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Determination of Crack Tip Fields in Linear Elastostatics by the Meshless Local
Petrov-Galerkin (MLPG) Method

H.-K. Ching and R. C. Batra1

Abstract: It is shown that the MLPG method aug-
mented with the enriched basis functions and either the
visibility criterion or the diffraction criterion successfully
predicts the singular stress fields near a crack tip. Results
are presented for a single edge-cracked plate and a double
edge-cracked plate with plate edges parallel to the crack
axis loaded in tension, the single edge-cracked plate with
one plate edge parallel to the crack axis clamped and
the other loaded by tangential tractions, and for a dou-
ble edge-notched plate with the side between the notches
loaded in compression. For the first three problems,
the stress intensity factors computed with the equiva-
lent domain and the contour integrals are found to agree
well with those available in the literature. For the edge-
notched plate, results computed with the MLPG method
agree well with those obtained from the finite element
method.

keyword: Singular fields, stress intensity factors,
mixed-mode deformations, edge-cracked plates, edge-
notched plates.

1 Introduction

Atluri and Zhu (1998, 2000), Kim and Atluri (2000),
Atluri et al. (1999a,b) and Lin and Atluri (2000) have
recently developed the meshless local Petrov-Galerkin
(MLPG) approach and have applied it to analyze sev-
eral linear elastostatics and convection-diffusion prob-
lems. We refer the reader to their papers for a review
of the developments in meshless methods and how the
MLPG technique differs from the other so-called mesh-
less methods. More specifically, Atluri et al. (1999a) dis-
cuss the generality of the MLPG method in choosing the
local basis for the trial and the test functions of a wide va-
riety, leading to either symmetric or asymmetric system
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of equations.

Recently, Kim and Atluri (2000) demonstrated the use
of the MLPG formulation, in conjunction with the use
of secondary nodes and no special crack tip modeling,
for finding elastostatic deformation fields near the crack
tip. Here, on the other hand, we use the MLPG method
in conjunction with either the visibility criterion of Be-
lytschko et al. (1994) or the diffraction criterion of Organ
et al. (1996) to analyze deformation fields near a crack
tip. It is found that singular fields near a crack tip in
a single edge-cracked plate and a double edge-cracked
plate with the sides parallel to the crack subjected to
uniformly distributed tensile surface tractions, in a sin-
gle edge-cracked plate with one side parallel to the crack
clamped and the other loaded by tangential surface trac-
tions, and a double edge-prenotched plate with the edge
between the two notches loaded in compression can be
successfully computed with the present MLPG method
which is augmented with the known crack-tip singular
fields.

2 Formulation of the Problem

2.1 Governing equations

In rectangular Cartesian coordinates, the static deforma-
tions of an isotropic homogeneous linear elastic body are
governed by the following equations:

σi j; j +bi = 0; in Ω; (i; j = 1;2;3); (1)

σi j = λεkkδi j +2µεi j; in Ω; (2)

εi j = (ui; j +u j;i)=2; in Ω; (3)

ui = ui; on Γu; (4a)

ti � σi jn j = t i; on Γt : (4b)

Here σ is the stress tensor, ε the infinitesimal strain ten-
sor, u the displacement, b the density of body forces, a
comma followed by the index i denotes partial differenti-
ation with respect to xi, a repeated index implies summa-
tion over the range of the index, x is the present position
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of a material point, Ω the region of space occupied by
the body, Γu and Γt are disjoint parts of the boundary ∂Ω
of Ω, i.e., Γu \Γt = φ, Γu [Γt = ∂Ω, u the prescribed
displacements on Γu, t the prescribed surface tractions
on Γt , n an outward unit normal to Γ, and λ and µ are
Lamé constants for the material of the body. Substitution
from (2) and (3) into (1) yields second order partial dif-
ferential equations for u which are to be solved under the
boundary conditions (4).

2.2 Weak formulation

The following brief derivation of the local symmetric
weak form (LSWF) follows that given by Atluri and Zhu
(1998, 2000) and Lin and Atluri (2000) and is included
for the sake of completeness. Even though the derivation
is valid for a three dimensional problem, we restrict our-
selves to two-dimensional problems. Thus, the range of
indices i and j is 1,2.

Let Ωs � Ω be a subdomain of Ω, Γs = ∂Ωs \ ∂Ω,
Ls = ∂Ωs � Γs and v be a smooth function defined on
Ωs that vanishes on Ls. Let Γsu = Γs \ Γu = ∂Ωs \Γu,
and Γst = Γs \ Γt = ∂Ωs \Γt . That is, Γsu and Γst are
the parts of the boundary Γs where the essential and the
natural boundary conditions are prescribed respectively.
Taking the inner product of Eq. (1) with v and of Eq. (4a)
with αv, integrating the resulting equations over Ωs and
Γsu respectively, adding them, and using the divergence
theorem and the natural boundary condition (4b) on Γst ,
we obtain
Z

Ωs

(σi jvi; j�bivi)dΩ+
Z

Γsu

α(ui�ui)vidΓ

�
Z

Γst

t ividΓ�
Z

Γsu

tividΓ = 0:
(5)

Here α is a scalar function of x which is defined on Γsu

and can be regarded either as a Lagrange multiplier in
which case it is to be determined as a part of the solu-
tion of the problem or a preassigned penalty parameter
necessary to satisfy the essential boundary conditions on
Γsu. In either case, its units are force/(length)3 so that
Eq. (5) is dimensionally correct. Atluri et al. (1999a)
have demonstrated that by using a simple nodal degree
of freedom transformation on Γsu, the essential boundary
conditions can be exactly satisfied without using either
Lagrange multipliers or a penalty approach.

In the Galerkin formulation, Ωs = Ω and the test func-
tion v is taken as one of the basis functions defined on

Ω which are used to approximate the trial solution u on
Ω. Here the test function v and the trial solution u are
from different spaces of functions, and hence the formu-
lation is the Petrov-Galerkin. Atluri et al. (1999a) show
how, within the context of the MLPG formulation, the
subdomains for the trial and the test functions can be of
different sizes and shapes; and how the trial and the test
functions can be from different or the same spaces, lead-
ing to either symmetric or unsymmetric system of equa-
tions. In order to obtain two sets of equations for the
two components of u, we select two linearly independent
functions v(1) and v(2) for v in Eq. (5), and write it in the
matrix form as
Z

Ωs

εvσdΩ+
Z

Γsu

αvudΓ�
Z

Γsu

vtdΓ =Z
Γst

vtdΓ+
Z

Γsu

αvudΓ+
Z

Ωs

vbdΩ:
(6)

Here εv is the matrix of strain components derived from
v, and σ is the matrix of stress components derived from
the trial solution u. For 2-dimensional problems,

σ =

8<
:

σ11

σ22

σ12

9=
; ; ε =

(
ε(1)11 ε(1)22 2ε(1)12

ε(2)11 ε(2)22 2ε(2)12

)
;

u =

�
u1

u2

�
; v =

(
v(1)1 v(1)2

v(2)1 v(2)2

)

t =
�

t1
t2

�
; b =

�
b1

b2

�
: (7)

Here superscripts (1) and (2) signify, respectively, the
quantity derived from test functions v(1) and v(2). A sim-
ple choice for two linearly independent test functions v(1)

and v(2) is

v =

�
v 0
0 v

�
: (8)

2.3 Trial solutions

Let Ωx � Ω be the neighborhood of a point x 2 Ω. We
approximate the trial solution uh(x) on Ωx by

uh
i (x) = φα(x)ûαi; (α = 1;2; : : :;n; i = 1;2); (9)

where φ1(x); φ2(x); : : : ;φn(x) are linearly indepen-
dent functions defined on Ωx and ûαi are 2n scalar
quantities which are not necessarily associated with
the values of uh(x) at any point in Ωx. We use the
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Moving Least Squares (MLS) approach to ascertain
φ1(x); φ2(x); : : :;φn(x).

Let at every point x 2 Ωx,

uh
1(x) = pΛ(x)aΛ(x); (Λ = 1;2; : : :;m); (10)

and a similar relation holds for uh
2(x). Here p(x) =

[p1(x); p2(x); : : :; pm(x)] is a complete monomial basis
of order m, a(x) is an m-dimensional vector valued func-
tion of x whose components are determined by finding
an extremal of the following weighted discrete L2 norm:

J(x) =
n

∑
α=1

wα(x)[pΛ(xα)aΛ(x)� ûα1]
2: (11)

Here wα(x) is the weight function associated with the
spatial point xα, wα(x) > 0 in its compact support, and
x1; x2; : : :;xn are the points in Ωx for which wα(x) > 0.
Points x1; x2; : : :;xn are called nodes.

Solving the set of m linear simultaneous equations
∂J=∂aΛ(x) = 0 for aΛ(x), substituting the solution in Eq.
(10) and comparing the result with Eq. (9) we obtain

φα(x) = pΓ(x)[A�1(x)B(x)]Γα; (12)

AΛΓ(x) =
n

∑
α=1

wα(x)pΛ(xα)pΓ(xα); (13)

BΓα(x) = pΓ(xα)wα(x); no sum on α: (14)

Necessary conditions for the matrix A to be invertible are
that for α = 1;2; : : :;m� n, wα(x) 6= 0 for every x 2Ωx,
and that the n node points xα 2 Ωx used to evaluate J(x)
in Eq. (11) are not arranged in a special pattern such as a
straight line.

The function φα(x) is called the shape function of the
MLS approximation corresponding to the node point xα.
Note that φα(xβ) need not equal δαβ where δαβ is the
Kronecker delta. We have assumed the weight function
wα(x) to have the Gaussian distribution, viz.,

wα(x) =

(
exp(�dα=cα)

2k
�exp(�rα=cα)

2k

1�exp(�rα=cα)2k ; 0� dα � rα;

0; dα > rα;

(15)

there is no sum on the index α, dα = jx� xαj is the dis-
tance from node xα to point x; k and cα are constants,
and rα is the radius of the support of wα(x). The values
of the constants cα; rα, and k may affect the accuracy of

computed results and should be chosen carefully. Fol-
lowing Lu et al.’s (1994) recommendation we have taken
k = 1; cα equal to the distance to the third nearest neigh-
boring node from the node xα, and rα = 4cα; when find-
ing the third nearest neighboring node from the node xα,
nodes equidistant from xα are counted once. The sup-
port of the weight function, wα, includes at least m nodes
to ensure the invertibility of the matrix A defined by Eq.
(13).

We note that the domain of definition of an MLS approxi-
mation for the trial function at a point x, hereafter termed
the domain of definition of a point x, is a subdomain
which covers all the nodes whose weight functions do
not vanish at x. The support of node xα is a subdomain,
usually taken as a circle of radius rα, in which the weight
function wα in the MLS approximation, associated with
node xα, is nonzero.

2.4 Enriched basis functions

In the application of the meshless method to linear elastic
fracture mechanics (LEFM) problems, it is advantageous
to add the asymptotic near-tip displacement field to the
basis functions so that the stress singularity can be cap-
tured without having a very fine nodal mesh around the
crack tip. Fleming et al. (1997) first proposed this for the
Element Free Galerkin method (EFGM) and called the
resulting basis as enriched basis functions. We do this for
the MLPG method to study the LEFM problems. In two-
dimensional LEFM, both mode-I and mode-II crack-tip
fields should be considered. For mode-I deformations,
the crack-tip displacements are (Anderson, 1991)

�
u1

u2

�
=

KI

2µ

r
r

2π

8>>><
>>>:

cos
θ
2

�
κ�1+2sin2 θ

2

�

sin
θ
2

�
κ+1�2cos2 θ

2

�
9>>>=
>>>;

;

(16a)

8<
:

σ11

σ22

σ12

9=
; =

KIp
2πr

cos
θ
2

8>>>>>><
>>>>>>:

1� sin
θ
2

sin
3θ
2

1+ sin
θ
2

sin
3θ
2

sin
θ
2

cos
3θ
2

9>>>>>>=
>>>>>>;

: (16b)
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For mode-II deformations, the asymptotic displacement
fields near the crack-tip are (Anderson, 1991)

�
u1

u2

�
=

KII

2µ

r
r

2π

8>>><
>>>:

sin
θ
2

�
κ+1+2cos2 θ

2

�

�cos
θ
2

�
κ�1�2sin2 θ

2

�
9>>>=
>>>;

;

(17a)

8<
:

σ11

σ22

σ12

9=
;=

KIIp
2πr

8>>>>>>><
>>>>>>>:

�sin
θ
2

�
2+cos

θ
2

cos
3θ
2

�

sin
θ
2

cos
θ
2

cos
3θ
2

cos
θ
2

�
1� sin

θ
2

sin
3θ
2

�

9>>>>>>>=
>>>>>>>;

:

(17b)

Here KI and KII are the stress intensity factors, and de-
pend upon the crack length, the specimen geometry and
the applied loading, and (r;θ) are the cylindrical coordi-
nates of a point with the origin located at the crack-tip
and the positive angle measured counterclockwise from
the axis of the crack. The Kolosov constant κ is related
to Poisson’s ratio ν by

κ =

8><
>:

3�4ν for plane stress;

3�ν
1+ν

for plane strain;
(18)

problems. After using trigonometric identities, one can
show that all of the functions in Eqs. (16) and (17) are
spanned by the following four basis functions:

p
r

�
cos

θ
2
; sin

θ
2
; sin

θ
2

sinθ; cos
θ
2

sinθ
�
: (19)

These four basis functions are added to the monomial
basis functions in p(x) to form enriched basis functions.
Thus, p(x) will have either seven or ten basis functions
according as it has complete monomials of degree 1 or 2
respectively.

2.5 Visibility and diffraction criteria

The meshless methods usually provide a smooth approx-
imation of a function and its spatial derivatives; however,
the displacements are generally discontinuous across a
crack. One way to introduce discontinuities in the MLPG

approximation is to adopt the visibility criterion pro-
posed by Belytschko et al. (1994). In this approach, a
crack is considered to be opaque. When the domain of
influence for a weight function is constructed, the line
from a point to a node is viewed to be a ray of light. If
the ray of light encounters this opaque crack, it is termi-
nated and the point is not included in the domain of influ-
ence of the node. For example, consider a crack shown
in Fig. 1a. The domain of influence for node P is trun-
cated by this crack, and the shaded area on the opposite
side of node P is not included in the domain of influence
for node P. This truncation will create a discontinuity
in the shape function for node P and thus result in dis-
continuous displacement fields across the crack. For a
node near the crack tip, an additional discontinuity may
be produced by the visibility method. For example, the
domain of influence for node I is not only cut by the crack
line AC, but also truncated by the line AB, which intro-
duces discontinuousshape functions around the crack tip.
Even though the shape functions are discontinuous, Krysl
and Belytschko (1997) have shown that the method gives
convergent solutions.

Another technique to account for discontinuous fields
across the crack is the diffraction method proposed by
Organ et al. (1996). In this method, the domain of influ-
ence for a node near the crack tip is wrapped around its
sharp corner. For example, in Fig. 1b, if the line joining
a sampling point x and a node xI intersects the crack line
and the crack tip is within the domain of influence of the
node, then the distance dα in the expression (15) for the
weight function is modified to

dα =

�
s1 + s2(x)

s0(x)

�λ̃
s0(x) (20)

where s1 = jxI� xcj; s2 = jx� xcj; s0 = jx� xIj, and xc

is the position vector of the crack tip located at the point
C. The parameter λ̃ is used to adjust the distance of the
support of wα(x) on the opposite side of the crack. Organ
et al. (1996) found that λ̃ = 1 or 2 performs well in the
EFG analysis. Here, we have taken λ̃ = 1.

2.6 Computation of the stress intensity factors

Rice (1968) found that the component of Eshelby’s
(1956) energy momentum tensor along the axis of the
crack can be used as a fracture parameter when the con-
tour Γ of integration encloses the crack tip. He denoted
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(a)

(b)

Figure 1 : (a) Domain of influence near a crack tip for the visibility method; (b) Domain of influence near a crack
tip for the diffraction method.

this contour integral by J. For the crack along x1-axis

J =
Z

Γ

�
Wδ1 j�σi j

∂ui

∂x1

�
n jdΓ; (21)

where W = 1
2 σi jεi j is the strain energy density. For a

mixed-mode problem in LEFM, J is related to the stress
intensity factors via Irwin’s (1957) relation, i.e.,

J =
1

E
(K2

I +K2
II) (22)

where E = E for plane stress, E = E=(1�ν2) for plane
strain problems, and E is Young’s modulus. Yau et al.

(1980) and Shih and Asaro (1988) have used an inter-
action integral to extract KI and KII from Eq. (22); the
interaction integral is described below.

Consider two equilibrium states of a body with a crack:
state 1 the actual state for the given boundary conditions
and state 2 an auxiliary state. The interaction integral,
M(1;2), for the two equilibrium states is given by

M(1;2) =
Z

Γ

"
W (1;2)δ1 j�σ(1)

i j
∂u(2)i

∂x1
�σ(2)

i j
∂u(1)i

∂x1

#
n jdΓ;

(23)
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where

W (1;2) =
1
2
(σ(1)

i j ε(2)i j +σ(2)
i j ε(1)i j ); (24)

is the mutual strain energy density. For the two super-
posed equilibrium states, Eq. (21) gives

Jtot = J(1)+J(2)+M(1;2): (25)

Irwin’s relation (22) implies that

Jtot =
1

E

h
(K(1)

I +K(2)
I )2+(K(1)

II +K(2)
II )2

i
;

= J(1)+J(2)+
2

E
(K(1)

I K(2)
I +K(1)

II K(2)
II ): (26)

Equating the right hand sides of Eqs. (25) and (26) we
conclude that

M(1;2) =
2

E
(K(1)

I K(2)
I +K(1)

II K(2)
II ): (27)

The choice (16) for the auxiliary field gives

M(1;2) =
2

E
KI ; (28)

and the choice (17) for it yields

M(1;2) =
2

E
KII: (29)

Thus KI and KII can be computed from the interaction in-
tegral by appropriate choices of the auxiliary field. Fur-
ther details on the use of the M-integrals for crack prob-
lems in isotropic media, as well as cracks at anisotropic
bimaterial interfaces can be found in Atluri (1997), and
Chow et al. (1995).

The line integrals (21) and (23) are often converted into
equivalent domain forms for numerical evaluation. Let
q be a differentiable function that equals 0 on the closed
contour Γ and equals 1 at the crack tip. It can be shown
that (e.g. see Nikishkov and Atluri (1987); Moran and
Shih (1987); and Anderson (1991))

J =
Z

A

�
σi j

∂ui

∂x1
�W δ1 j

�
∂q
∂x j

dΩ; (30)

M(1;2) =
Z

A

 
σ(1)

i j
∂u(2)i

∂x1
+σ(2)

i j
∂u(1)i

∂x1
�W (1;2)δ1 j

!
∂q
∂x j

dΩ;

(31)

where A is the area enclosed by the contour Γ. This ap-
proach of evaluating KI and KII is called the equivalent

domain integral (EDI) method, is often used in the fi-
nite element work, and has been employed by Lu et al.
(1994) in the EFG method. It requires the discretization
of the domain A into either ficticious cells or finite ele-
ments. However, the determination of KI and KII from
Eqs. (23), (28) and (29) keeps the method purely mesh-
less. Kim and Atluri (2000) use the EDI method in the
context of the meshless MLPG formulation.

3 Computation and Discussion of Results

We have developed a computer code based on the
aforestated equations. The code has been validated by
comparing computed results with the analytical solu-
tion for the following three problems: a cantilever beam
loaded by tangential tractions at the unclamped edge, an
infinite plate with a circular hole subjected to uniformly
distributed tensile tractions at infinity, and a circular hol-
low cylinder subjected to a pressure loading on the in-
ner surface. In each case the computed solution was
found to essentially coincide with the analytical solution
of the problem. For the cantilever beam problem, as also
pointed out by Atluri and Zhu (2000), the MLPG method
gave exact results even for Poisson’s ratio = 0.4999; the
FE method exhibits locking phenomenon for this case
and significantly underestimates the tip deflection of the
cantilever beam. Here we describe results for five other
problems. In each case, there is no body force, and the
penalty function α defined on Γsu in Eq. (5) is taken to be
a constant, and is set equal to 105E=` where ` is a typi-
cal length in the problem. The test function v(x) (cf. Eq.
(8)) is set equal to the weight function wα(x) of the MLS
approximation, with the radius r0 of the local domain Ωs

taken equal to the radius rα of the support of the weight
function. If the union of all local domains covers the
global domain, i.e., [Ωs � Ω, the equilibrium equations
and the boundary conditions are satisfied respectively in
Ω and on Γ. This is ensured by selecting an Ωs for each
node xα 2 Ω and taking r0 large enough. While evaluat-
ing integrals on Ωs and Γs, 8� 8 and 8 Gauss points are
employed respectively. The two linear algebraic equa-
tions resulting from Eq. (6) are assembled, and solved
for ûi. Displacements and hence strains and stresses at
any point x 2Ω can then be computed from Eqs. (9), (3)
and (2) respectively. We use (i) the quadratic (with and
without the enriched) basis functions, (ii) either the vis-
ibility or the diffraction criterion, and (iii) Eq. (27) with
the near crack tip solution as the auxiliary field to com-
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a

b

crack
u1(x1,x2)

u2(x1,x2)

(a) (b)

Figure 2 : (a) An edge-cracked square plate subjected to mode-I displacement field at its edges; (b) The nodal mesh
with 590 nodes.

(a) (b)

Figure 3 : (a)Axial variations of σrr and σθθ ahead of the crack tip; (b) Angular variation of stresses at r=a = 0:1.

pute the stress intensity factors.

3.1 Near-tip mode-I stress fields

We analyze plane strain deformations of a single edge-
cracked square plate of side b and crack length a with
b = 2a = 10 units, E = 1000 units and ν = 0:3. Both
tangential and normal displacements given by Eqn. (16a)

and KI = 1 are prescribed on the four bounding edges.
Figure 2a shows a sketch of the problem studied and Fig.
2b displays the layout of the 590 nodes; the nodal mesh
is fine near the crack tip. Rao and Raman (2000) have
scrutinized this problem by the EFG method in conjunc-
tion with the enriched basis functions and the diffraction
criterion, and employed uniformly spaced mesh of 175
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a

b

crack 

t

t
(a)

a1 a2

b2

b1

(b)

Figure 4 : (a) An edge-cracked square plate loaded by uniformly distributed tensile surface tractions on edges
parallel to the crack; (b) The contour of integration for the evaluation of the J-integral and the interaction integral.

nodes with 13 nodes on each side. They used weight
functions based on the Student’s t-distribution. For the
weight functions, the values of dα; cα; rα; k and λ̃ used
herein and the enriched basis functions, stresses near the
crack-tip computed with the uniformly spaced mesh of
175 nodes deviated somewhat from the exact solution of
the problem. However, with the nodal mesh of Fig. 2b
and as shown in Fig. 3a, the variations of σrr and σθθ with
the distance from the crack tip of points on the crack axis
match very well with the analytical solution (16b) of the
problem. Also, for r=a = 0:1, the variation with the an-
gle, θ, of the computed values of σrr, σθθ and σrθ agree
very well with those obtained from the analytical solution
(16b). Here σrr, σθθ and σrθ are the radial, the circum-
ferential (or the hoop) and the shear stresses respectively.
Similar accuracy of the stresses was also demonstrated
by Fleming et al. (1997) and Rao and Raman (2000)
with the EFG method.

3.2 Edge-cracked plate loaded in tension

Plane strain deformations of an edge-cracked square
plate, shown in Fig. 4a with b = 10, a = 5, E = 1000,
ν = 0:25 and t = 1 are analyzed. Due to the symmetry of

the problem about the horizontal centroidal axis, defor-
mations of only the upper half of the plate with the nodal
mesh of Fig. 2b are studied.

The expression for KI given in Gdoutos (1993) is

KI = t
p

πa
h
1:12�0:23 a

b +10:55
�

a
b

�2

�21:72
�

a
b

�3
+30:39

�
a
b

�4
i (32)

Thus, for the plate problem being studied, KI = 11:2. We
have listed in Table 1 computed values of the stress inten-
sity factor KI for different contours Γ and without using
the enriched basis functions; the contour is shown in Fig.
4b. It is clear that the computed value of KI is essentially
independent of the contour, and it differs from the analyt-
ical value by less than 2.8%. The value of KI computed
with the contour integral is slightly closer to the analyt-
ical value than that obtained by the EDI method. In the
evaluation of the domain integrals (30) and (31), we took

q(x1;x2) = (x1�a2)(x1+a1)(x2�b2)(x2+b1)=(a1a2b1b2);

with the origin of the x1�x2 coordinate axes at the crack
tip; a1; a2; b1 and b2 are defined in Fig. 4b.
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(a)
(b)

Figure 5 : (a) Variation of σ22 at points on the axis of the crack with their distance from the crack tip computed
without using enriched basis functions; (b) Variation of σ22 at points on the axis of the crack with their distance from
the crack tip computed with the enriched basis funcitons.

Although an accurate value of the stress intensity fac-
tor has been determined by using a fine nodal mesh near
the crack tip and without using the enriched basis func-
tions, the singular stress fields may not be accurately
computed. As shown in Fig. 5a, the normal stress σ22

near the crack tip is finite and does not exhibit the 1=
p

r
singularity. Therefore, we use the enriched basis func-
tions, and model the entire edge-cracked plate because
we adopt either the visibility or the diffraction criterion.
Figure 5b evinces the variation of the normal stress σ22

along the horizontal line passing through the crack tip.
The stress reaches very large values near the crack tip,
and both the visibility and the diffraction criteria give
virtually identical results. As was found by Belytschko
et al. (1996) for the EFG method, the solution com-
puted with the visibility criterion in the MLPG formu-
lation converges. Figure 6 exhibits the angular variation
of the radial and the hoop stresses at points located at a
radial distance of 0:5 (r=a = 0:1) from the crack tip. We
note that the stress distributions obtained with the visibil-
ity and the diffraction criteria are identical.

3.3 Double edge-cracked plate loaded in tension

Figure 6 : Angluar variation of the radial stress, σrr,
and the hoop stress, σθθ, around the crack tip obtained
by using the visibility and the diffraction methods; here
r=a = 0:1.
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Figure 7 : (a) A double edge-cracked square plate with edges parallel to the crack loaded by uniformly distributed
tensile surface tractions; (b) The nodal mesh with 533 nodes for one-half of the double edge-cracked plate.

We now study deformations of a square plate with cracks
emanating from the vertical edges and subjected to the
uniform tensile tractions (t = 1) at the upper and the
lower horizontal surfaces; a schematic sketch of the prob-
lem studied is shown in Fig. 7a. We only give results for
the stress intensity factor since the stress fields around
the crack tip are similar to those of the example 3.2.

Due to the symmetry of the problem about the horizontal
and the vertical centroidal axes, we consider a quarter of
the plate. The nodal mesh used to analyze the problem
is shown in Fig. 7b. We presume that a plane strain state
of deformation prevails in the plate and set E = 1000,
ν = 0:3, b = 10 and a = 5. From the solution given in
Gdoutos (1993) we obtain

KI = t
p

πa

�
1:12+0:2

a
b
�1:2

�a
b

�2
+1:93

�a
b

�3
�
= 4:65:

Values of KI computed with the MLPG method without
employing the quadratic polynomial enriched basis func-
tions and by using different contours (a1; a2; b1 and b2

are defined in Fig. 4b) are summarized in Table 2. For
the first seven contours considered, the value of KI com-
puted by the EDI method differs from its analytical value
by less than 3.2%. The value of KI computed with the
contour integrals has an error of about 6%. For the con-

tour of integration close to the crack tip, the EDI method
has a larger error than the contour integral method. The
value of KI computed from the y-intercept of the plot of
lnσ22(r;0) vs. lnr with the solution obtained using the
enriched basis functions was found to be 4.66 which dif-
fers from the analytical value by 0.2%.

3.4 Edge-cracked plate under mixed-mode loading

A schematic sketch of the problem studied is exhibited
in Fig. 8a, and the nonuniform mesh of 621 nodes used
to analyze the problem is shown in Fig. 8b. The bottom
edge of the plate is rigidly clamped while the top edge
is subjected to uniformly distributed tangential tractions,
t = 1. We set w = 7 units, h = 14 units, and the crack
length a = 3:5 units. A plane strain state of deformation
is assumed to prevail in the plate. The stress intensity
factors KI and KII computed by using Eqns. (28) and (29)
respectively, and the fully enriched quadratic basis func-
tions in a region of radius 2, transition basis functions
within an annular region of inner and outer radii of 2
and 4 respectively, and regular basis functions elsewhere
are listed in Table 3; lengths a1; a2; b1 and b2 are illus-
trated in Fig. 4b. The reference values, KI = 34:0 units
and KII = 4:55 units, taken from Wilson (1969), compare
very well with those computed from Eqns. (28) and (29)
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Figure 8 : (a) An edge-cracked plate under mixed-mode loading; (b) The nodal mesh of 621 nodes.

with either the EDI method or the contour integrals. The
results are virtually independent of the domain size and
the difference between the computed and the reference
values of KI and KII is less than 1.25%. Similar results
have been obtained by Rao and Raman (2000) and Flem-
ing et al. (1997) with the EFG method.

3.5 Double edge-notched plate with the edge between
the notches loaded in compression

Kalthoff and Winkler (1987) studied transient deforma-
tions of a double edge-notched plate with the edge be-
tween the notches loaded by a fast moving cylindrical
projectile. Here we analyze its quasistatic deformations.
A schematic sketch of the problem is depicted in Fig. 9a.
We assume that a plane strain state of deformation pre-
vails in the plate, and take E = 210 GPa; ν = 0:29, the
notch tip radius = 0.15 mm, the applied normal traction
t = 200 MPa, and tangential tractions on this surface = 0.
The remaining bounding surfaces of the plate and of the
notch are traction free. Deformations of only the upper

half of the plate are analyzed with the symmetry bound-
ary conditions imposed on the horizontal centerline of the
plate and the rightmost point on this line rigidly clamped.
Figure 9b exhibits the nonuniform nodal mesh of 3632
nodes with 25 nodes on the surface of the circular notch
tip (cf. Fig. 9c). The visibility method is adopted to ac-
count for the discontinuous fields across the notch. Since
the nature of the singular fields near the notch tip is un-
known, enriched basis functions are not used.

The MLPG results are compared with the finite element
(FE) solution computed with four node quadrilateral ele-
ments with the same nodes used in the two analyses. Fig-
ure 10a depicts the variation of σ22 and σ12 at points on
the axis of the notch and lying ahead of the notch tip; the
MLPG and the FE results virtually coincide. The maxi-
mum value of jσ12j occurs at a point slightly ahead of the
notch tip. Note that the axial variation of σ12 exhibits a
boundary layer like phenomenon near the notch tip. Fig-
ure 10b evinces the angular variation of the maximum
principal tensile stress and the maximum shear stress at
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Figure 9 : (a) A schematic sketch of the double edge-
notched plate problem; (b) The nodal mesh for the up-
per half of the double edge-notched plate; (c) The nodal
mesh around the circular notch tip of radius 0.15 mm.

points on the surface of the notch tip. It is clear that
the MLPG and the FE solutions agree qualitatively but
their magnitudes differ slightly; however, the two solu-
tions predict the same angular locations (70Æ and �57Æ

respectively) of the points where the maximum principal
tensile stress and the maximum shear stress occur; these
angular locations are virtually the same as those found
by Batra and Gummalla (2000) in the transient analysis
of the thermoviscoplastic problem. Once limiting val-
ues of these stresses are reached, a brittle failure will en-
sue from the point where the maximum principal tensile
stress occurs and a ductile failure from the location of
the maximum shear stress. The maximum principal ten-
sile stress and the maximum shear stress at points on the
surface of the notch tip equal approximately ten times the
magnitude of the applied uniform normal traction.

We have plotted in Fig. 11, on the logarithmic scale, the
variations, at points on the axis of the notch, of jσ22j
and jσ12j with the distance, r, from the notch tip. The
slopes of both curves equal (�1=2) signifying the 1=

p
r

singularity of the stress fields near the notch tip. Thus
the deformation fields close to the tip of the circular
notch of radius 0.15 mm seem to behave as if the notch
were a sharp crack. Values of the stress intensity fac-
tors computed from the y-intercepts of these curves and
normalized by the applied normal traction of 200 MPa
are KI =�2:24

p
mm and KII =�4:39

p
mm. The mode-

mixity parameter, me =
2
π

tan�1
�

KI

KII

�
, at the notch tip

equals 0.3 which is close to the analytical value of 0.25
found by Lee and Freund (1990) for the dynamic prob-
lem who took Poisson’s ratio, ν = 0:25. Lee and Fre-
und showed that the mode mixity parameter stayed un-
changed till a wave reflected from the right free edge ar-
rived at the notch tip. Thus the deformations near the
notch tip are KII dominated. The three-dimensional anal-
ysis of the transient thermoviscoplastic problem by Batra
and Ravisankar (2000) showed that there is a noticeable
KIII deformation field adjacent to the front and the back
faces of the plate. The plane strain state of deformation
prevails in the middle 75% of the thickness of the plate.
In Fig. 10b we have also exhibited the stresses computed
by taking KI = KIt and KII = KIIt in Eqns. (16b) and
(17b) respectively, and adding like components from the
two stress fields. It is clear that the stress fields so ob-
tained do not agree even qualitatively with those com-
puted by the MLPG and the FE methods. It suggests
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that the stress fields near a notch tip can not be derived
from those near a crack tip. However, the stress intensity
factors KI and KII determined from Eqns. (28) and (29)
with M(1;2) evaluated from Eqn. (23) are found to be es-
sentially independent of the contour Γ of integration, and
their values equal�461 and�904N=mm3=2 respectively.
These values are close to those found by the stress extrap-
olation method, i.e., y-intercepts of straight lines in Fig.
11. The energy release rate computed from Eqn. (21)
equals 4490 N=mm. Whereas in Kalthoff’s experimen-
tal set up and in the numerical simulations of the tran-
sient problem, the plate is free to move in the direction
of impact, in the static problem studied herein the rigid
motions are ruled out. Besides neglecting the effect of
inertia forces in the static problem, boundary conditions
are not identical in the static and the dynamic problems.

4 Conclusions

We have enriched the polynomial basis functions with the
crack tip singular fields and incorporated the visibility
and the diffraction criteria, respectively, of Belytschko
et al. (1994) and Organ et al. (1996) into the MLPG
approach of Atluri and Zhu (1998, 2000) to successfully
compute singular fields by the MLPG method.The stress

intensity factors computed by using either the contour
integrals or the equivalent domain integral method in a
single and a double edge-cracked square plate loaded by
uniformly distributed either tangential or normal surface
tractions on the edges parallel to the crack match well
with their reference values. The singular stress fields near
the crack tip computed with the MLPG method and the
enriched basis functions exhibit the

p
r singularity, and

agree well with those found from the analytical solution.
The angular variations of the stress fields computed with
the visibility and the diffraction criteria are found to be
virtually indistinguishable from each other. For a dou-
ble edge-notched plate with the edge between the two
notches loaded by a uniformly distributed normal trac-
tion, the stress fields near the circular notch tip of radius
0.15 mm exhibit the 1=

p
r singularity. Here r is the dis-

tance from the notch tip of a point located on the axis of
the notch. The mode I and mode II stress intensity factors
normalized by the magnitude of the applied normal sur-
face traction equal �2:24 and �4:39

p
mm respectively.
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