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Modeling of Nonlinear Rate Sensitivity by Using an Overstress Model

Kwangsoo Ho1

Abstract: Negative, zero or positive rate sensitivity of
the flow stress can be observed in metals and alloys over
a certain range of strain, strain rate and temperature. It
is believed that negative rate sensitivity is an essential
feature of dynamic strain aging, of which the Portevin-
Le Chatelier effect is one other manifestation. The vis-
coplasticity theory based on overstress (VBO), one of the
unified state variable theories, is generalized to model
zero (rate independence) and negative as well as positive
rate sensitivity in a consistent way. The present model
does not have the stress rate term in the evolution law
for the state variable equilibrium stress that has been in-
cluded in previous versions of VBO. The three types of
rate sensitivity are classified on the basis of a certain con-
stant of an augmentation function, which is introduced in
the evolution law for the equilibrium stress. Based on the
augmentation function, the model reproduces the depen-
dence of relaxation rate on prior strain rate. When the
augmentation function is selected to depend on the ac-
cumulated inelastic strain or the effective inelastic strain
rate, a change of rate sensitivity type that depends on
strain or strain rate can be modeled. It is also shown that
the augmentation function can be used to reproduce the
observed dramatic increase of strain hardening at strain
rates exceeding 103 s � 1.

keyword: Constitutive Behavior; Viscoplasticity; Dy-
namic Strain Aging; Stress Relaxation; Dyanmic Plastic-
ity.

1 Introduction

Numerous investigations of constitutive models to rep-
resent rate dependent inelastic deformation behavior of
materials have been performed in the past decades.
Although constitutive modeling has made considerable
progress, it seems to be confined to some specific
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deformation behaviors [see, for instance, Tvergaard
and Pedersen(2000), and Kailasam, Aravas, and Ponte
Casañeda(2000)]. Thus the need for improved constitu-
tive models to represent the variety of deformation be-
haviors that can be found in many metals and alloys has
led to this work that is a generalization and simplification
of the viscoplasticity theory based on overstress.

Metals and alloys exhibit dynamic strain aging behav-
ior that is manifested by serrated flow, zero or negative
rate sensitivity, pronounced strengthening and reduction
of ductility in a certain range of temperature, see Mulford
and Kocks (1979) and Kishore et al. (1997), to name just
a few. A significant amount of experimental and theoret-
ical study has been performed to establish microscopic
mechanisms responsible for dynamic strain aging since
Cottrell (1953) proposed a model based on interaction
of diffusing solute atoms with mobile dislocations. It is
generally recognized that metals and alloys experience
dynamic strain aging in some temperature region. When
this happens negative rate sensitivity is a prerequisite for
serrated flow that depends on strain and/or strain rate, see
Penning (1972), Miller and Sherby (1978), Mulford and
Kocks (1979) and Kalk and Schwink (1992).

In the framework of the viscoplasticity theory based on
overstress, developed by Krempl and his colleagues, the
constitutive model is generalized and is simplified so
that positive, zero and negative rate sensitivity of the
flow stress including other inelastic deformation behav-
iors can be modeled easily. The purpose of this work is
not a study of the microscopic mechanism related to neg-
ative rate sensitivity but the phenomenological modeling
of the three different types of rate sensitivity together
with rate dependent deformation behavior. The model-
ing capability is easily extended to reproduce a change of
strain rate sensitivity depending on strain or strain rate.

Experiments have shown the nonlinear dependence of
the relaxation rate on prior strain rate. The test asso-
ciated with the fastest prior strain rate has the smallest
stress magnitude at the end of the same relaxation period,
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see Bordonaro and Krempl (1992), Majors and Krempl
(1994), Ariyama et al. (1997), Yaguchi and Takahashi
(1997) and Krempl and Nakamura (1998).

In dynamic plasticity some materials can exhibit a dra-
matic increase of rate sensitivity as the strain rate ex-
ceeds 103 s � 1, see Stout and Follansbee (1986), Follans-
bee and Kocks (1988), Clifton (1990) and Bodner and
Rubin (1994). Motivated by the fact that the strain rate
dependence is a crucial feature at very high strain rates,
it is of interest to include the effect in constitutive mod-
eling.

In the following the generalized viscoplasticity theory is
first investigated for a hypothetical material to demon-
strate the modeling capabilities and then applied to re-
produce the observed inelastic deformation behaviors
of 304L stainless steel tested by Stout and Follansbee
(1986) and a modified 9Cr-1Mo steel investigated by
Yaguchi and Takahashi (1999).

2 The Proposed Model

A generalized viscoplasticity theory based on overstress,
one of the unified state variable theories, does not have
separate repositories for plastic and creep deformation,
a yield criterion and a loading/unloading condition. The
constitutive equations consist of a set of nonlinear, cou-
pled ordinary differential equations; one flow law and
one evolution law for each of three state variables that
represent some features of the microstructural state and
its change.

It is known that inelastic deformation of materials is con-
sidered a rate dependent process and during deformation
materials have two competing mechanisms, hardening
and dynamic recovery. The second law of thermodynam-
ics, together with the two competing mechanisms, have
provided a good framework in constructing constitutive
equations, see Swearengen et al. (1985), Freed et al.
(1991), Chaboche (1993) and Krempl (1996). In accor-
dance with the notion, the proposed model eliminates the
stress rate term in the evolution law for the state variable
equilibrium stress that has been included in the previous
formulation by Ho (1998) and Ho and Krempl (2001);
the stress rate term has been found to be responsible for
difficulties in showing thermodynamic consistency, see
Krempl (1996).

Materials exhibit different endpoints of relaxation tests of
equal duration at the same strain but with different prior

strain rate. When the equilibrium (back) stress is rate
independent in fully established inelastic flow region on
loading, this relaxation property cannot be modeled with-
out the stress rate term in the evolution law; the equi-
librium stress changes and thus becomes rate dependent
during relaxation period due to the stress rate term, see
Krempl and Nakamura (1998). However, the proposed
model can surely reproduce the relaxation property with-
out the stress rate term through making the equilibrium
stress rate dependent in fully established inelastic flow
region.

The total strain rate is assumed to be the sum of the elas-
tic and the inelastic strain rate. The elastic part is formu-
lated from the rate form of the generalized Hooke’s law
and the inelastic part is a function of the overstress, the
difference between the stress and the tensor-valued state
variable equilibrium stress. The overstress plays a key
role as a repository of nonlinear rate dependency and the
equilibrium stress can be considered as the history de-
pendent stress sustained at rest. The model has two addi-
tional state variables; the tensor-valued kinematic stress
and the scalar isotropic stress. The purpose of the kine-
matic stress is to model the slope of the stress-strain di-
agram for fully established inelastic flow. The isotropic
stress is responsible for the modeling of cyclic hardening
or softening.

2.1 Multiaxial formulation

We assume small strain, isotropic and incompressible in-
elastic deformation under isothermal condition. For a
multiaxial formulation, the flow law is taken to be

ε̇i j � ε̇el
i j � ε̇in

i j � � 1 � ν
E

σ̇i j � ν
E

δi jσ̇kk �
� � 3

2Ek
Xi j � 1

2Ek
δi jXkk � (1)

where σi j and εi j are the stress and strain tensors, re-
spectively; E and ν are the elastic modulus and Poisson’s
ratio, respectively. A superposed dot denotes material
time derivative, δi j is the Kronecker delta and Xi j is the
overstress defined by σi j � gi j. The inelastic strain rate is
taken to be an increasing function of the overstress that
is the difference between the stress and the equilibrium
stress. The viscosity function k is introduced to model
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nonlinear rate dependence and is a positive, decreasing,
continuous function of the overstress invariant Γ given by

Γ 	�
 3
2

Xi jXi j � 1
2

XiiX j j  1/2 	�
 3
2

Xd
i jX

d
i j  1/2

(2)

where Xd
i j 	 σd

i j � gd
i j is the deviatoric overstress defined

by the deviator of the stress and the equilibrium stress.

The evolution law for the equilibrium stress is

ġi j 	 ψ � Xi j

Ek � � gi j � fi j �
Ac ��� A � βΓ � φ̇� � ḟi j � rgi j (3)

where r and Ac are positive material constants. The ef-
fective inelastic strain rate is given by

φ̇ 	 
 2
3

ε̇in
i j ε̇

in
i j  1/2 	 Γ

Ek
(4)

The augmentation function β is newly introduced into the
dynamic recovery term of the evolution law for the equi-
librium stress so as to make the equilibrium stress rate
dependent. In such a way negative, zero and positive rate
sensitivity of the flow stress can be easily modeled. The
material constant ψ � 0 influences the transition between
initial quasi-elastic behavior and fully established inelas-
tic flow. The static recovery term rgi j represents the soft-
ening caused by thermal diffusion at elevated tempera-
ture, see Choi (1989) and Tachibana and Krempl (1995).

In contrast to the previous version by Ho (1998) and Ho
and Krempl (2001), the evolution law for the equilibrium
stress has no stress rate dependence and the denominator
of the dynamic recovery term, Ac ���A � βΓ � , is positive
all the time to confirm the recovery role competing with
the hardening contribution. From Eq. (1), the stress be-
comes equal to the equilibrium stress when σ̇i j 	 ε̇i j 	 0.
The equilibrium stress can therefore be identified as the
stress sustained at rest. When the equilibrium stress is
set to have negative rate sensitivity through a properly
defined augmentation function and rarely changes during
relaxation period the present version may reproduce re-
alistic relaxation behavior, which means that the relaxed
stress associated with the fastest prior strain rate has the
smallest magnitude at the end of the same relaxation pe-
riod. This modeling capability will be demonstrated in
the next section.

Through the competing effect of the strain hardening and
the dynamic recovery, the theory also allows to model the
change of hardening rate and strain rate sensitivity with
straining, and the cyclic hardening followed by softening
or vice versa, see Ho (1998) for details.

The evolution law for the kinematic stress is

ḟi j 	 Et
Xi j

Ek
(5)

where Et is related to the tangent modulus based on total
strain Êt by Êt 	 Et ��� 1 � Et � E � .
The positive, scalar isotropic stress has the following
evolution law

Ȧ 	 Ar � A f � A � p; p 	�� φ̇dt (6)

with an initial value, A � t 	 0 � 	 A0. In the above p is the
accumulated inelastic strain, A f is the final value of A and
Ar is the material constant that influences the evolution
rate of the isotropic stress.
The viscosity function is taken to be

k 	 k1 
 1 � Γ
k2
�� k3

(7)

where k1, k2 and k3 are material constants.

2.2 Reduction to the uniaxial state of stress

To motivate the interpretation of the state variables of the
theory, the uniaxial formulation is shown below. Using
Γ 	 �σ � g � and φ̇ 	 �� ε̇in �� , we have

ε̇ 	 ε̇el � ε̇in 	 σ̇
E � � σ � g �

Ek ! Γ" (8a)

ġ 	 ψ � � σ � g �
Ek � � g � f �

Ac �#� A � βΓ � ���� σ � g
Ek
���� � � ḟ � rg (8b)

ḟ 	 Et � σ � g �
Ek

(8c)
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For a constant strain rate test, the constitutive equations
admit asymptotic solutions as the time grows without
bounds, see Appendix for details. The asymptotic solu-
tions can be obtained by the integral representation con-
verted from the differential form of the constitutive equa-
tions, see Cernocky and Krempl (1979) and Ho (1998).
These solutions are recognized to correspond to the fully
established inelastic deformation and give rise to essen-
tial features of the theory.

For the asymptotic state, we obtain

%
dσ
dε &(' % dg

dε &)' % d f
dε & (9)

and

*
Ȧ + ' 0 (10)

where brace denotes the asymptotic value of the quantity.

Based on these basic relations, we can rewrite Eq. (8a)
as

,
σ - g . ' E

1 / Et 0 E , k 1 Γ23. ε̇ (11)

The overstress in the asymptotic state depends nonlin-
early on the strain rate due to the presence of the vis-
cosity function and always increases nonlinearly with an
increase of the strain rate.

An asymptotic solution for the difference g - f is

,
g - f . ' * Ac /�44 A f / βΓ 44 + % σ - g

Γ & (12)

and we then obtain

,
σ - f . ' * Ac / 44 A f / βΓ 44 / Γ + % σ - g

Γ & (13)

The stress minus the kinematic stress consists of the rate
independent (plastic) and the rate dependent (viscous)
contributions given by

,
σ - f . '65 , Ac / A f . ,87 σ - g 9;: Γ .,

Ac - A f . ,87 σ - g 9;: Γ . (14)/ ,87 1 / β 9 Γ . ,87 σ - g 9<: Γ . for A f / βΓ = 0/ ,87 1 - β 9 Γ . ,87 σ - g 9<: Γ . for A f / βΓ > 0

It should be noted that the kinematic stress is rate in-
dependent and the rate independent isotropic stress A f
and the overstress invariant Γ are defined to be positive.
When A f / βΓ = 0, the three types of rate sensitivity as-
sociated with stress-strain diagram can be distinguished
as follows:

β >�- 1 ; Negative rate sensitivity, (15a)

β ' - 1 ; Zero rate sensitivity (15b)

β ?�- 1 ; Positive rate sensitivity. (15c)

Setting β ' - 1 eliminates the rate dependent contribu-
tion so that the flow stress level shows zero rate sensi-
tivity (rate independence). The conditions β >@- 1 and
β ?�- 1 correspond to negative and positive contributions
of the rate dependent term to the flow stress level, respec-
tively, since the overstress always increases with strain
rate. On the other hand, when strain rate becomes large
enough to satisfy A f / βΓ > 0 the rate dependent term
always has the positive contribution to the flow stress
and only positive rate sensitivity of the flow stress is
thus reproduced. The constitutive equations can there-
fore model negative or zero rate sensitivity depending on
strain rate in a natural way with no constraint.

3 Numerical simulations

First the generalized viscoplasticity theory is demon-
strated for a hypothetical material to depict the qualitative
modeling capabilities. The theory is then applied to ex-
periments on a modified 9Cr-1Mo steel tested by Yaguchi
and Takahashi (1999) and a 304L stainless steel tested by
Stout and Follanbee (1986). In performing most cases,
the isotropic stress is kept constant (Ar ' 0) in a uniaxial
test since the isotropic stress is responsible for modeling
of cyclic hardening or softening behaviors; in fact, the
accumulated inelastic strain is so small that the evolution
of the isotropic stress may be neglected in a uniaxial test.
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3.1 Hypothetical material

With the help of Eqs. (15a), (15b) and (15c), numerical
simulations in uniaxial tensile loading are presented for
a hypothetical material using the arbitrary material con-
stants given in Table 1.
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(b)

Figure 1 : Positive rate sensitivity of flow stress with β AB 0 C 5. (a) Shown are the stress, equilibrium stress and
kinematic stress; (b) Each creep test starts at 200Mpa.

Figure 1a shows positive rate sensitivity for β A B 0 C 5,
which means the flow stress levels increase nonlinearly
with the strain rates. The stress, the equilibrium stress
and the kinematic stress grow at the same rate in the fully
developed inelastic flow region. The kinematic stress ex-
hibits rate insensitivity and the overstress σ B g increases
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(b)

Figure 2 : Zero rate sensitivity of flow stress with β AB 1. (a) Shown are the stress, equilibrium stress and kine-
matic stress; (b) Each creep test starts at 200Mpa.

nonlinearly with the strain rate as expected from Eq.
(11). The equilibrium stress is not unique and decreases
nonlinearly with the strain rate.

Figures 2a and 3a depict zero rate sensitivity with β A B 1
and negative rate sensitivity with β A B 1 C 5, respectively.
In both cases, as well as for positive rate sensitivity, the
overstress increases with an increase of the strain rate
since the asymptotic value of D σ B g E is independent ofβ,
see Eq. (11). This property causes that regardless of the
type of strain rate sensitivity of the flow stress, the stress
drop at the end of relaxation tests with constant duration
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increases nonlinearly with prior strain rate.

As the manifestation of rate sensitivity, creep and re-
laxation behavior exhibit an increasing strain during a
fixed stress and a decreasing stress during a fixed strain,
respectively. One may consider creep to be counter-
part of relaxation as the rate-dependent inelastic defor-
mation behavior and thus materials exhibit an increase
of creep strain with increasing prior stress rate, see
Krempl (1979), Stouffer and Dame (1996), Ho (1998)
and Irizarry-Quinones (1999). The dependence of the
creep rate on prior stress rate is shown in Figs. 1b, 2b
and 3b.

During relaxation test the stress approaches the equilib-
rium stress and when the stress catches up with the equi-
librium stress the relaxation finally ends up as expected
from Eq. (8a). Under the positive rate sensitivity of flow
stress (β GIH 1), Figs. 4, 5 and 6 show how the value of
the augmentation function is related to the trend of re-
laxation behavior. The equilibrium stress exhibits zero,
positive and negative rate sensitivity for β J 0, β J 0 K 5
and β JLH 0 K 5, respectively, as expected from Eqs. (11)
and (12). The stress and the equilibrium stress versus the
total strain are simulated in Figs. 4a, 5a and 6a.

When β J 0 the equilibrium stress is rate independent
in the fully developed inelastic flow region as shown in
Fig. 4a. Figure 4b shows the relaxation behavior started
at ε J 0 K 03 for the different prior strain rates. Since the
equilibrium stress exhibited rate independence before the
relaxation tests and rarely changes during the relaxation
tests, the relaxed stresses for the different prior strain
rates finally ends up at one point as shown in Fig. 4b.
Figure 5a shows the positive rate sensitivity of the equi-
librium stress and thus the relaxed stress of the fastest
prior strain rate has the largest stress magnitude at the
end of the relaxation periods as shown in Fig. 5b. From
these results, we know that the case β M 0 cannot repro-
duce realistic relaxation behavior.

On the other hand, for β JLH 0 K 5 in Fig. 6b the relaxed
stress associated with the fastest prior strain rate has the
smallest magnitude due to the negative rate sensitivity
of the equilibrium stress before the relaxation tests. It
is thus true that only the case β N 0 can model realistic
relaxation behavior. In other words, if the augmentation
function is estimated from relaxation test it should have
a negative value.

So far the augmentation function β has been held con-
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(b)

Figure 3 : Negative rate sensitivity of flow stress
with β J�H 1 K 5. (a) Shown are the stress, equilibrium
stress and kinematic stress; (b) Each creep test starts at
200Mpa.

stant during deformation, but it can be chosen to change
with straining so as to model the strain dependence of dy-
namic strain aging behavior, i.e., region of zero or nega-
tive rate sensitivity. To this end the augmentation func-
tion is taken to be

β J β1 exp OPH β2 p QSR β3 (16)

where p is the accumulated inelastic strain. Figures 7
and 8 show the transition of strain rate sensitivity with
straining where the strain rate alternates between 10 T 3
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(b)

Figure 4 : Relaxation behavior for β U 0. (a) Stress and
equilibrium stress versus strain; (b) Stress at 3% strain
versus time.

and 10 V 6 s V 1. When the augmentation function con-
tinuously decreases from β UXW 0 Y 5 to β UXW 1 Y 5, the rate
sensitivity changes from positive to negative as shown in
Fig. 7. Figure 8 shows the negative rate sensitivity fol-
lowed by the positive one with the increasing augmenta-
tion function.

To see the effect of strain rate on negative rate sensitivity,
the augmentation function is assumed to be the function
of the effective inelastic strain rate as follows:

β U β1 W sec h Z β2 [ ln \\ ε̇in \\ W β3 ]_^ (17)
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(b)

Figure 5 : Relaxation behavior for β U 0 Y 5. (a) Stress and
equilibrium stress versus strain; (b) Stress at 3% strain
versus time.

Negative rate sensitivity of flow stress occurs in a cer-
tain range of strain rates satisfying the condition, β `�W 1.
The material constants β2 and β3 mainly control the ex-
tent and the position of the region in which there exist
negative rate sensitivity, respectively. The capabilities
are shown for the flow stress at 3% strain in Figs. 9 and
10.

Negative rate sensitivity as a manifestation of dynamic
strain aging shows in general strain and strain rate de-
pendence. In the most realistic case the augmentation
function is thus made to depend on both the accumulated
inelastic strain and the effective inelastic strain rate, see
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(b)

Figure 6 : Relaxation behavior for β bdc 0 e 5. (a) Stress
and equilibrium stress versus strain; (b) Stress at 3%
strain versus time.

Ho (1998).
Some metals and alloys exhibit a significant increase of
the flow stress at very high strain rates. This property
can be incorporated in constitutive equations by decreas-
ing the dynamic recovery effect in the evolution law for
the equilibrium stress through the augmentation function
given by

β b β1 fIg β2 hh ε̇in hhji β3 (18)

The point from which strain rate sensitivity abruptly in-

30

0 5 10 15 20 25 30

0

100

200

300

400

500

600

H=10
-3
 s

-1
, L=10

-6
 s

-1

(β
1
,β

2
,β

3
)=(1,6,-1.5)

L

L

L

L

H

HH

H

L

H

Strain [%]

S
tr

e
s
s
 [
M

P
a
]

[Figure 7]

0 5 10 15 20 25 30

0

100

200

300

400

500

600

(β
1
,β

2
,β

3
)=(-1,6,-0.5)

H=10
-3
 s

-1
, L=10

-6
 s

-1

L

L

LL

H

H

H

H
L

H

Strain [%]

S
tr

e
s
s
 [
M

P
a
]

[Figure 8]

Figure 7 : The strain rate alternates between high (H b
10 k 3s k 1) and low (L b 10 k 6s k 1). β defined by equation
(16) is used; β1 b 1, β2 b 6, β3 bXc 1 e 5.
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Figure 8 : The strain rate alternates between high (H b
10 k 3s k 1) and low (L b 10 k 6s k 1). β defined by equation
(16) is used; β1 bXc 1, β2 b 6, β3 b@c 0 e 5.

creases can be adjusted by appropriate values of the ma-
terial constant β2 as shown in Fig. 11. Figure 12 shows
how to control the slope of the strong increase.

3.2 Modified 9Cr-1Mo steel

Experimental results of a modified 9Cr-1Mo steel re-
ported by Yaguchi and Takahashi (1999) showed that the
material exhibited positive rate sensitivity above 500 ˚
, and zero or negative rate sensitivity below 400 ˚ as
a manifestation of dynamic strain aging. On the other
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Figure 9 : Stress at 3% strain versus strain rate. β defined
by equation (17) is used.
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Figure 10 : Stress at 3% strain versus strain rate. β de-
fined by equation (17) is used.

hand, the normal relaxation behavior was always ob-
served at all test temperatures; i.e., all the time the magni-
tude of stress drop during the same relaxation periods in-
creased with the prior strain rate. The constitutive equa-
tions are applied to model this deformation behavior with
the help of the augmentation function.

Without the static recovery term in Eq. (8b), the theory
may reproduce only “cold” creep behavior of materials.
It is necessary to incorporate the effect of thermal dif-
fusion at high homologous temperature into constitutive
equations. To this end, VBO has been modified the evo-
lution law for the equilibrium stress by the addition of the
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Figure 11 : Stress at 3% strain versus strain rate. β de-
fined by equation (18) is used.
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Figure 12 : Stress at 3% strain versus strain rate. β de-
fined by equation (18) is used.

static recovery term of which influence is only important
at long test duration, see Choi (1989), Maciucescu et al.
(1998) and Ho and Krempl (2001). It will be demon-
strated that the observed relaxation behavior by Yaguchi
and Takahashi (1999) are easily reproduced with the help
of the classification criteria related to the value of the
augmentation function.

To determine the material constants of the constitutive
equations, we first estimate the equilibrium stress at a
certain strain εa in the flow stress region, which is as-
sumed to satisfy the asymptotic solutions. When a ma-
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terial is loaded up to εa for a constant strain rate ε̇s and
the strain is then held constant, the stress decays and ap-
proaches a saturated value that may be considered as the
equilibrium stress at ε m εa for the strain rate ε̇s. It is ev-
ident from Eq. (8a) that the stress relaxation stops when
the stress and the equilibrium stress are equal. Thus we
can estimate the overstress at ε m εa for a constant strain
rate ε̇s of monotonic tensile tests.

Once the overstress stress is known the augmentation
function β can be calculated from

β mon σH prq n σL pn ΓH prq n ΓL p q 1 (19)

where the subscripts “H” and “L” denote the quantity at
εa for high and low strain rate tests, respectively. To ar-
rive at Eq. (19), Eq. (13) is used for the two different
strain rates. In the previous version by Ho (1998) and Ho
and Krempl (2001), it is not easy to estimate the over-
stress since the equilibrium stress changes significantly
during relaxation period due to the stress rate term in
the evolution law for the equilibrium stress. The previ-
ous version thus determines the value of the augmenta-
tion function by trial and error, whereas the present one
estimates the overstress through relaxation test and then
determines the augmentation function through Eq. (19).

Since Êt , thus Et is determined by measuring the slope of
stress-strain curves the kinematic stress f at ε m εa can
be approximately calculated by integrating Eq. (8c) with
the help of Eq. (11). The value A f m A0 for Ȧ m 0 is
determined from Eq. (13) by first assuming a positive
value for Ac that is introduced only to eliminate singu-
larity in view of mathematics occurring in the case of
A f s βΓ m 0.

The material constants k1, k2 and k3 for the viscos-
ity function are determined by the following procedure.
Equation (11) is used to calculate the value of k t Γu and
Eq. (7) is rewritten in the form

ln v k wxm ln v k1 w q k3 ln y 1 s Γ
k2 z (20)

With the experimental data of the tensile and the stress
relaxation for at least three different strain rates, the three
material constants can be determined by the means of
least squares. The material constant ψ is determined by

variations to give best agreement with the transition be-
tween the initial quasi-elastic behavior and the full in-
elastic flow. Since some material constants are obtained
with estimates it is necessary to compensate material
constants so as to match the experimental data. The re-
sulting set of the material constants is shown in Table 1.
Figure 13 shows that the flow stress at 1.5% strain for
10 { 6 and 10 { 3s { 1 strain rates exhibits slight negative,
zero and positive rate sensitivity at 200 ˚ , 400 ˚ and
550 ˚ , respectively. In performing the simulation at
550 ˚ , Ar m 2 | 6 } 10 { 6s { 1and A f m 100MPa are used
since the evolution for the isotropic stress is needed with
the static recovery effect in Eq. (8b) to incorporate the
thermal diffusion. Even though the strain rate sensitiv-
ity is different at each temperature, the relaxed stress
corresponding to the prior strain rate 10 { 3s { 1 is always
smaller than that of 10 { 6s { 1 at the end of the 24-hr relax-
ation test. The comparison of the prediction of the model
with the experimental data shows good correspondence.
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Figure 13 : Stress at ε m 0 | 015 and relaxed stress at the
end of the 24-hr relaxation test.

3.3 304L stainless steel

Many researchers have studied the strong rate sensitivity
of flow stress at very high strain rates, see for examples
Clifton (1990) and Bodner and Rubin (1994). Using the
augmentation function defined in Eq. (18), the consti-
tutive equations incorporate the increasing value of the
augmentation function (β ~ β1) with an increase of the
effective inelastic strain rate. The increase in β reduces
the effect of the dynamic recovery term in the evolution
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law for the equilibrium stress, see Eqs. (8b) and (13).
The property of power function, Eq. (18) causes a sharp
increase of flow stress at very high strain rates.
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Figure 14 : Stress-strain curves for 304L stainless steel.
β defined by equation (18) is used; β1 ��� 0 � 5, β2 � 1 � 8 �
10 � 5, β3 � 0 � 5.

Figure 14 shows the comparison of the model using the
material constants given in Table 1 with experimental
results of the 304L stainless steel conducted by Stout
and Follansbee (1986). Since the experimental compres-
sion tests by Stout and Follansbee were performed un-
der isothermal conditions at strain rates less than 0.1 s � 1

and adiabatic conditions at high strain rates, experimen-
tal stress-strain curves showed intersection between the
curves. The model assumes only isothermal condition
and the comparison in Fig. 14 is thus made up to 10%
strain where the temperature rise can be neglected as
mentioned by Stout and Follansbee.

A conventional method to represent the rate sensitivity
of flow stress is to plot stress versus strain rate on a log-
arithm axis at a particular strain. The model reproduces
the abrupt increase of rate sensitivity of the flow stress
at 10% strain, which begins at the strain rate of about
102s � 1 as shown in Fig. 15.

4 Discussion and conclusions

This generalized viscoplasticity theory, which has been
conceived and developed by the author, is very competent
to model all types of rate sensitivity in a consistent way.
Positive, zero and negative rate sensitivity of the stress-
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Figure 15 : Stress at ε � 0 � 1 versus strain rate for 304L
stainless steel. α defined by equation (18) is used; β1 �� 0 � 5, β2 � 1 � 8 � 10 � 5, β3 � 0 � 5.

strain curves are classified with respect to the augmenta-
tion function. In relaxation behavior the model predicts
that the magnitude of the stress drop increases with an
increase of prior strain rate and the relaxed stress asso-
ciated with the fastest prior strain rate has the smallest
magnitude regardless of the type of strain rate sensitivity.

Using a proper augmentation function, the constitutive
equations can reproduce zero and negative rate sensitivity
depending on strain or strain rate, and an abrupt increase
of rate sensitivity at very high strain rates.

As verification, the theory was applied to model a mod-
ified 9Cr-1Mo steel and 304L stainless steel and simu-
lated quite well the observed mechanical responses.

Acknowledgement: The author is grateful to Profes-
sor E. Krempl at Rensselaer Polytechnic Institute for
helpful communications.

Appendix: Asymptotic Solutions

For the uniaxial case the following relations are obtained
in the absence of the static recovery term, i.e. r � 0 in Eq.
(8b). If r �� 0 no asymptotic state is mathematically pos-
sible. However, it is believed that the relations approx-
imately hold in the presence of a static recovery term.
The integral representation of the constitutive equations
is first considered to obtain asymptotic solutions for con-
stant strain rate. Equations (8a), (8b) and (6) can be con-
verted to



362 Copyright c
�

2001 Tech Science Press CMES, vol.2, no.3, pp.351-364, 2001

Table 1 : Material Constants
Hypothetical Modified 9Cr-1Mo 304L

Material 200 ˚ 400 ˚ 550 ˚
E[MPa] 200000 200000 190000 165000 195000
Et[MPa] 1000 4000 3000 500 2300
Ac[MPa] 10 10 10 10 5
A0[MPa] 250 575 513 227 200

r[s � 1] 0 0 0 3.0E-7 0
β Defined -1.15 -1 -0.45 Defined

ψ �MPa� 300000 900000 600000 150000 100000
k1 � s� 300000 200000 200000 200000 100000

k2 �MPa� 70 60 180 250 100
k3 16 12 12 12 18

�
σ � g �x� � σ0 � g0 � exp ���� t�

t0

1
k

dζ ��
� t�

t0

E � ε̇ � ġ
E � exp ���� t�

ζ

1
k

ds �� dζ (A-1)

�
g � f �x� � g0 � f0 � exp ���� t�

t0

ψ �� ε̇in ��
Ac
�#�

A
� βΓ � dζ ��

� t�
t0

ψε̇in exp ���� t�
ζ

ψ �� ε̇in ��
Ac
�#�A � βΓ � ds �� dζ (A-2)

A � A f
� � A0 � A f � exp �� � t�

t0

Ar pdζ �� (A-3)

where the subscript zero denotes the initial value of the
subscripted quantity at t � t0. The above equations for
infinite time limits can be written as

�
σ � g ����� E ��� dg

dε ��� � k � ε̇ (A-4)

�
g � f ��� � 1 � 1

E
� d f

dε �¡�£¢ Ac
� �� A f

� βΓ ��� ε̇in � ¤ ε̇ (A-5)

�
A ��� A f (A-6)

where brace designates the value of the quantity at t ¥ ∞.
By differentiation of Eqs. (A-1), (A-2) and (A-3) and
taking the limit for t ¥ ∞, we obtain Eqs. (9) and (10).

Using Eqs. (8a), (8c) and (9), the inelastic strain rate in
the asymptotic state leads to

¦
ε̇in § � 1

1 �©¨ Et ª E « ε̇ (A-7)

It can be seen from Eqs. (8c) and (A-7) that the kinematic
stress is rate-independent in the asymptotic state. With
the help of Eqs. (8a), (9) and (A-7), Eqs. (11) and (12)
are obtained from Eqs. (A-4) and (A-5), respectively.
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