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Numerical Solution of Plane Elasticity Problems with the Cell Method

F. Cosmi1

Abstract: The aim of this paper is to present a method-
ology for solving the plane elasticity problem using the
Cell Method. It is shown that with the use of a parabolic
interpolation in a vectorial problem, a convergence rate
of 3.5 is obtained. Such a convergence rate compares
with, or is even better than, the one obtained with FEM
with the same interpolation – depending on the integra-
tion technique used by the FEM application. The accu-
racy of the solution is also comparable or better.

keyword: Numerical method, Cell method, plane elas-
ticity.

1 Introduction

The Cell Method (CM) has been recently introduced
[Tonti (1993), Tonti (2001)]. It is currently being applied
in several fields, such as thermal conduction, electromag-
netism, mechanics of porous materials, and fracture me-
chanics [Tonti (to appear), Tonti (to appear-a), Cosmi and
Di Marino (2000), Ferretti, Viola and Di Leo (2000),
Marrone (2001), Nappi, Rajgelj and Zaccaria (2000)].
In all these cases, the CM results agree with those ob-
tainable with other widely used numerical methods such
as the Finite Element Method, Finite Difference Method
and Finite Volume Method. Yet, the Cell Method concept
is deeply different from that of the mentioned methods,
and brings some advantages with it.

One of the major drawbacks of FEM and the other meth-
ods when dealing with elasticity problems is that “the de-
scription of a real elastic solid will be accurate only if
the displacement field varies slowly over the size of the
elements used...Fluctuations of elastic modulii from ele-
ment to element should be small” [Roux (1990)]. This
drawback directly derives from the use of a differential
formulation of the physical laws involved: field equa-
tions in a differential formulation are subjected to restric-
tions imposed by derivability, restrictions that have noth-
ing to do with the physical phenomenon investigated.
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Actually, a real discrete formulation should not need to
introduce relations among the differentials of the vari-
ables of the approximated field in order to write the bal-
ance equation. In fact, CM uses constitutive equations at
a local level – just like any other method – but writes the
equilibrium equations directly for the discrete volume,
not for a point, using global variables and not field vari-
ables, thus avoiding restrictions to guarantee their differ-
entiability.

In this paper we will approximate the displacement field
within the primal cell by an appropriate function. We
will differentiate this function to express the strain com-
ponents within each cell. We will then introduce the
constitutive relation to write stress components and we
will compute the forces acting through the dual complex
sides. The point is that we are not going to use a differ-
ential apparatus to write the equilibrium equation: there
is no need to write balance for a point – the node – in-
troducing restrictions for differentiability, when equilib-
rium holds also for a whole region – a discrete region –
namely the influence region of the node. In this sense we
use a real discrete formulation: that the balance equation
is expressed in finite terms.

As a consequence, CM is applicable whenever variables
cannot be differentiated, for example when the displace-
ment field undergoes large variations, i.e. when the size
of the heterogeneities is the same scale of that of the dis-
cretization. In this sense, CM is deeply different from the
other mentioned methods, in that CM uses global – inte-
gral – variables to derive directly a discrete formulation
of the physical laws, it does not require neither energetic
functionals nor their differentiation to find critical points.

Furthermore, using a parabolic interpolation in a vecto-
rial problem such as plane elasticity, a convergence of or-
der 3.5 is obtained with the Cell Method. This is greater
than, or equal to, the one obtainable using FEM, with the
same interpolation – depending on the integration tech-
nique used. As will be discussed, the Cell Method also
improves accuracy of the solution with respect to AN-
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SYS code.

2 The Cell Method grounds

We give here a description of the CM, for plane elas-
ticity. Consider a plane elasticity problem, i.e. a body
of constant thickness t loaded in the plane. First of all,
we note that the geometry and kinematics of the body
are described by the configuration variables – that is dis-
placements, velocities, strain tensor and so on. No matter
what the method employed for the discrete formulation,
the points specifying the body configuration are called
nodes. On the other hand, static and dynamic variables
– such as forces, momenta, stress tensor and so on – de-
scribe the sources of the strain field and constitute the
source variables for the problem. We shall recall that this
classification is applicable to any field problem [Tonti
(1972), Tonti (1972-a)]. For example, in a thermal con-
duction problem, temperatures and their gradients con-
stitute the configuration variables, while heat fluxes and
thermal sources are the source variables.
There is also a third class of variables, the energy vari-
ables, which result from the product of a configuration
and a source variable. We are not going to use them in
the following.

Given this classification, one of the fundamental aspects
of the Cell Method is that dealing with two kinds of vari-
ables, two cell complexes will be needed in order to op-
erate a correct discretization of the problem. Configura-
tion variables and nodes will be associated with a primal
complex of cells, while source variables will be linked to
a dual, staggered, complex.
Using simplicial complexes – triangles – as primal cells,
in a plane elasticity problem we may adopt:

a triangular cell complex as primal complex

a dual complex obtained connecting the barycentre of the
primal cells and of their sides, as shown in Fig. 1.

Other choices for the dual complex are possible, as will
be shown later.

Once the two cells complexes are established, we may
think of the dual cell as an influence region for the inner
node.

It is then possible to write the equilibrium equations for
each influence region, that is for each dual cell. We shall
first examine the contributions of each portion of primal
cell surrounding the node, and then collect the contribu-
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3 Plane elasticity with linear interpolation

Strain components are given by the symmetric part of

displacement gradient and may be expressed as:

{ } [ ] { }ccc uB=ε                                                                      (1)

where {u}c collects the displacement components ui and vi.
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 where t is the thickness of the sample, Ac the area of the cell,

and the meaning of Aij is shown in Fig. 2.
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The constitutive equation may be written as usual in FEM:
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where {σ}c collects the stress components, and matrix [D]c
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tions from all the primal cells surrounding the node. In
this way equilibrium relations are established over the en-
tire influence region of each node: equilibrium equations
are derived directly in a discrete form, using only global
variables.

3 Plane elasticity with linear interpolation

Strain components are given by the symmetric part of
displacement gradient and may be expressed as:�
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Aixvi � Aiyui � �

where t is the thickness of the sample, Ac the area of the
cell, and the meaning of Ai j is shown in Fig. 2.

The constitutive equation may be written as usual in
FEM:�
σ � c ���D � c � ε � c ���D � c � B � c � u � c (2)

where
�
σ � c collects the stress components, and matrix

[D]c represents Hooke law for the isotropic homoge-
neous material of the primal cell.

In order to write equilibrium equations it is necessary to
express the forces acting through each side of the dual
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polyhedron surrounding the considered node. As stress
components are uniform within each cell, the surface
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Remembering (2), eq. (3) can be also written$
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It is now possible to write equilibrium condition for each
dual cell. We make the following propositions (Fig. 4):) Uh is the dual cell surrounding node h;) Tc

h is the resultant force that acts on the two sides of
Uh belonging to cell c;
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If cell c rests on the boundary of the region (Fig. 5),+ Bc
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Equilibrium can be then written for region Uh:

Th - Fh - Bh , 0 (6)

that is a set of 2n linear equations in the 2n unknowns ui,
vi (i=1,. . . ,n) which can be solved with the usual meth-
ods. It can be easily seen that with a linear interpolation
of the displacement field, the stiffness matrix is the same
as that of FEM, while the right-end side is different [Tonti
(2001)].
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Such a drawback does not hold for the Cell Method. In
fact, the displacement field within the primal cell may be
approximated by parabolic or higher order interpolation
functions, which lead to higher convergence rates of the
solution, as will be shown in the following.
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For a quadratic interpolation function formulation we will

use:

• a primal complex of six nodes triangular cells as shown

in Fig. 6;

• a dual complex whose vertices are the two Gauss points
of each side of the primal cell, as shown in Fig. 7.

Figure 7 : Dual complex for quadratic interpolation.

Displacements of P(β1, β2, β3) within the primal cell can be
approximated by functions of the nodal displacements and

strain components within a primal cell may be expressed as:
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Displacements of P(β1, β2, β3) within the primal cell can
be approximated by functions of the nodal displacements
and strain components within a primal cell may be ex-
pressed as:
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.
ε / c 0 1

2Act 1G2 c . u / c (7)

where [G]c is a 3x12 matrix.

The expression for [G]c is3
G4 c 5768 g11x 0 g22x 0 g33x 0 g12x 0 g23x 0 g31x 0
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If P B (β B1, β B2, β B3) and P B B (β B B1 , β B B2, β B B3) are the side ends,
area components will be given by
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and force T will beD
Tx

Ty E 0GF Ax 0 Ay

0 Ay Ax H c

IJ K σx

σy
τxy

L MN
M

(9)

where the stress components are computed in M.

Substituting (8) we obtainD
Tx

Ty E 0 1
2Ac 1 A2 c 1D 2 c 1G 2 c . u / c (10)

In order to compute [A]c, the coordinates of the dual re-
gions side ends, shown in Fig. 10, are given in Tab. 1.

Let us consider node 1 of cell c (see Fig. 11). The forces
acting on the two sides, a and b, of the portion of the dual
region of node 1 that belong to the cell are Ta and Tb.

In the same way we may express the surface forces for
each of the six portions of dual regions surrounding each
node of the cell:
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Table 1 : Triangular coordinates of Gauss points

g PRQ 1 SUT 3 V
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β1 β2 β3
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P2 g/2 1-g g/2
P3 g/2 g/2 1-g
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P5 1-g g 0
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P7 0 1-g g
P8 g 0 1-g
P9 0 g 1-g

P10 1/3 1/3 1/3
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where the stress components are computed in M.
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It is now possible to write equilibrium for each dual cell.
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equilibrium can be then written for region h (see Fig. 12):
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Tc
1 P	W Ta X Tb

Tc
2 P	W Tc X Td

Tc
3 P	W Te X Tf (11)

Tc
4 P	W Tb W Tg X Th X Tc

Tc
5 P	W Td W Th X Ti X Te

Tc
6 P	W T f W Ti X Tg X Ta Y

It is now possible to write equilibrium for each dual cell.
With the same propositions as in the linear interpolation,
equilibrium can be then written for region Ũh (see Fig.
12):

Th X Fh X h P 0 (12)

which again is a set of 2n equations in the 2n unknown
nodal displacement components and can be solved with
the usual methods.

It should be noted that the stiffness matrix hereby ob-
tained does not coincide with that of FEM for triangular
elements with six nodes, as shown by Tonti (2001).

5 Result discussion.

In order to test convergence and accuracy of the proposed
method, a problem has been considered for which the
exact solution is known in literature.
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Consider the well-known problem of bending a cantilever

loaded at the end (Fig. 13), as developed by Timoshenko and

Goodier (1970).
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of resultant P are distributed along the end x=0. If I is the
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y
GI

Pc

EI

Pl

GI

Py

EI

Py

EI

yPx
u �

�

�

�

�
�

�

�
−−−+=

22662

22332 ν

EI

Pl

EI

xPl

EI

Px

EI

Pxy
v

3262

3232

−+−−=
ν

.                                (13)

This  solution has  been imposed  on the ends of a bar  with

P = 100 N/mm, E = 100 GPa, ν = 0.3, l = 100 mm, c = 10
mm, s = 1 mm.

In order to compare approximate and exact values, the root-

means-square values (rms) of the errors at nodes have been
computed. Cell Method results have also been compared with

those obtained with the same six nodes triangles mesh using

two commercial FEM codes: ANSYS 5.5 and ABAQUS 5.8.

We first considered a structured primal cell complex with

two horizontal divisions and successively halved the

discretization length as shown in Fig. 14.

Fig.14 : Cell complexes.

Results are shown in Fig. 15 and Tab. 2. It can be seen that

the convergence rate obtainable with both the Cell Method
and ABAQUS is 3.5, while that obtained with ANSYS is 2.9.

Only the two coarser meshes have been tested with ANSYS,

while all three have been tested with both Cell Method and

ABAQUS, obtaining coinciding results.

Table 2 : Results
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Consider the well-known problem of bending a can-
tilever loaded at the end (Fig. 13), as developed by Tim-
oshenko and Goodier (1970).

The upper and lower edges carry no load, and shearing
forces of resultant P are distributed along the end x=0. If
I is the moment of inertia, the solution

σx P Pxy
I Z σy P 0 Z τxy P�W P

2I [ c2 W y2 \ (13)

represents an exact solution if the shearing forces on the
end are distributed with the same parabolic law as τxy
and intensity of normal forces at the built-in end is pro-
portional to y.

Under these conditions, displacement field is given by
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This solution has been imposed on the ends of a bar with
P = 100 N/mm, E = 100 GPa, ν = 0.3, l = 100 mm, c =
10 mm, s = 1 mm.

In order to compare approximate and exact values, the
root-means-square values (rms) of the errors at nodes
have been computed. Cell Method results have also
been compared with those obtained with the same six
nodes triangles mesh using two commercial FEM codes:
ANSYS 5.5 and ABAQUS 5.8. We first considered a
structured primal cell complex with two horizontal divi-
sions and successively halved the discretization length as
shown in Fig. 14.

Results are shown in Fig. 15 and Tab. 2. It can be seen
that the convergence rate obtainable with both the Cell
Method and ABAQUS is 3.5, while that obtained with
ANSYS is 2.9. Only the two coarser meshes have been
tested with ANSYS, while all three have been tested with
both Cell Method and ABAQUS, obtaining coinciding
results.
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which again is a set of 2n equations in the 2n unknown nodal

displacement components and can be solved with the usual
methods.

It should be noted that the stiffness matrix hereby obtained

does not coincide with that of FEM for triangular elements

with six nodes, as shown by Tonti (2001).

5 Result discussion.

In order to test convergence and accuracy of the proposed

method, a problem has been considered for which the exact

solution is known in literature.

hBh

Figure 12: Influence region for a boundary node.

Consider the well-known problem of bending a cantilever

loaded at the end (Fig. 13), as developed by Timoshenko and

Goodier (1970).

The upper and lower edges carry no load, and shearing forces
of resultant P are distributed along the end x=0. If I is the

moment of inertia, the solution

( )22

2
,0, yc

I

P

I

Pxy
xyyx −−=== τσσ               (12)

represents an exact solution if the shearing forces on the end

are distributed with the same parabolic law as τxy and
intensity of normal forces at the built-in end is proportional

to y.
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Figure 13 : Cantilever loaded at the end.

Under these conditions, displacement field is given by
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This  solution has  been imposed  on the ends of a bar  with

P = 100 N/mm, E = 100 GPa, ν = 0.3, l = 100 mm, c = 10
mm, s = 1 mm.

In order to compare approximate and exact values, the root-

means-square values (rms) of the errors at nodes have been
computed. Cell Method results have also been compared with

those obtained with the same six nodes triangles mesh using

two commercial FEM codes: ANSYS 5.5 and ABAQUS 5.8.

We first considered a structured primal cell complex with

two horizontal divisions and successively halved the

discretization length as shown in Fig. 14.

Fig.14 : Cell complexes.

Results are shown in Fig. 15 and Tab. 2. It can be seen that

the convergence rate obtainable with both the Cell Method
and ABAQUS is 3.5, while that obtained with ANSYS is 2.9.

Only the two coarser meshes have been tested with ANSYS,

while all three have been tested with both Cell Method and

ABAQUS, obtaining coinciding results.

Table 2 : Results

rms ANSYS rms ABAQUS rms Cell Method

0,0000159700 0,0000160704 0,0000160791

0,0000021743 0,0000014759 0,0000014636

0,0000001263 0,0000001272

Figure 14 : Cell complexes.

It should be noted that the rate of convergence based
solely on polynomial approximation theory is 3 for six
nodes triangular finite elements, see Burnett (1988). It is
also known that FEM results are computed more accu-
rately at the integration – superconvergent – points. The
location of these data is then moved to nodal locations by
extrapolation in ANSYS (see Theory Reference Manual)
and ABAQUS (see Theory Manual).

We may also note that accuracy with the Cell method
tends to increase more than it does with ANSYS when
the mesh size is decreased.
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It should be noted that the rate of convergence based solely

on polynomial approximation theory is 3 for six nodes
triangular finite elements, see Burnett (1988). It is also

known that FEM results are computed more accurately at the

integration – superconvergent – points. The location of these

data is then moved to nodal locations by extrapolation in

ANSYS (see Theory Reference Manual) and ABAQUS (see

Theory Manual).

We may also note that accuracy with the Cell method tends

to increase more than it does with ANSYS when the mesh

size is decreased.

 Ansys

y = 2,9x - 7,7
Cell Method

y = 3.5x - 8.3

Abaqus

y = 3.5x - 8.3

-7,5

-7

-6,5

-6

-5,5

-5

-4,5

-4

0 0,2 0,4 0,6 0,8 1 1,2

log(side lenght)

lo
g

(r
m

s
)

Fig. 16 : Results

6 Conclusions

Plane elasticity with the Cell Method has been presented, and

it has been shown that using a parabolic interpolation in a

vectorial problem, a convergence rate 3.5 is obtained, that
compares with, or is greater than, the one obtained with FEM

with the same interpolation, depending on the integration

scheme employed.

In conclusion, the Cell Method has proved to be very

promising, being able to overcome some of the restrictions of
FEM while providing a comparable or better convergence

and accuracy.
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Plane elasticity with the Cell Method has been presented,
and it has been shown that using a parabolic interpolation
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in a vectorial problem, a convergence rate 3.5 is obtained,
that compares with, or is greater than, the one obtained
with FEM with the same interpolation, depending on the
integration scheme employed.

In conclusion, the Cell Method has proved to be very
promising, being able to overcome some of the restric-
tions of FEM while providing a comparable or better con-
vergence and accuracy.
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