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On the Equivalence Between Least-Squares and Kernel Approximations in
Meshless Methods

Xiaozhong Jin1, Gang Li2 and N. R. Aluru3

Abstract: Meshless methods using least-squares ap-
proximations and kernel approximations are based on
non-shifted and shifted polynomial basis, respectively.
We show that, mathematically, the shifted and non-
shifted polynomial basis give rise to identical interpola-
tion functions when the nodal volumes are set to unity in
kernel approximations. This result indicates that math-
ematically the least-squares and kernel approximations
are equivalent. However, for large point distributions or
for higher-order polynomial basis the numerical errors
with a non-shifted approach grow quickly compared to
a shifted approach, resulting in violation of consistency
conditions. Hence, a shifted polynomial basis is better
suited from a numerical implementation point of view.
Finally, we introduce an improved finite cloud method
which uses a shifted polynomial basis and a fixed-kernel
approximation for construction of interpolation functions
and a collocation technique for discretization of the gov-
erning equations. Numerical results indicate that the im-
proved finite cloud method exhibits superior convergence
characteristics compared to our original implementation
[Aluru and Li (2001)] of the finite cloud method.

1 Introduction

A class of meshless methods (see e.g. [Belytschko,
et al. (1996)] for an overview on meshless methods)
use a least-squares approach to construct interpolation
functions and a number of other approaches use ker-
nel approximations to construct interpolation functions.
For example, the element-free Galerkin method [Be-
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lytschko, Lu, and Gu (1994)], hp-clouds [Duarte and
Oden (1996)], local boundary integral equation (LBIE)
[Zhu, Zhang, Atluri (1998)], meshless local Petrov-
Galerkin (MLPG) [Atluri and Zhu (1998); Kim and
Atluri (2000); Lin and Atluri (2000)], finite point method
[Onate, et al. (1996); Wordelman et al. (2000)], bound-
ary node method [Mukherjee and Mukherjee (1997)]
and a number of other approaches use least-square ap-
proaches to construct interpolation functions. Reproduc-
ing kernel particle method [Liu, et al. (1995); Chen,
et. al. (1996)], point collocation based on reproduc-
ing kernels [Aluru (2000)], and a number of other ap-
proaches use kernel approximations to construct interpo-
lation functions.

A difference between least-squares and kernel based ap-
proaches is the use of non-shifted basis functions in least-
squares type approaches and a shifted basis in kernel
type approximations. In this paper, we show that both
shifted and non-shifted polynomial basis produce math-
ematically equivalent interpolation functions. However,
we also show that a non-shifted form of the base interpo-
lating polynomial starts violating consistency conditions
for large point distributions and higher order polynomial
basis.

Collocation based meshless methods typically employ
higher-order polynomial basis because of the need to
compute higher-order derivatives when solving partial-
differential equations. A consequence of our observation
that the non-shifted form of the polynomial basis starts
violating consistency conditions means that collocation
meshless methods (or Galerkin based meshless methods
when employing higher-order polynomial basis) employ-
ing non-shifted polynomial basis can produce inaccurate
results. A shifted polynomial basis performs better com-
pared to a non-shifted basis, however, the errors with a
shifted basis can also grow with increasing point dis-
tributions because of the poor conditioning of the mo-
ment matrix. An alternative to polynomial basis is to use
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Chebychev or other basis functions.

In a recent paper [Aluru and Li (2001)], we have intro-
duced a finite cloud method, which uses a fixed-kernel
approximation to compute interpolation functions and a
collocation technique to discretize the governing equa-
tions. The finite cloud method uses a non-shifted poly-
nomial basis and has been shown to produce interpola-
tion functions that are equivalent (under certain condi-
tions) to those obtained from a fixed least-squares ap-
proach [Onate, et al. (1996)]. In this paper, we introduce
an improved finite cloud method, which uses a shifted
polynomial basis in the kernel approximation. Our re-
sults indicate that improved finite cloud method exhibits
far superior convergence characteristics compared to the
original implementation of the finite-cloud method which
uses a non-shifted basis.
The rest of the paper is organized as follows: In Sec-
tion 2, we introduce the construction of meshless meth-
ods using shifted and non-shifted polynomial basis and
establish the equivalence between the two approaches. In
section 3, we highlight the numerical issues with a non-
shifted approach, in Section 4 we introduce the improved
finite cloud method, in Section 5, we show results com-
paring convergence characteristics of both shifted and
non-shifted methods and conclusions are given in Sec-
tion 6.

2 Meshless Methods Based on Shifted and Non-
Shifted Base Interpolating Polynomials

We introduce both shifted and non-shifted approaches
by using kernel approximations and make remarks at the
end of each section on the connection between the least-
squares and kernel approaches.

2.1 Non-Shifted Approach

Consider the following form of the kernel approximation

ua
NS � x � y �����

Ω
PT � s � t � CNS � x � y � ϕ � x 	 s � y 	 t � u � s � t � dsdt

(1)

where ua
NS denotes a non-shifted approximation to u, ϕ is

the kernel, CNS denotes the unknown correction function
vector in a non-shifted approach and P � s � t � is the m 
 1
vector of non-shifted basis functions. A linear basis in
two-dimensions is given by

PT � s � t ���� p1 � p2 ��������� pm � ��� 1 � s � t � � m � 3 (2)

and a quadratic basis in two-dimensions is given by

PT � s � t ���� p1 � p2 ��������� pm � ��� 1 � s � t � s2 � st � t2� � m � 6

(3)

The unknown correction function coefficients are com-
puted by satisfying the consistency conditions i.e.

�
Ω

PT � s � t � CNS � x � y � ϕ � x 	 s � y 	 t � pi � s � t � dsdt � pi � x � y �
i � 1 � 2 ��������� m (4)

The above consistency conditions can be rewritten in a
matrix form as�M � x � y � � NS CNS � x � y ��� P � x � y � (5)

where �M � x � y � � NS denotes the moment matrix in a non-
shifted approach and the i j-th entry in the moment matrix
is given by�Mi j � NS � � Ω

p j � s � t � ϕ � x 	 s � y 	 t � pi � s � t � dsdt (6)

In discrete form, the nth 
 mth element of the square mo-
ment matrix is given by (setting the nodal volumes, ∆VI,
to unity)

�M � NS ��� NP

∑
I � 1

ϕI pn � xI � yI � pm � xI � yI ���
n � m (7)

where ϕI � ϕ � x 	 xI � y 	 yI � . Note that the moment ma-
trix, �M � NS, in a non-shifted approach is symmetric. Sub-
stituting the definition for correction function coefficients
(from equation (5)) in equation (1), a discrete form of the
non-shifted kernel approach can be written as

ua
NS � x  y !#" NP

∑
I $ 1

NNS
I � x  y ! ûI (8)

where ûI is a nodal unknown and NNS
I is the interpolation

function in a non-shifted approach which is given by

NNS
I � x  y !�" PT � x  y !&%M ' T (

NSP � xI  yI ! ϕ � x ) xI  y ) yI ! ∆VI

(9)

where ∆VI is referred to as a nodal volume.
Remarks:



On the equivalence between least-squares and kernel approximations in meshless methods 449

1. The non-shifted kernel approach described above
was introduced in [Aluru and Li (2001)] and re-
ferred to as a moving reproducing kernel or a mov-
ing kernel technique.

2. In [Aluru and Li (2001), it was shown that the mov-
ing repoducing kernel technique is equivalent to a
moving least-squares approach when the nodal vol-
umes are set to unity (∆VI * 1) i.e. the interpola-
tion functions computed by the moving reproducing
kernel and the moving least-squares approaches are
identical.

2.2 Shifted Approach

A shifted-form of the kernel approximation can be writ-
ten as

ua
S + x , y - * .

Ω
PT + x / s , y / t -

CS + x , y - ϕ + x / s , y / t - u + s , t - dsdt (10)

where ua
S denotes a shifted approximation to unknown

u, CS is the unknown correction function vector in the
shifted approach, and PT + x / s , y / t - is the shifted poly-
nomial basis vector. A linear basis in two-dimensions is
given by

PT + x / s , y / t - *10 p1 , p2 ,�2�2�23, pm 45*10 1 , x / s , y / t 4 , m * 3
(11)

and a quadratic basis is given by

PT + x / s , y / t - *0 p1 , p2 ,�2�2�2�, pm 46*7
1 , x / s , y / t , + x / s - 2 , + x / s - + y / t -&, + y / t - 2 8 , m * 6 (12)

The unknown correction function coefficients are com-
puted by satisfying the consistency conditions i.e..

Ω
PT + x / s , y / t - CS + x , y - ϕ + x / s , y / t - pi + s , t - dsdt *

pi + x , y - i * 1 , 2 ,�2�2�2�, m (13)

The above consistency conditions can be rewritten in a
matrix form as0M + x , y - 4 S CS + x , y - * P + x , y - (14)

where 0M + x , y - 4 S denotes the moment matrix in a shifted
approach and the i j-th entry in the moment matrix is
given by0Mi j 4 S * . Ω

p j + x / s , y / t - ϕ + x / s , y / t - pi + s , t - dsdt (15)

In discrete form, the nth 9 mth element of the square mo-
ment matrix is given by (again by setting the nodal vol-
umes to unity)0M 4 S *;: NP

∑
I < 1

ϕI pn + xI , yI - pm + x̃I , ỹI -�=
n >m (16)

where ϕI * ϕ + x / xI , y / yI - , x̃I * x / xI and ỹI * y /
yI. Note that the moment matrix, 0M 4 S, in the shifted
approach is non-symmetric. Substituting the definition
for correction function coefficients (from equation (14))
in equation (10), a discrete form of the shifted kernel
approach can be written as

ua
S + x , y - * NP

∑
I < 1

NS
I + x , y - ûI (17)

where ûI is a nodal unknown and NS
I is the interpolation

function in a shifted approach which is given by

NS
I + x , y - * PT + x , y - 0M ? T 4 SP + x / xI , y / yI - ϕ + x / xI , y / yI - ∆VI

(18)

Remarks:

1. The shifted approach described above was intro-
duced in [Liu, et al. (1995)] and referred to as a
reproducing kernel technique.

2.3 Equivalence between Shifted and Non-Shifted
Approaches

Mathematically, the shifted and non-shifted approaches
can be shown to be identical. The equivalence be-
tween moving least-squared and kernel approximations
has been addressed in [Belytschko et al. (1996)]. For
simplicity, we consider a one-dimensional setting, but
the results can be easily extended to multiple dimen-
sions. Assuming an m-th order polynomial basis, the
non-shifted polynomial vector is given by

PT + xI - *0 p1 , p2 ,�2�2�2�, pm 4@*BA 1 , xI , x2
I ,�2�2�2�, x C m ? 1 D

I E (19)

and the shifted polynomial vector is given by

PT + x / xI - *�0 p1 , p2 ,�2�2�2�, pm 4@*A 1 , x / xI , + x / xI - 2 ,�2�2�2�, + x / xI - C m ? 1 D E (20)
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Defining G SH to be

G SH6I
JKKKKKKL 1 0 0 MNMOM 0

x P 1 0 MNMOM 0
x2 P 2x QOP 1 R 2 MOMOM 0
...

...
...

. . .
...

xm S 1 T m P 1

1 U QOP 1 R xm S 2 T m P 1

2 U QOP 1 R 2xm S 3 MOMOMVQOP 1 R m S 1

W&XXXXXXY
(21)

the shifted and non-shifted polynomial vectors are re-
lated byG SH P Z xI [ I P Z x \ xI [ (22)

In equation (21), ] m \ 1
1 ^ and ] m \ 1

2 ^ are bino-

mial coefficients. A binomial coefficient ] n
k ^ is de-

fined as] n
k ^ I n!

k! Z n \ k [ ! (23)

The shifted and non-shifted moment matrices for a one-
dimensional case are related byG SH_GMT H NS I`GMT H S (24)

From equations (22) and (24), it follows thatGMT H�a 1
NSP Z xI [ I`GMT H�a 1

S G S H P Z xI [ I`GMT H�a 1
S P Z x \ xI [ (25)

Therefore

NNS
I Z x [ I NS

I Z x [ (26)

where NNS
I Z x [ and NS

I Z x [ are the one-dimensional in-
terpolation functions obtained with a non-shifted and
shifted approach, respectively.
Remarks:

1. The result in equation (26) indicates that, mathe-
matically, the interpolation functions computed by
shifted and non-shifted approaches are identical.

2. As will be discussed in the next section, numerical
errors in a non-shifted approach can grow quickly
and start violating consistency conditions.

3 Numerical Issues with a Non-Shifted Approach

Numerical implementation of shifted and non-shifted ap-
proaches can produce different results because of the dif-
ferent numerical steps involved in computing moment
matrices and correction function coefficients. Specifi-
cally, by implementing both approaches, we have tried
to check if the consistency conditions are being satisfied.
These results are summarized in Table 1 and Table 2. In
Table 1, we look at two consistency conditions using a
quadratic basis (m I 3) and compare the results obtained
with shifted and non-shifted polynomial basis. The re-
sults indicate that for increasing number of points, the
non-shifted approach starts violating consistency condi-
tions. Similarly, in Table 2, we look at three consistency
conditions using a cubic basis (m I 4) and compare the
results obtained with shifted and non-shifted basis. The
results again indicate that the non-shifted approach vio-
lates consistency conditions. For a cubic basis, the non-
shifted approach starts violating consistency conditions
for a fewer number of points compared to the results ob-
tained with a quadratic basis.
We try to explain the behavior of the non-shifted ap-
proach by considering a one-dimensional setting and a
quadratic basis. Shown in Figure 1 is a five-point cloud
and the weights for the five-points at which the kernel
does not vanish. For this example, the moment matrix

W0

W2

W1 W1

W2

X Xk-1 k+1kXX k-2 k+2X

Figure 1 : A one-dimensional example discretized into
points. Also shown is a five-point cloud where the kernel
or weighting function does not vanish. w0, w1 and w2 are
the values of the weighting function for the points within
the cloud

with a shifted polynomial basis is given by

MS I JL
s1 0 2s2h2

s1xk P 2s2h2 2s2h2xk

s1x2
k b 2s2h2 P 4s2h2xk 2s2h2x2

k b Q 2w1 b 32w2 R h4

WY
(27)

and the moment matrix with a non-shifted polynomial
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Table 1 : Comparison of the satisfaction of the consistency conditions for a quadratic basis with shifted and non-
shifted approaches

numbers of nodes ∑NI c xxI d 1 e 0 ∑NI c xxx2
I d 2 e 0

non-shifted basis shifted basis non-shifted basis shifted basis
81 1 1 2 2
161 1 1 2.00001 2
321 1 1 2.00016 2
641 0.999997 1 1.99799 2
1281 1 1 1.99114 2
2561 0.999849 1 2.17519 2
5121 1.00003 1 133.114 2

Table 2 : Comparison of the satisfaction of the consistency conditions for a cubic basis with shifted and non-shifted
approaches

numbers of nodes ∑ NI c xxI d 1 e 0 ∑NI c xxx2
I d 2 e 0 ∑NI c xxxx3

I d 6 e 0
non-shifted shifted non-shifted shifted non-shifted shifted

41 1 1 2 2 6.00035 6
81 1 1 1.99999 2 6.00473 6

161 0.999974 1 1.9994 2 8.32153 6
321 1.00185 1 2.01481 2 258.451 6
641 1.00185 1 2.00257 2 492.394 6
1281 1.00185 1 2.06534 2 492.394 5.9999
2561 1.00185 1 0.387417 2 492.394 6.00161
5121 1.00185 1 6685.12 2 -25771 6.00752
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basis is given by

MNS g (28)hi
s1 s1xk s1x2

k j 2s2h2

s1xk s1x2
k j 2s2h2 s1x3

k j 6s2xkh2

s1x2
k j 2s2h2 s1x3

k j 6s2xkh2 s1x4
k k 12s2x2

k h2 k6l 2w1 k 32w2 m h4no
where s1 gqp w0 j 2w1 j 2w2 r , s2 gqp w1 j 4w2 r , w0 s w1
and w2 are the weights, xk is the point at which the kernel
is centered, and h is the spacing between the points.
From equation (29), it is clear that when xk tut h, the
columns of MNS can become linearly dependent. This is,
however, not the case for MS, even though the condition
number of MS can be bad. This indicates that the mo-
ment matrix in a non-shifted approach is very close to
becoming singular whenever xk tut h, and this leads to
the violation of consistency conditions.
Remarks:

1. Even though both the shifted and non-shifted ap-
proaches are mathematically identical, a shifted ap-
proach is better suited for numerical implementa-
tion. As the order of the polynomial basis increases,
the errors with the non-shifted approach start grow-
ing quickly.

2. As shown in Table 2, the shifted approach also starts
violating consistency conditions for larger number
of nodes. It is well-known that the use of a poly-
nomial basis can generate these results. A remedy
to this situation would be to employ Chebychev or
other types of basis functions.

4 Improved Finite Cloud Method

We have recently introduced a finite cloud meshless
method which uses a fixed kernel technique for the con-
struction of interpolation functions and a collocation
technique for the discretization of governing equations
[Aluru and Li (2001)]. In the finite cloud method an ap-
proximation to an unknown function is given by

ua gwv
Ω

C p x s y s s s t r ϕ p xK x s s yK x t r u p s s t r dsdt (29)

where C p x s y s s s t r is the correction function and is given
by

C p x s y s s s t r g PT p s s t r C p x s y r (30)

PT p s s t r gzy p1 s p2 s�{�{�{�s pm | is the 1 } m vector of basis
functions and CT p x s y r g~y c1 s c2 s�{�{�{�s cm | is the 1 } m vec-
tor of correction function coefficients. The kernel func-
tion ϕ p xK x s s yK x t r is centered at the point p xK s yK r .
The approximation in equation (29) can be written as

ua p x s y r g NP

∑
I � 1

NI p x s y r ûI (31)

where NI p x s y r is the fixed kernel interpolation function
defined as (see [Aluru and Li (2001)] for details)

NI p x s y r g PT p x s y r M � 1P p xI s yI r ϕ p xK x xI s yK x yI r ∆VI

(32)

Note that this approach uses a non-shifted polynomial
basis.
We propose an improved finite cloud method using the
following construction

ua g v
Ω

C p x s y s xK x s s yK x t r ϕ p xK x s s yK x t r u p s s t r dsdt

(33)

where C p x s y s xK x s s yK x t r is the modified correction
function and is given by

C p x s y s xK x s s yK x t r g PT p xK x s s yK x t r C p x s y r (34)

where PT p xK x s s yK x t r is the shifted polynomial ba-
sis and C p x s y r is the unknown correction function coeffi-
cient vector. The approximation in equation (33) can be
written as

ua p x s y r g NP

∑
I � 1

NS
I p x s y r ûI (35)

where NS
I p x s y r is referred to as the fixed kernel interpo-

lation function using a shifted polynomial basis and is
defined as

NS
I p x s y r g

PT p x s y rV�M � T �
SP p xK x xI s yK x yI r ϕ p xK x xI s yK x yI r∆VI (36)

where �M � S is the moment matrix obtained using a shifted
polynomial basis.
Remarks:

1. In [Aluru and Li (2001)], it was shown that when
the nodal volumes are set to unity (i.e. ∆VI g 1), the
interpolation functions computed in a finite cloud
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method (by using a fixed kernel approximation and
a non-shifted polynomial basis) is identical to the
interpolation function computed by a fixed least-
squares approach [Onate, et al. (1996a); Onate, et
al. (1996b); Onate and Idelsohn (1998)].

2. The improved finite cloud method introduced above
uses a shifted polynomial basis, instead of a non-
shifted polynomial basis employed in the finite
cloud method. Even though both the shifted and
non-shifted approaches are mathematically iden-
tical, the interpolation functions computed in a
shifted approach are more accurate for large point
distributions and for increasing polynomial order.

5 Results

Numerical results are shown for several one and two-
dimensional problems. Specifically, we compare the im-
proved finite cloud method, which uses a shifted polyno-
mial basis, with the original implementation of the finite
cloud method, which uses a non-shifted polynomial ba-
sis, by employing quadratic and cubic basis. The conver-
gence of the methods is measured by using a global error
measure

ε � 1�� u � e � �� max

1
NP

NP

∑
I � 1 � u � e �I � u � c �I � 2

(37)

where ε is the error in the solution and the superscripts�
e � and

�
c � denote, respectively, the exact and the com-

puted solutions.

5.1 1-D Examples

The first example is a Poisson equation with a forcing
term that is a function of x. The governing equation and
boundary conditions are

∂2u
∂x2 � 105

2
x2 � 15

2 � 1 � x � 1 (38)

u
�
x � � 1 ��� 1 (39)

∂u
∂x
�
x � 1 ��� 10 (40)

The exact solution for this problem is given by

u � 35
8

x4 � 15
4

x2 � 3
8

(41)

This problem is analyzed by employing a uniform distri-
bution of 41, 81, 161, 321, 641, 1281, and 5121 points

to study the convergence behavior. The convergence of
shifted and non-shifted methods by using a quadratic ba-
sis is summarized in Figure 2. The convergence rate of
u for shifted and non-shifted methods is 2 and 1.98, re-
spectively. The convergence rate of ux is identical to the
convergence rate of u for both shifted and non-shifted
methods. The convergence plot indicates that the error
with the shifted and non-shifted basis is identical up to a
certain number of points. Beyond this, the error with the
non-shifted basis either decreases slowly or starts grow-
ing. The growing errors with the non-shifted basis are
explained by the growing numerical errors introduced
into the computation of the moment matrix and the cor-
rection function coefficients.
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Figure 2 : Convergence of shifted and non-shifted meth-
ods for the Poisson equation using a quadratic basis (a)
convergence in u (b) convergence in the derivative of u
(ux)
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The convergence of shifted and non-shifted methods by
using a cubic basis is shown in Figure 3. The conver-
gence rate of u for shifted and non-shifted methods is
2.0 and 1.6, respectively. The convergence rate of ux for
shifted and non-shifted methods is 2.0 and 1.3, respec-
tively. With a cubic basis, the deviation between shifted
and non-shifted methods occurs sooner (for a fewer num-
ber of points) compared to the deviation observed with a
quadratic basis. The deviation between shifted and non-
shifted methods is again explained by the singularity of
the moment matrix in a non-shifted approach. As the or-
der of the polynomial increases, the moment matrix can
become singular very quickly.
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Figure 3 : Convergence of shifted and non-shifted meth-
ods for the Poisson equation using a cubic basis (a) con-
vergence in u (b) convergence in the derivative of u (ux)

The second 1-D example has a high gradient in a local
region. The governing equation and boundary conditions

for this example are

∂2u
∂x2 ��� 6x �z� 2

α2 � 4 � x � β
α2 � 2 �

exp ��� � x � β
α � 2 �

0 � x � 1 (42)

u � x � 0 � � exp � � β2

α2 � (43)

∂u
∂x
� x � 1 � �� 3 � 2 � 1 � β

α2 � exp � � � 1 � β
α � 2 �

(44)

The exact solution for this problem is given by

u �� x3 � exp � � � x � β
α � 2 �

(45)

For the results shown in this paper, we use β � 0 � 5
and α � 0 � 05. This problem is analyzed by employ-
ing a uniform distribution of 41, 81, 161, 321, 641,
1281, and 5121 points to study the convergence behav-
ior. The convergence of shifted and non-shifted meth-
ods for quadratic and cubic basis is shown in Figure 4
and Figure 5, respectively. In the case of a quadratic ba-
sis, the convergence rate of u for shifted and non-shifted
methods is 2.0 and 1.8, respectively. The convergence
rate of ux for shifted and non-shifted methods is 2.0 and
2.0, respectively. In the case of a cubic basis, the con-
vergence rates of u for shifted and non-shifted methods
is 2.0 and 1.6, respectively. The convergence rate of ux
for shifted and non-shifted methods is 1.98 and 1.36, re-
spectively. Once again we observe that the shifted basis
approach exhibits superior convergence compared to the
non-shifted basis approach and with increasing polyno-
mial order the performance of the non-shifted basis ap-
proach worsens.

5.2 2-D Examples

In this section we consider several two-dimensional ex-
amples. Numerical results again indicate that the shifted
method exhibits superior convergence compared to the
non-shifted method.
2-D Poisson Problem
We consider a two-dimensional extension of the 1-D
Poisson example with a high local gradient. The gov-
erning equation along with the boundary conditions are



On the equivalence between least-squares and kernel approximations in meshless methods 455

−9 −8 −7 −6 −5 −4 −3
−14

−12

−10

−8

−6

−4

−2

ln(h
x
)

ln
(e

rr
or

)

shifted, u    
non−shifted, u

(a)

−9 −8 −7 −6 −5 −4 −3
−16

−14

−12

−10

−8

−6

−4

ln(h
x
)

ln
(e

rr
or

)

shifted, u
x
    

non−shifted, u
x

(b)
Figure 4 : Convergence of shifted and non-shifted meth-
ods for the Poisson equation with a high local gradient
using a quadratic basis (a) convergence in u (b) conver-
gence in the derivative of u
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Figure 5 : Convergence of shifted and non-shifted meth-
ods for the Poisson equation with a high local gradient
using a cubic basis (a) convergence in u (b) convergence
in the derivative of u



456 Copyright c
�

2001 Tech Science Press CMES, vol.2, no.4, pp.447-462, 2001

∂2u
∂x2 � ∂2u

∂y2  �¡ 6x ¡ 6y (46)¡£¢ 4
α2 ¡ 4 ¤ x ¥ β

α2 ¦ 2¡ 4 ¤ y ¥ β
α2 ¦ 2§

exp ¢�¡ ¤ x ¥ β
α ¦ 2¡ ¤ y ¥ β

α ¦ 2 §
0 ¨ x ¨w© 1 0 ¨ y ¨w© 1

u ª x   0 «  ¬¡ y3 � exp  ¡¯® β
α ° 2 ¡w® y ¡ β

α ° 2 ±
(47)

u ª x   0 © 1 «  ¬¡ 0 © 001¡ y3� exp  ¡ ® 0 © 1¡ β
α ° 2¡ ® y¡ β

α ° 2±
(48)

u ² y ª y   0 «   2β
α2 exp  ¡¯® x ¡ β

α ° 2 ¡w® β
α ° 2 ±

(49)

u ² y ª y   0 © 1 «  ¬¡ 0 © 03¡ 2 ¤ 0 ³ 1 ¥ β
α2 ¦ exp ¢ ¡ ¤ x ¥ β

α ¦ 2¡ ¤ 0 ³ 1 ¥ β
α ¦ 2 §

(50)

The exact solution for this problem is given by

u  �¡ x3 ¡ y3 � exp ¢ ¡ ª x ¡ β
α

« 2 ¡ ª y ¡ β
α

« 2 § (51)

To perform convergence studies, we use a cubic basis
and a uniform distribution of 9 ´ 9, 17 ´ 17, 33 ´ 33,
and 65 ´ 65 points. The convergence of u with shifted
and non-shifted methods is shown in Figure 6, and the
convergence of the x ¡ and y ¡ derivatives in u (denoted
ux and uy) is shown in Figure 7. The convergence rate
of u for shifted and non-shifted method is 1.96 and 1.9,
respectively. The convergence rate of ux for shifted
and non-shifted method is 2.03 and 1.7, respectively.
The convergence rate of uy for shifted and non-shifted
method is 2.15 and 1.2, respectively.
Heat Conduction
The steady-state heat conduction equation considered
here is a rectangular plate (0 © 5 ´ 1in2) with a heat source.
The governing equation is given by

∂2T
∂x2 � ∂2T

∂y2  µ¡ 2s2sech2 ¶ s ª y ¡ 0 © 5 «�· tanh ¶ s ª y ¡ 0 © 5 «�· (52)

−6.5 −6 −5.5 −5 −4.5 −4
−20

−19.5

−19

−18.5

−18

−17.5

−17

−16.5

−16

−15.5

−15

ln(h)

ln
(e

rr
or

)

shifted, u    
non−shifted, u

Figure 6 : Comparison of convergence in u with shifted
and non-shifted methods using a cubic basis
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Figure 7 : Convergence of shifted and non-shifted meth-
ods for a 2-D Poisson problem using a cubic basis (a)
convergence in ux (b) convergence in uy
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The boundary conditions are given by

T ¸ y ¹ 0 º�¹¬» tanh ¸ 3s º
T ¸ y ¹ 1 º�¹ tanh ¸ 3s º

T ¼ x ¸ x ¹ 0 º�¹ 0
T ¼ x ¸ x ¹ 0 ½ 5 º�¹ 0

The exact solution for this problem is given by

T ¹ tanh ¾ s ¸ y » 0 ½ 5 º�¿ (53)

We use a uniform distribution of 5 À 9, 5 À 17, 5 À 33,
5 À 65, 5 À 129, 5 À 257, 5 À 513, and 5 À 1025 points.
The problem is analyzed with both quadratic and cubic
basis. The convergence (of the solution, T ) of shifted
and non-shifted methods with quadratic and cubic basis
is shown in Figure 8. With a quadratic basis, the con-
vergence rate of T is 2.1 for the shifted method, and 1.9
for the non-shifted method. With a cubic basis, the con-
vergence rate of T is 2.03 for the shifted method and
2.0 for the non-shifted method. The convergence (of the
gradient of the solution, Ty) of shifted and non-shifted
methods with quadratic and cubic basis is shown in Fig-
ure 9. With a quadratic basis, the convergence rate of Ty
is 2.26 for the shifted method, and 1.2 for the non-shifted
method. With a cubic basis, the convergence rate of Ty is
1.92 for the shifted method and 1.35 for the non-shifted
method.
Convection-Diffussion Problem
The convection-diffusion equation in two-dimensions is
given by

ux
∂C
∂x Á uy

∂C
∂y
» kx

∂2C
∂x2 » ky

∂2C
∂y2 ¹ 0

5 Â x Â 6 5 Â y Â 6 (54)

where ux and uy are velocities in the x » and
y » directions, respectively, and kx and ky are the diffu-
sion coefficients. In this paper, we take ux ¹ uy ¹ u,
kx ¹ ky ¹ k, the ratio of u to k is defined as the Peclet
number ¸ Pe º , and we consider a Peclet number of 1.
The following boundary conditions are considered for
the convection-diffusion example

C ¸ x ¹ 5 º�¹ 0
C ¸ y ¹ 5 º�¹ 0

C ¸ x ¹ 6 º�¹ ¸ 1 » ePe ºÃ¸ 1 » ePe Ä y Å 5 Æ º¸ 1 » ePe º 2
C ¸ y ¹ 6 º�¹ ¸ 1 » ePe ºÃ¸ 1 » ePe Ä x Å 5 Æ º¸ 1 » ePe º 2
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Figure 8 : Convergence of shifted and non-shifted meth-
ods for the heat conduction problem (a) convergence in
T with quadratic basis (b) convergence in T with cubic
basis
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Figure 9 : Convergence of shifted and non-shifted meth-
ods for the heat conduction problem (a) convergence in
Ty with quadratic basis (b) convergence in Ty with cubic
basis

The exact solution of this problem is given by

C ÈBÉ 1 Ê exp É Pe É x Ê 5 Ë�Ë�Ë É 1 Ê exp É Pe É y Ê 5 Ë�Ë�ËÉ 1 Ê ePe Ë 2 (55)

The convergence rate of C is studied by using a cubic
basis and a uniform distribution of 5 Ì 5, 9 Ì 9, 17 Ì 17,
and 33 Ì 33 points. The convergence of shifted and non-
shifted methods is shown in Figure 10. The convergence
rate of C for the shifted and non-shifted method is 1.81
and 1.75, repectively.
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Figure 10 : Comparison of convergence of shifted and
non-shifted methods for a convection-diffusion example
using cubic basis

Elasticity Example
The governing equations for elasticity (in a plane stress
situation) are

2
1 Ê ν

∂2u
∂x2 Í 1 Í ν

1 Ê ν
∂2v

∂x∂y Í ∂2u
∂y2 È 0 (56)

2
1 Ê ν

∂2v
∂y2 Í 1 Í ν

1 Ê ν
∂2u
∂x∂y Í ∂2v

∂x2 È 0 (57)

where u and v are the x Ê and y Ê components of the dis-
placement and ν is the Poisson’s ratio. We consider the
solution of a beam subjected to a uniform load and a
shear as shown in Figure 11. The beam is centered atÉ a Î b Ë6È É 3 Î 2 Ï 25 Ë , l È 1 unit, c È 0 Ï 25 and t È 1 unit. The
modulus of elasticity is 3 Ì 107 and the Poisson’s ratio is
0.25. The following boundary conditions are considered
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τxyτxy
(a,b)

y

2l

2c

t

q

x(0,0)

Figure 11 : A beam subjected to a uniform load and
shear

u Ð x Ñ a Ò l Ó y Ñ b Ô3Ñ νql
2E

v Ð x Ñ a Õ l Ó y Ñ b Ô�Ñ 0
τxy Ð y Ñ b Õ c ÔÖÑ 0
σy Ð y Ñ b × c ÔÖÑØ× q
σy Ð y Ñ b Ò c ÔÖÑ 0

σx Ð x Ñ a Õ l ÔÖÑ q
2I Ù 23 Ð y × b Ô 3 × 2

5
c2 Ð y × b Ô�Ú

τxy Ð x Ñ a Õ l ÔÖÑØ× q
2I
Ð x × a ÔÜÛ c2 ×ÝÐ y × b Ô 2 Þ

The exact solution for this problem is given by

u Ñ q
2EI ß Ù l2 Ð x × a Ô�× Ð x × a Ô 3

3
Ú Ð y × b ÔÒØÐ x × a Ô Ù 23 Ð y × b Ô 3 × 2

5
c2 Ð y × b Ô ÚÒ ν Ð x × a Ô Ù Ð y × b Ô 3

3
× c2 Ð y × b ÔàÒ 2

3
c3 Úâá (58)

v Ñâ× q
2EI ß Ð y × b Ô 4

12
× c2 Ð y × b Ô 2

2
Ò 2c3 Ð y × b Ô

3Ò ν Ùäã l2 ×åÐ x × a Ô 2 æ Ð y × b Ô 2
2

Ò Ð y × b Ô 4
6

× c2 Ð y × b Ô 2
5

Úâá× q
2EI Ù l2 Ð x × a Ô 2

2
× Ð x × a Ô 4

12
× c2 Ð x × a Ô 2

5Òç 1 Ò 1
2

ν è c2 Ð x × a Ô 2 ÚåÒ δ (59)

δ Ñ 5
24

ql4

EI Ù 1 Ò 12
5

c2

l2 ç 4
5
Ò ν

2
èéÚ (60)

The convergence of shifted and non-shifted methods is
studied by using a cubic basis and a uniform distribution

of 5 ê 5, 9 ê 9, 17 ê 17, and 33 ê 33 points. The conver-
gence of u and v for both methods is shown in Figure 12.
The convergence of the x and y derivative of u is shown
in Figure 13 and the convergence of the x and y derivative
of v is shown in Figure 14. For the non-shifted method,
the convergence rates of u and v are 2.85 and 2.65, re-
spectively. For the shifted method, the convergence rates
of u and v are 2.84 and 2.64, respectively.
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Figure 12 : Convergence of shifted and non-shifted
methods for the elasticity problem using a cubic basis
(a) convergence in x displacement (u) (b) convergence in
y displacement (v)

6 Conclusions

Many proposed meshless methods are distinguished ei-
ther by the construction of the interpolation functions
(e.g. least-squares, kernel approximations etc.) or by the
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Figure 13 : Convergence of shifted and non-shifted
methods for the elasticity problem using a cubic basis
(a) convergence of ux (x-derivative of u) (b) convergence
of uy (y-derivative of u)
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Figure 14 : Convergence of shifted and non-shifted
methods for the elasticity problem using a cubic basis
(a) convergence of vx (x-derivative of v) (b) convergence
of vy (y-derivative of v)
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choice of the discretization technique (Galerkin and col-
location). Least-squares based approaches, for example
moving least-squares and fixed least-squares, use non-
shifted polynomial basis. On the other hand, kernel ap-
proximations are based on shifted polynomial basis. In
an earlier paper [Aluru and Li (2001)], we have shown
that, when non-shifted polynomial basis is used in ker-
nel approximations, least-squares and kernel approxima-
tions produce identical interpolation functions, if nodal
volumes are set to unity in kernel approximations (see
[Aluru and Li (2001)] for details). In this work, we have
shown that the use of either shifted or non-shifted poly-
nomial basis produces mathematically equivalent inter-
polation functions. However, when implemented numer-
ically, the non-shifted approach can produce different re-
sults compared to the shifted approach. In particular, for
large point distributions or for higher-order polynomial
basis, the numerical errors with the non-shifted approach
can grow quickly leading to the violation of consistency
conditions. Hence, the use of shifted polynomial basis
is recommended in meshless methods. Finally, we have
introduced an improved finite cloud method which uses
a shifted polynomial based fixed-kernel approximation
for construction of interpolation functions and a colloca-
tion technique for discretization of the partial differential
equations. The improved finite cloud method exhibits
superior convergence behavior compared to our original
implementation of the finite cloud method.
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