s
xx _ G f ull

xx g
Ea

n h�i N
∑

n h ` N j Ax
n ` ik2

n
νn

Eb0 g�k]l iγnCx
n l ik2

z
γn

Bx
n m Ec0 n Ed

G f s
yx _ G f ull

yx g Ea

n hBi N

∑
n h ` N o l iknAx

nEb0 g iknCx
nEc0 p Ed

G f s
zx _ G f ull

zx g
Ea

n h�i N
∑

n h ` N
k ` ikzkn

νn
Ax

nEb0 g ikzkn
γn

Bx
nEc0 m Ed

(18)

The expressions for the Green’s function for two-and-
a-half dimensional full space G f ull

xx , G f ull
yx and G f ull

zx can
be defined in explicit form, as listed in the Appendix A:
[Tadeu and Kausel (2000)]. The well-known equations
relating strains and displacements can be used to calcu-
late expressions for stress in the solid formation. The
displacements and the pressures in the fluid medium are
only given by the surface fluid terms (Eq. 16). The final
expression for the pressure field in the fluid medium is

then given by

σ f s
f x _ l i

Lx

n h�i N

∑
n h ` N q E f 0

ν f
n

Dx
nkn r Ed o when y s 0 p (19)

The corresponding expressions for forces applied along
the y and z directions can be calculated in a similar way.
The derivation of these solutions is then presented, but in
condensed form.

3.2 Load in the Solid Formation Acting in the Direc-
tion of the y-axis.

The potential surface terms generated by the solid for-
mation can be expressed in a form similar to that of the
source term (Eq. 8),

φy
0 _ Ea

n h�i N

∑
n h ` N o Eb0 Ay

n p Ed

ψy
x0 _ Eakz

n h�i N

∑
n h ` N q l Ec0

γn
Cy

n r Ed

ψy
y0 _ 0

ψy
z0 _ Ea

n hBi N

∑
n h ` N q kn

γn
Ec0By

n r Ed (20)

while the fluid pressure potential is given by the same
expression defined above,

φ f luid _ l i
Lx

n hBi N
∑

n h ` N t q ` α2
f

ω2λ f
r E f 0

ν f
n

Dy
n u Edo when y s 0 p (21)

The imposition of the four stated boundary conditions
(σs

yx _ σ f
yx _ 0, σs

yz _ σ f
yz _ 0, σs

yy _ σ f
yy and us

y _ u f
y

at y _ 0) for each value of n leads to a system of four
equations,j ay

i j i _ 1 b 4; j _ 1 b 4n a cy
i i _ 1 b 4c _ a

by
i i _ 1 b 4c (22)

which is listed in Appendix C.

Once the amplitude of each potential has been calculated,
the Green’s functions for the solid formation are then
given by the sum of the source terms and these surface
terms. This gives the expressions:

G f s
xy _ G f ull

xy g Ea

n h�i N

∑
n h ` N

d l iAy
nknEb0 g iBy

nknEc0 f Ed
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G f s
yy w G f ull

yy x
Ea

n y�z N
∑

n yG{ N |�} iνnAy
nEb0 x�~ { ik2

n
γn

By
n x { ik2

z
γn

Cy
n � Ec0 � Ed

G f s
zy w G f ull

zy x Ea

n yBz N

∑
n yD{ N � } iAy

nkzEb0 x iCy
nkzEc0 � Ed (23)

The expressions G f ull
xy , G f ull

yy and G f ull
zy , can be used in

explicit form as shown in the Appendix A. Once again,
it is possible to use the well-known equations relating
strains and displacements to derive expressions for the
stresses from Gi j.

The final expression for the pressure field in the fluid
medium is then given by

σ f s
f y w } i

Lx

n yBz N

∑
n yD{ N � E f 0

ν f
n

Dy
n � Ed (24)

3.3 Load in the solid formation acting in the direction
of the z-axis

The potential surface terms generated by the solid forma-
tion can now be written as (Eq. 10),

φz
0 w Eakz

n y�z N

∑
n yG{ N � Eb0

νn
Az

n � Ed

ψz
x0 w Ea

n y�z N

∑
n yG{ N � Ec0Bz

n � Ed

ψz
y0 w Ea

n y�z N

∑
n yG{ N � } kn

γn
Ec0Cz

n � Ed

ψz
z0 w 0 (25)

while the fluid pressure potential is given by the expres-
sion,

φ f luid w } i
Lx

n y�z N
∑

n yG{ N � � { α2
f

ω2λ f � E f 0

ν f
n

Dz
n � Ed� when y � 0 � (26)

The imposition of the boundary conditions
(σs

yx w σ f
yx w 0, σs

yz w σ f
yz w 0, σs

yy w σ f
yy and us

y w u f
y at

y w 0) for each value of n leads to the following system
of four equations,| az

i j i w 1 � 4; j w 1 � 4��� cz
i i w 1 � 4� w�� bz

i i w 1 � 4� (27)

as listed in Appendix D. Once the amplitude of each
potential has been obtained, the Green’s functions for

a solid formation are given by the sum of the source
terms and these surface terms, giving the following ex-
pressions,

G f s
xz w G f ull

xz x Ea

n y�z N

∑
n yG{ N � } ikzkn

νn
Az

nEb0 x ikzkn

γn
Cz

nEc0 � Ed

G f s
yz w G f ull

yz x Ea

n y�z N

∑
n yG{ N � } ikzAz

nEb0 x iBz
nkzEc0 � Ed

G f s
zz w G f ull

zz x
Ea

n y�z N
∑

n yG{ N | { ik2
z

νn
Az

nEb0 x ~ { ik2
n

γn
Cz

n } iγnBz
n � Ec0 � Ed

(28)

The expressions G f ull
xy , G f ull

yy and G f ull
zy can be used in ex-

plicit form as shown in the Appendix A. Once again, the
well-known equations relating strains and displacements
can be used to derive expressions for the stresses in the
solid formation from Gi j.

The final expression for the pressure field in the fluid
medium is given, as before, by

σ f s
f z w } i

Lx

n y�z N

∑
n yG{ N � E f 0

ν f
n

Dz
n � Ed � when y � 0 � (29)

3.4 Pressure Load Acting in the Fluid

The potential surface terms generated by the solid for-
mation can be expressed in a form similar to that of one
of the source terms used before. The source terms gen-
erated when the load is acting along the y direction are
used (Eq. 8),

φy
0 w Ea

n y�z N

∑
n yG{ N � Eb0 A f

n � Ed

ψy
x0 w Eakz

n y�z N

∑
n yG{ N � } Ec0

γn
C f

n � Ed

ψy
y0 w 0

ψy
z0 w Ea

n yBz N

∑
n yD{ N � kn

γn
Ec0B f

n � Ed (30)

while the fluid pressure potential is given by the expres-
sion already defined above,

φ f luid w } i
Lx

n yBz N
∑

n yD{ N � � { α2
f

ω2λ f � E f 0

ν f
n

D f
n � Ed� when y � 0 � (31)
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The imposition of the four stated boundary conditions
(σs

yx � σ f
yx � 0, σs

yz � σ f
yz � 0, σs

yy � σ f
yy and us

y � u f
y

at y � 0) for each value of n leads to a system of four
equations,�
a f

i j i � 1 � 4; j � 1 � 4� � c f
i i � 1 � 4� � �

b f
i i � 1 � 4�

(32)

as listed in Appendix E.

Once the amplitude of each potential has been calculated,
the Green’s functions for the solid formation are then
given by these surface terms,

G f s
x f � Ea

n �B� N

∑
n �D� N ��� iA f

nknEb0 � iB f
nknEc0 � Ed

G f s
y f �

Ea
n ��� N

∑
n �G� N

�
� iνnA f

nEb0 ��� � ik2
n

γn
B f

n � � ik2
z

γn
C f

n � Ec0 � Ed

G f s
z f � Ea

n �B� N

∑
n �D� N ��� iA f

nkzEb0 � iC f
n kzEc0 � Ed (33)

Again, it is possible to use the well-known equations re-
lating strains and displacements to derive expressions for
the stresses from Gi f .

The final expression for the pressure field in the fluid
medium is then given by the sum of the source terms and
the fluid surface terms, giving the following expressions,

σ f s � σ f ull � i
Lx

n �B� N
∑

n �D� N
� E f 0

ν f
n

D f
n � Ed�

when y � 0 � (34)

The expression σ f ull is listed in the Appendix A.

Notice that, if kz � 0 is used, the above system of equa-
tions is reduced to three unknowns, leading to the two-
dimensional Green’s function for plane strain line-loads.

4 Green’s Functions in a Solid Layer Formation
Bounded by Two Fluid Media

4.1 Load in the solid formation acting in the direction
of the x-axis.

The Green’s functions for a solid layer formation, with
thickness h, bounded by two fluid media, can be ex-
pressed as the sum of the source terms equal to those
in the full-space and the surface terms needed to satisfy

the boundary conditions at the two fluid-solid interfaces
(continuity of normal displacements and stresses, and
null tangential stresses). With this specific problem, the
two interfaces (top and bottom) generate surface terms
which can be expressed in a form similar to that of the
source term,
Solid medium (top interface)

φx top
0 � Ea

n ��� ∞

∑
n �G� ∞   kn

νn
Eb0Ax

n ¡ Ed

ψx top
x0 � 0

ψx top
y0 � Eakz

n �B� ∞

∑
n �D� ∞   Ec0

γn
Bx

n ¡ Ed

ψx top
z0 � � Ea

n ��� ∞

∑
n �G� ∞

�
Ec0Cx

n � Ed (35)

Fluid medium (top interface)

φtop
f luid � � i

Lx

n �B� N
∑

n �D� N ¢   � α2
f

ω2λ f ¡ E f 0

ν f
n

Dx
n £ Ed�

when y � 0 � (36)

Solid medium (bottom interface)

φx bottom
0 � Ea

n ��� ∞

∑
n �G� ∞   kn

νn
Eb

b0Ex
n ¡ Ed

ψx bottom
x0 � 0

ψx bottom
y0 � Eakz

n ��� ∞

∑
n �G� ∞   Eb

c0
γn

Fx
n ¡ Ed

ψx bottom
z0 � � Ea

n ��� ∞

∑
n �G� ∞

� Eb
c0Gx

n � Ed (37)

Fluid medium (bottom interface)

φbottom
f luid � � i

Lx

n ��� N
∑

n �G� N ¢   � α2
f

ω2λ f ¡ Eb
f 0

ν f
n

Hx
n £ Ed�

when y ¤ h � (38)

where, Eb
b0 � e � iνn ¥ y � h ¥ , Eb

c0 � e � iγn ¥ y � h ¥ , Eb
f 0 � e � iν f

n ¥ y � h ¥ .
Ax

n, Bx
n, Cx

n, Dx
n, Ex

n, Fx
n , Gx

n and Hx
n are as yet un-

known coefficients to be determined from the appropriate
boundary conditions, so that the field produced simulta-
neously by the source and surface terms should produce
σs

yx � σ f
yx � 0, σs

yz � σ f
yz � 0, σs

yy � σ f
yy and us

y � u f
y at

y � 0 and at y � h.
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Imposing the eight stated boundary conditions for each
value of n thus leads to a system of eight equations in
the eight unknown constants. This procedure is quite
straightforward, but the details are rather complex, and
for this reason are not presented here. The final system
of equations is of the form§
ax

i j i ¨ 1 © 8; j ¨ 1 © 8 ªe« cx
i i ¨ 1 © 8¬­¨�« bx

i i ¨ 1 © 8¬ (39)

which is fully described in Appendix B.

Once the unknown coefficients have been calculated, the
motions and pressures associated with the surface terms
can be obtained using the equations relating the poten-
tials to displacements and pressures. The Green’s func-
tions for a solid formation are then obtained from the sum
of the source terms and the surface terms originated at the
two interfaces. This procedure produces the following
expressions for the displacements in the solid formation:

G f s f
xx ¨ G f ull

xx ®
Ea

n ¯�° N
∑

n ¯G± N ² Ax
n
± ik2

n
νn

Eb0 ®�³]´ iγnCx
n ´ ik2

z
γn

Bx
n µ Ec0 ¶ Ed ®

Ea
n ¯�° N

∑
n ¯G± N ² Ex

n
± ik2

n
νn

Eb
b0 ®·³]´ iγnGx

n ´ ik2
z

γn
Fx

n µ Eb
c0 ¶ Ed

G f s f
yx ¨ G f ull

yx ® Ea
n ¯B° N

∑
n ¯D± N ¸ ´ iknAx

nEb0 ® iknCx
nEc0 ¹ Ed ®

Ea
n ¯�° N

∑
n ¯G± N º iknEx

nEb
b0 ´ iknGx

nEb
c0 » Ed

G f s f
zx ¨ G f ull

zx ®
Ea

n ¯�° N
∑

n ¯G± N
³ ± ikzkn

νn
Ax

nEb0 ® ikzkn
γn

Bx
nEc0 µ Ed ®

Ea
n ¯�° N

∑
n ¯G± N

³ ± ikzkn
νn

Ex
nEb

b0 ® ikzkn
γn

Fx
n Eb

c0 µ Ed

(40)

The final expression for the pressure field in the two fluid
media are then given by

σ f s f top
f x ¨ ´ i

Lx

n ¯�° N

∑
n ¯G± N ¼ knE f 0

ν f
n

Dx
n ½ Ed ¸ when y ¾ 0 ¹

σ f s f bottom
f x ¨ ´ i

Lx

n ¯B° N
∑

n ¯D± N ¼ knEb
f 0

ν f
n

Hx
n ½ Ed¸ when y ¿ h ¹ (41)

The expressions for forces applied along the y and z di-
rections can be derived in the same way. Thus, only the
final system of equations is presented.

4.2 Load in the Solid Formation Acting in the Direc-
tion of the y-axis.

The surface terms generated at the two interfaces can be
expressed through the following potentials,
Solid medium (top interface)

φy top
0 ¨ Ea

n ¯�° N

∑
n ¯G± N ¸ Eb0Ay

n ¹ Ed

ψy top
x0 ¨ Eakz

n ¯B° N

∑
n ¯D± N ¼ ´ Ec0

γn
Cy

n ½ Ed

ψy top
y0 ¨ 0

ψy top
z0 ¨ Ea

n ¯B° N

∑
n ¯D± N ¼ kn

γn
Ec0By

n ½ Ed (42)

Fluid medium (top interface)

φtop
f luid ¨ ´ i

Lx

n ¯B° N
∑

n ¯D± N À ¼ ± α2
f

ω2λ f ½ E f 0

ν f
n

Dy
n Á Ed¸ when y ¾ 0 ¹ (43)

Solid medium (bottom interface)

φy bottom
0 ¨ Ea

n ¯�° N

∑
n ¯G± N

³ Eb
b0Ey

n µ Ed

ψy bottom
x0 ¨ Eakz

n ¯�° N

∑
n ¯G± N ¼ ´ Eb

c0
γn

Gy
n ½ Ed

ψy bottom
y0 ¨ 0

ψy bottom
z0 ¨ Ea

n ¯�° N

∑
n ¯G± N ¼ kn

γn
Eb

c0Fy
n ½ Ed (44)

Fluid medium (bottom interface)

φbottom
f luid ¨ ´ i

Lx

n ¯�° N
∑

n ¯G± N À ¼ ± α2
f

ω2λ f ½ Eb
f 0

ν f
n

Hy
n Á Ed¸ when y ¿ h ¹ (45)

The imposition of the eight stated boundary conditions
for each value of n leads to a system of eight equations
in the eight unknown constants,² ay

i j i ¨ 1 © 8; j ¨ 1 © 8¶ § cy
i i ¨ 1 © 8ª ¨ §

by
i i ¨ 1 © 8ª (46)

which is fully described in Appendix C.

Once the amplitude of each potential has been calculated,
the Green’s functions for the displacements in the solid
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formation are then given by the sum of the source terms
and the surface terms originated at the two solid-fluid in-
terfaces,

G f s f
xy Â G f ull

xy Ã Ea
n ÄBÅ N

∑
n ÄDÆ N Ç�È iAy

nknEb0 Ã iBy
nknEc0 É Ed Ã

Ea
n Ä�Å N

∑
n ÄGÆ N Ç È iEy

nknEb
b0 Ã iFy

n knEb
c0 É Ed

G f s f
yy Â G f ull

yy Ã
Ea

n Ä�Å N
∑

n ÄGÆ N Ê�È iνnAy
nEb0 Ã�Ë Æ ik2

n
γn

By
n Ã Æ ik2

z
γn

Cy
n Ì Ec0 Í Ed Ã

Ea
n Ä�Å N

∑
n ÄGÆ N Î È iνnEy

nEb
b0 Ã Ë Æ ik2

n
γn

Fy
n Ã Æ ik2

z
γn

Gy
n Ì Eb

c0 Í Ed

G f s f
zy Â G f ull

zy Ã
Ea

n Ä�Å N
∑

n ÄGÆ N ÇÏÈ iAy
nkzEb0 Ã iCy

nkzEc0 É Ed Ã
Ea

n Ä�Å N
∑

n ÄGÆ N ÇÏÈ iEy
nkzEb

b0 Ã iGy
nkzEb

c0 É Ed

(47)

The final expressions for the pressure field in the two
fluid media are then given by

σ f s f top
f y Â È i

Lx

n Ä�Å N

∑
n ÄGÆ N Ð E f 0

ν f
n

Dy
n Ñ Ed Ò when y Ó 0 Ô

σ f s f bottom
f y Â È i

Lx

n ÄBÅ N
∑

n ÄDÆ N Ð Eb
f 0

ν f
n

Hy
n Ñ EdÒ when y Õ h Ô (48)

4.3 Load in the solid formation acting in the direction
of the z-axis

The surface terms generated at the two interfaces can
be expressed using the following potentials, which have
been derived using the technique described above,
Solid medium (top interface)

φz top
0 Â Eakz

n ÄBÅ N

∑
n ÄDÆ N Ð Eb0

νn
Az

n Ñ Ed

ψz top
x0 Â Ea

n Ä�Å N

∑
n ÄGÆ N

Ò Ec0Bz
n Ô Ed

ψz top
y0 Â Ea

n Ä�Å N

∑
n ÄGÆ N Ð È kn

γn
Ec0Cz

n Ñ Ed

ψz top
z0 Â 0 (49)

Fluid medium (top interface)

φtop
f luid Â È i

Lx

n ÄBÅ N
∑

n ÄDÆ N Ö Ð Æ α2
f

ω2λ f Ñ E f 0

ν f
n

Dz
n × EdÒ when y Ó 0 Ô (50)

Solid medium (bottom interface)

φz bottom
0 Â Eakz

n ÄBÅ N

∑
n ÄDÆ N Ð Eb

b0
νn

Ez
n Ñ Ed

ψz bottom
x0 Â Ea

n ÄBÅ N

∑
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ψz bottom
y0 Â Ea
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∑
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γn
Eb

c0Gz
n Ñ Ed

ψz bottom
z0 Â 0 (51)

Fluid medium (bottom interface)

φbottom
f luid Â È i

Lx

n Ä�Å N
∑

n ÄGÆ N Ö Ð Æ α2
f

ω2λ f Ñ Eb
f 0

ν f
n

Hz
n × EdÒ when y Õ h Ô (52)

The imposition of the eight stated boundary conditions
for each value of n leads to a system of eight equations
in the eight unknown constants,Ê az

i j i Â 1 Ø 8; j Â 1 Ø 8ÍÚÙ cz
i i Â 1 Ø 8Û Â Ù bz

i i Â 1 Ø 8Û (53)

which is fully described in Appendix D.

Once the unknown amplitude of each potential has been
calculated, the Green’s functions for the solid formation
are given by the sum of the source terms and the surface
terms originated at the two fluid-solid interfaces, leading
to the following expressions,

G f s f
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(54)

The final expression for the pressure field in the two fluid
media is given by

σ f s f top
f z Ý�Þ i

Lx

n ß�à N

∑
n ßGá N â E f 0

ν f
n

Dz
n ã Ed ä when y å 0 æ

σ f s f bottom
f z ÝçÞ i

Lx

n ßBà N
∑

n ßDá N â Eb
f 0

ν f
n

Hz
n ã Edä when y è h æ (55)

4.4 Pressure Load acting in the top layer of fluid

The surface terms produced at the two interfaces (top and
bottom) can be expressed using the following potentials,
Solid medium (top interface)

φy top
0 Ý Ea

n ßBà N

∑
n ßDá N é Eb0A f

n ê Ed

ψy top
x0 Ý Eakz
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n ßDá N â Þ Ec0

γn
C f

n ã Ed

ψy top
y0 Ý 0

ψy top
z0 Ý Ea

n ß�à N

∑
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γn
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n ã Ed (56)

Fluid medium (top interface)
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f luid Ý�Þ i

Lx

n ß�à N
∑
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f

ω2λ f ã E f 0

ν f
n

D f
n ì Edä when y å 0 æ (57)

Solid medium (bottom interface)

φy bottom
0 Ý Ea

n ß�à N
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n ßGá N í Eb

b0E f
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γn
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n ã Ed (58)

Fluid medium (bottom interface)

φbottom
f luid Ý�Þ i

Lx

n ßBà N
∑

n ßDá N ë â á α2
f

ω2λ f ã Eb
f 0

ν f
n

H f
n ì Edä when y è h æ (59)

After the eight stated boundary conditions, for each value
of n, have been imposed, a system of eight equations in
the eight unknown constants is built up,ï
a f

i j i Ý 1 ð 8; j Ý 1 ð 8ñ ï c f
i i Ý 1 ð 8ñ Ý ï

b f
i i Ý 1 ð 8ñ

(60)

which is fully listed in Appendix E.

After the system of equations has been solved, the
Green’s functions for the solid formation are given by the
sum of the source terms and the surface terms originated
at the two fluid-solid interfaces, generating the following
expressions,
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n ßBà N
∑

n ßDá N í Þ iA f
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n knEb

c0 î Ed

G f s f
y f Ý

Ea
n ß�à N

∑
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z
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n
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z
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(61)

The final expressions for the pressure field in the two
fluid media are then given by

σ f s f top Ý σ f ull Þ i
Lx

n ß�à N

∑
n ßGá N â E f 0

ν f
n

D f
n ã Ed ä when y å 0 æ

σ f s f bottom ÝôÞ i
Lx

n ß�à N
∑

n ßGá N â Eb
f 0

ν f
n

H f
n ã Edä when y è h æ (62)

Note that, if kz Ý 0 is used, the system of equations de-
rived above is reduced to six unknowns, leading to the
two-dimensional Green’s function for plane strain line-
loads.

5 Summary of Green’s Functions

The Tables 1 - 3 summarizes the Green’s functions pre-
sented along the paper.
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Table 1 : Green’s Functions in an Unbounded Medium

Location Location Direction Equations
of output of source of load

Solid x0 õ y0 in solid x axis (7)
Solid x0 õ y0 in solid y axis (9)
Solid x0 õ y0 in solid z axis (11)
Fluid x0 õ y0 in fluid – (14)

Table 2 : Green’s Functions in a Fluid-solid Formation

Location Location Direction Equations
of output of source of load

Solid x0 õ y0 in solid x axis (18)
Fluid x0 õ y0 in solid x axis (19)
Solid x0 õ y0 in solid y axis (23)
Fluid x0 õ y0 in solid y axis (24)
Solid x0 õ y0 in solid z axis (28)
Fluid x0 õ y0 in solid z axis (29)
Solid x0 õ y0 in fluid – (33)
Fluid x0 õ y0 in fluid – (34)

6 Validation of the Solution

The expressions described in the previous sections were
applied to two cases: a solid formation bounded by one
flat fluid medium (see Fig. 3) and a solid layer bounded
by two parallel fluid media (see Fig. 4). The calcula-
tions are performed for the three displacement fields in
the solid medium and the pressure field within the fluid.
The spatially harmonic varying line load is assumed to
be buried either in the solid formation, or in the fluid
medium. The results provided were then validated with
those arrived at by applying the BEM model, which re-
quires the discretization of the solid-fluid interfaces using
the Green’s functions for a full space. The BEM code
has been previously validated for the case of a circular
inclusion, for which analytical solutions exist. It should
be pointed out that the author’s solutions do not require
discretization of the material interfaces. This affords an
enormous computational advantage and allows the com-
putation of problems which cannot be tackled by other
numerical methods, particularly for high frequencies.

The examples presented do not require an infinite number
of boundary elements along the material interfaces be-

Table 3 : Green’s Functions in a Solid Layer Formation
Bounded by Two Fluid Media

Location Location Direction Equations
of output of source of load

Solid x0 õ y0 in solid x axis (40)
Fluid x0 õ y0 in solid x axis (41)
Solid x0 õ y0 in solid y axis (47)
Fluid x0 õ y0 in solid y axis (48)
Solid x0 õ y0 in solid z axis (54)
Fluid x0 õ y0 in solid z axis (55)
Solid x0 õ y0 in fluid – (61)
Fluid x0 õ y0 in fluid – (62)

cause complex frequencies are used, with a small imag-
inary part of the form ωc ö ω ÷ iη (with η ö 0 ø 7 2π

T )
[Bouchon and Aki (1977); Phinney (1965)]. Boundary
elements make a significant contribution to the response
for a certain value of damping, but are otherwise unnec-
essary. These elements are distributed along the surface
up to a spatial distance (Ldist ) from the center, given by
Ldist ö αT . This gives a discretized surface with a length
2Ldist . Many simulations were conducted in order to
study the effect of varying the size of boundary elements
on the accuracy of the response. Improved performance
was obtained by placing smaller elements close to where
the response is required. Boundary elements of varying
sizes were therefore used, with the shorter elements be-
ing placed nearer to the center of the discretized surface.

The scheme adopted here for determining the placement
and size of the boundary elements uses the following ge-
ometrical construction: an auxiliary circular arc is di-
vided into equal segments according to a previously de-
fined ratio between the wavelength of the dilatational
waves and the length of boundary elements. The bound-
ary elements are then defined on the topographic surface
by the vertical projection of these segments. The radius
of the required circular arc (R) is greater than ù 2Ldist úÏû 2
and is placed at a tangent to the topographic interfaces
at its boundary discretization end, thus avoiding unduly
small boundary elements. In this work R is assumed to
be ü�ù 2Ldist ú û 2ý û cos10o (see Fig. 2).

Next, the results are obtained for the two scenarios stud-
ied here. First, the solid formation is assumed to be
bounded by one flat fluid medium (see Fig. 3). Then,
a solid layer, 10 ø 0m thick, is bounded by two paral-
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10.0°

Ldist

Figure 2 : Definition of the boundary elements

lel fluid media (see Fig. 4). For the two scenarios
the solid medium takes α 4208m s, β 2656m s
with ρ 2140Kg m3, while the fluid medium allows
α 1500m s with ρ 1000Kg m3. The solid-fluid
structures are illuminated either by a harmonic point
source applied to the solid medium at the source point
(x 1 0m, y 2 0m), acting along the directions x, y and
z, or by a harmonic point pressure source applied to the
fluid medium at (x 1 0m, y 2 0m). Calculations
are performed in the frequency range [2 50, 320 0Hz]
with a frequency increment of 2 5Hz. The imaginary
part of the frequency has been set to η 0 72π

T with
T 0 0466 s. To validate the results, the response is
computed at a single value of kz (kz 0 4rad m). The
real and imaginary parts of the responses are shown in
Fig. 5 - Fig. 6. The analytical responses are represented
by the solid lines, while the marked points correspond
to the BEM solution. The square and the round marks
indicate the real and imaginary part of the responses, re-
spectively. The BEM solution was computed for a very
large number of boundary elements defined by the ratio
between the wavelength of the incident waves and the
length of the boundary elements, which was kept to a
minimum of 40 elements at each interface.

6.1 Case 1: Solid formation bounded by a single flat
fluid medium

To demonstrate the correctness of the equations de-
scribed during the course of this work, the results are
only illustrated when the load is applied at the solid for-
mation along the y direction. The surface terms of the
displacement fields, Gsur f

xy , Gsur f
yy and Gsur f

zy are calculated
at receivers placed at x 3 0m and y 5 0m, within
the solid, while the pressure response σf s

f y is computed at

Fluid

Solid

y

x

z

Figure 3 : Solid formation bounded by a flat fluid
medium

Solid

Fluid

Fluid

h

y

x

z

Figure 4 : Solid formation bounded by two flat fluid par-
allel media

receivers x 3 0m and y 1 0m (see Fig. 5).

6.2 Case 2: Solid layer bounded by two flat fluid me-
dia

The results presented refer to the case where a harmonic
point pressure source is applied to the top fluid medium.
The surface terms of the displacement fields, Gf s f

x f , G f s f
y f

and G f s f
z f are calculated at receivers placed at x 3 0m

and y 5 0m, within the solid, while the pressure re-
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lel fluid media (see Fig. 4). For the two scenarios
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z, or by a harmonic point pressure source applied to the
fluid medium at (x ÿ 1 � 0m, y ÿ�� 2 � 0m). Calculations
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with a frequency increment of 2 � 5Hz. The imaginary
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T ÿ 0 � 0466 s. To validate the results, the response is
computed at a single value of kz (kz ÿ 0 � 4rad � m). The
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Fig. 5 - Fig. 6. The analytical responses are represented
by the solid lines, while the marked points correspond
to the BEM solution. The square and the round marks
indicate the real and imaginary part of the responses, re-
spectively. The BEM solution was computed for a very
large number of boundary elements defined by the ratio
between the wavelength of the incident waves and the
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receivers x ÿ 3 � 0m and y ÿ�� 1 � 0m (see Fig. 5).

6.2 Case 2: Solid layer bounded by two flat fluid me-
dia

The results presented refer to the case where a harmonic
point pressure source is applied to the top fluid medium.
The surface terms of the displacement fields, G f s f

x f , G f s f
y f

and G f s f
z f are calculated at receivers placed at x ÿ 3 � 0m

and y ÿ 5 � 0m, within the solid, while the pressure re-
sponse σ f s f top sur f (σ f s f top � σ f ull) and σ f s f bottom are
computed at receivers x ÿ 3 � 0m and y ÿ�� 1 � 0m, and
x ÿ 3 � 0m and y ÿ 15 � 0m, respectively (see Fig. 6).

These calculations are restricted to low frequencies be-
cause, for higher frequencies, the conventional BEM so-
lution would require the use of a very large number
of boundary elements, which would make its solution
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impossible, owing to computational cost. It may fur-
ther be mentioned that the BEM solutions provided in
the present examples were obtained by limiting the dis-
cretization of the solid-fluid interfaces, through the use
of complex frequencies, in such a way as to diminish the
contribution of the waves generated at sources placed at
the end of the discretization.

As can be seen, these two solutions are in very close
agreement, and equally good results were obtained from
tests in which loads and receivers were situated at differ-
ent points.

The proposed Green’s functions are most useful in the
context of boundary elements, such as in the solution of
an inclusion buried within a flat solid layer. The use of
these functions will avoid the discretization of the solid-
fluid interfaces, and the discretization would be restricted
to the boundary of the inclusion.

7 Conclusions

Having successfully obtained a completely analytical so-
lution for the steady state response of a spatially sinu-
soidal, harmonic line load in a homogeneous solid for-
mation, bounded by one or two flat fluid media, we com-
pared the final expressions with numerical results calcu-
lated by using the Boundary Element Method in order to
validate them. The solutions were found to be in very
close agreement when the solid-fluid interface was dis-
cretized with a large number of boundary elements.

The analytical solutions presented in this paper are in-
teresting in themselves. They provide the displacement,
strain or stress in a formation formed by an elastic solid
medium, bounded by one or two acoustic flat fluid me-
dia illuminated by a spatially sinusoidal harmonic load
buried in solid formation or in the fluid medium. The so-
lutions applied in conjunction with numerical methods,
such as the BEM, make the discretization of the solid-
fluid interfaces unnecessary, and may prove to be very
useful in many engineering applications, such as calcu-
lating the acoustic insulation provided by solid walls, and
in the context of interpreting seismic responses.
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Appendix A: The Green’s function for a two-and-a-
half dimensional full-space
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Ebh 0 e 1 iνnh, Ech 0 e 1 iγnh, Ebh1 0 e 1 iνn 2 h 1 y0 2 and
Ech1 0 e 1 iγn 2 h 1 y0 2 .
Appendix E: Definition of 3 a f

i j i 0 1 4 8; j 0 1 4 85 ,

3 c f
i i 0 1 4 85 and 3 b f

i i 0 1 4 85
a f

i j i 0 1 4 8; j 0 1 4 8
a f

11 0 6 2νn a f
12 0 1 k2

n
γn 7 γn a f

13 0 1 k2
z

γn

a f
14 0 0 a f

15 0 a f
11Ebh a f

16 0 a f
12Ech

a f
17 0 a f

13Ech a f
18 0 0 a f

21 0�6 2νn

a f
22 0 1 k2

n
γn

a f
23 0 1 k2

z
γn 7 γn a f

24 0 0

a f
25 0 a f

21Ebh a f
26 0 a f

22Ech a f
27 0 a f

23Ech

a f
28 0 0 a f

31 0
6 k2
s 6 2ν2

zn a f
32 0�6 2k2

n

a f
33 0 6 2k2

z a f
34 0 1 i 2ρω2

ν f
n µ

a f
35 0�6 ay

31Ebh

a f
36 0 6 a f

32Ech a f
37 0 6 a f

33Ech a f
38 0 0

a f
41 0 6 iνn a f

42 0 1 ik2
n

γn
a f

43 0 1 ik2
z

γn

a f
44 0 1 2ρω2

k2
p f

λ f
a f

45 0 a f
41Ebh a f

46 0 a f
42Ech

a f
47 0 a f

43Ech a f
48 0 0 a f

51 0 a f
11Ebh

a f
52 0 a f

12Ech a f
53 0 a f

13Ech a f
54 0 0

a f
55 0 a f

11 a f
56 0 a f

12 a f
57 0 a f

13

a f
58 0 0 a f

61 0 a f
21Ebh a f

62 0 a f
22Ech

a f
63 0 a f

23Ech a f
64 0 0 a65 0 a f

21

a f
66 0 a f

22 a f
67 0 a f

23 a f
68 0 0

a f
71 0 a f

31Ebh a f
72 0 a f

32Ech a f
73 0 a f

33Ech

a f
74 0 0 a f

75 0 6 a f
31 a f

76 0�6 a f
32

a f
77 0 6 a f

33 a f
78 0 a f

34 a f
81 0 a f

41Ebh

a f
82 0 a f

42Ech a f
83 0 a f

43Ech a f
84 0 0

a f
85 0 a f

41 a f
86 0 a f

42 a f
87 0 a f

43

a f
88 0 6 a f

44

c f
i i 0 1 4 8
c f

1 0 A f
n c f

2 0 B f
n c f

3 0 C f
n

c f
4 0 D f

n c f
5 0 E f

n c f
6 0 F f

n

c f
7 0 G f

n c f
8 0 H f

n

b f
i i 0 1 4 8
b f

1 0 0 b f
2 0 0

b f
3 0 1 i2ρω2

ν f
n µ

E f 1 b f
4 0 2ρω2

k2
p f

λ f
E f 1

b f
5 0 0 b f

6 0 0

b f
7 0 0 b f

8 0 0

with Eb1 0 e 1 iνny0 , Ec1 0 e 1 iγny0 , νzn 0�8 6 k2
z 6 k2

n ,

E f 1 0 e 1 iν f
n y0 , Ebh 0 e 1 iνnh, Ech 0 e 1 iγnh,

Ebh1 0 e 1 iνn 2 h 1 y0 2 and Ech1 0 e 1 iγn 2 h 1 y0 2 .




