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Optimum Design of Adaptive Truss Structures Using the Integrated Force Method

R. Sedaghati, A. Suleman1, S. Dost and B. Tabarrok2

Abstract: A structural analysis and optimization
method is developed to find the optimal topology of
adaptive determinate truss structures under various im-
pact loading conditions. The objective function is based
on the maximization of the structural strength subject to
geometric constraints. The dynamic structural analysis
is based on the integrated finite element force method
and the optimization procedure is based on the Sequential
Quadratic Programming (SQP) method. The equilibrium
matrix is generated automatically through the finite ele-
ment analysis and the compatibility matrix is obtained di-
rectly using the displacement-deformation relations and
the Single Value Decomposition (SVD) technique. By
combining the equilibrium and the compatibility matri-
ces with the force-displacement relations, the equations
of the motion are obtained with element force as vari-
ables. The proposed method is extremely efficient to ana-
lyze and optimize adaptive truss structures. It is observed
that the structural strength is improved significantly using
the adaptively optimized geometries while the computa-
tional effort required by the force method is found to be
significantly lower than that of the displacement method.

keyword: Adaptive Structures, Force Method, Topol-
ogy Optimization Dynamic Analysis

1 Introduction

The concept of equilibrium of forces and compatibility
of deformations is fundamental to analysis methods for
solving problems in structural mechanics. The equilib-
rium equations need to be augmented by the compati-
bility conditions since the equilibrium equations are in-
determinate by nature, and determinacy is achieved by
adding the compatibility conditions. Generally, two ana-
lytical methods (displacement and force) are available to
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analyze determinate and indeterminate structures.

Structural analysis and optimization algorithms devel-
oped in recent years have generally been based on the dis-
placement method [Venkayya(1978); Canfield, Grandhi
and Venkayya(1988); Mohr(1992); Mohr(1994); Flurry
and Schmit(1980); Haftka and Gurdal(1992)]. The dis-
placement method is an efficient approach for stress-
displacement type analysis, however it presents disad-
vantages in optimization problems when the number of
stress constraints are larger than the displacement con-
straints, or in geometry optimization where the element
forces are the main primary variables. For a determi-
nate structure or a not highly redundant structure (the
number of redundant elements is lower than the dis-
placement degrees of freedom), analysis using the force
method is computationally more efficient than the dis-
placement method. However, the force method has not
been very popular among researchers in structural opti-
mization problems because the redundancy analysis re-
quired in the force method has not been amenable to
computer automation.

In the classical form of the force method, it is very dif-
ficult to generate the compatibility conditions. Split-
ting the given structure into a determinate basis struc-
ture and redundant members generates the compatibil-
ity in the classical force method. The compatibility
conditions are written by establishing the continuity of
deformations between redundant members and the ba-
sis structure. Navier [Timoshenko(1953)] originally de-
veloped this procedure for the analysis of indetermi-
nate trusses. Prior to the 1960s, the basis structure and
redundant members were generated manually. In the
post-1960s, several schemes have been devised to au-
tomatically generate redundant members and the basis
determinate structure [Robinson(1965); Kaneko, Lawo,
and Thierauf(1982)], however with limited success. In
the integrated force method developed by Patnaik [Pat-
naik(1986); Patnaik and Joseph(1986); Patnaik, Berke,
and Gallagher(1991)] both equilibrium equations and
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compatibility conditions are solved simultaneously. The
generation of compatibility equations is based on extend-
ing St. Venant’s theory of elasticity strain formulation
to discrete structural mechanics and eliminating the dis-
placements in the deformation-displacement relation.

The application of the force method based on the min-
imization of the complementary energy to analyze the
topology optimization of adaptive truss structures under
static loading has been reported by Sedaghati, Tabarrok,
Suleman and Dost(2000). In the present study, the inte-
grated force method has been used to analyze and opti-
mize adaptive truss structures under static and dynamic
loading [Sedaghati, Tabarrok and Suleman(2000)]. The
equilibrium and compatibility equations are solved si-
multaneously. A direct method has been developed to
generate the compatibility matrix for indeterminate truss
structures. The method is based on the displacement-
deformation relation and singular value decomposition
(SVD) technique and there is no need to select consis-
tent redundant members. For determinate truss struc-
tures the equilibrium matrix is generated automatically
through the finite element analysis.

For optimum structural design, the design variables are
selected so as to minimize/maximize the objective func-
tion while satisfying the required constraints. The con-
straints may include allowable stresses in the elements,
limitation on geometric parameters, displacement limits
at the joints, frequency specifications, system stability,
etc. Depending on the nature of the applied loads, the
structure and its geometry, one or more of the constraints
can be active and control the design of the structure. For
the geometry optimization of the adaptive truss struc-
tures, the structural strength is selected as the objective
function and constraint equations are based on geometry
parameters (such as angles) of the active members.

The application and efficiency of the proposed method
is illustrated by optimizing the topology of an adaptive
truss structure using active elements in order to maintain
maximum structural strength under various impact load-
ing conditions. The force method has proved to be per-
fectly natural and efficient because the primary variables
in the topology optimization of adaptive truss structures
are the member forces.

2 Structural Analysis Using the Force Method

A discrete finite element structure can be designated as
structure (d, f ), where d and f are the displacement and
force degrees of freedom, respectively. The structure
(d, f ) has d equilibrium equations and r = ( f �d) com-
patibility conditions. In static problems the equilibrium
equations in the displacement formulation can be written
as

KU = P (1)

where K is the system stiffness matrix of the structure (
obtained by assembling the stiffness matrices of the in-
dividual elements); P is the external applied load vector;
and U is the nodal displacement vector. The compati-
bility conditions have been satisfied implicitly during the
generation of the Eq. (1). The equivalent form of the Eq.
(1) in the integrated force formulation can be written as
[Patnaik(1986)]:

SF = P� (2)

where F is the element force vector. The matrix S and
vector P� can be obtained through combination of the
equilibrium matrix as

QF = P (3)

and compatibility equations as

C∆ = 0 (4)

where element deformation vector, ∆, can be related to
the element force vector, F, according to

∆ = GF (5)

thus

S =

2
4 Q

: : :
C G

3
5 ; P� =

2
4 P

: : :
0

3
5 (6)

where Q, C and G are the (d � f ) equilibrium matrix,
(r� f ) compatibility matrix and ( f � f ) flexibility ma-
trix, respectively. The matrices Q, C and G are banded
and they have full-row ranks of d, r and f, respectively
and the matrices Q and C depend on the geometry of the
structure and are independent of material properties. For
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a finite element idealization, the generation of the equi-
librium matrix Q and the flexibility matrix G is straight-
forward and can be obtained automatically. However the
automatic generation of the compatibility matrix C is a
laborious task in the standard force method. In the in-
tegrated force method, the generation of C is based on
the elimination of the d displacement degrees of freedom
from f elemental deformations. Here, an efficient method
is proposed to derive the compatibility matrix directly.
The method is based on the displacement-deformation
relations and SVD.

The displacement-deformation relation for discrete struc-
tures can be obtained by equating internal strain energy
and external work as

1
2

FT ∆ =
1
2

PT U (7)

By substituting P from Eq. (3) into Eq. (7), we can obtain

1
2

FT QT U =
1
2

FT ∆ or FT (QT U�∆) = 0 (8)

Since the element force vector F is not a null space, we
finally obtain the following relation between member de-
formation vector and nodal displacement vector

∆ = QT U (9)

Equation (9) relates the f deformations to the d nodal dis-
placement degrees of freedom; therefore the r = ( f �d)
compatibility equations can be obtained through elimi-
nation of the d nodal displacements from the f deforma-
tions. To obtain the compatibility matrix, we may ex-
press nodal displacements in terms of member deforma-
tions using Eq. (9) as

U =
�
QQT ��1

Q∆ =
�
QT �pinv ∆ (10)

where the matrix
�
QT

�pinv
denotes the Moore-Penrose

pseudo-inverse of QT . Considering Eq. (9) and (10), we
may have
h
I�QT �QT �pinv

i
∆ = 0 (11)

or

A∆ = 0 (12)

where

A =
h
I�QT �

QT �pinv
i

(13)

Equation (12) is similar to the compatibility equations in
Eq. (4), however matrix A is a ( f � f ) matrix with rank
of r. It means that the rows of matrix A are dependent on
each other. In order to extract the (r� f ) compatibility
matrix C from the matrix A, i.e. to reduce the matrix
A to matrix C, the singular value decomposition (SVD)
method is used [Golub and Van Loan(1996)]. Applying
SVD to A, we obtain

A = RΣTT (14)

where R and T are ( f � f ) orthogonal matrices and

Σ =

�
Λ 0
0 0

�
( f� f )

(15)

with Λ = diagfσ1 σ2 : : :σrg, and σ1 � σ2 � �� � � σr >
0. It follows that

A = R
�

C
0

�
(16)

Therefore the (r� f ) compatibility matrix C can be rep-
resented as

C = Λ [T1 T2 : : : Ti : : : Tr ]
T (17)

where the vector Ti denotes the ithcolumn of matrix T.

It is noted that SVD is not a cheap technique, thus for
high dimension structures or highly redundant structures
the advantage of the integrated force method based on the
SVD method may be reduced or even reversed.

Although Eq. (9) is sufficient to obtain the element defor-
mations using nodal displacements, it is not sufficient to
obtain nodal displacements using element deformations
or forces because redundant structures are represented
by rectangular equilibrium matrix Q with no inverse.
This implies that the compatibility equations should be
merged with the equilibrium equations. For this reason,
using S instead of Q in Eq. (9) and solving for nodal
displacements U, we obtain

U = J ∆ or U = J G F (18)

where

J = d rows of S�T (19)

In dynamic problems the equations of the motion in the
displacement formulation can be written as

MÜ+KU = P (20)
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where M is the stiffness matrix of system and Ü is accel-
eration vector.

Considering Eq. (18) and noting that KU in the displace-
ment method is equivalent to S F in the force method, Eq.
(21) may be written as

M�F̈+SF = P� (21)

where

M� =

2
4 M J G

: : : : : :

0

3
5 (22)

Eq. (21) represents the equations of the motion in the
framework of the force formulation.

3 Numerical Integration

In this analysis, the Newmark direct integration method
[Newmark(1959); Cook, Malkus and Plesha(1989)] is
used to solve Eq. (21). It is assumed that the initial values
of force vector F and the vector Ḟ at time t=0 are known.
The vector F̈ at t=0 is obtained from Eq. (21). Consider-
ing a time increment ∆t, the predictor parameters, F̂n+1

and ˙̂Fn+1 at time (n+1) ∆t in terms of the known vectors
at time n ∆t are computed as

F̂n+1 = Fn +∆tḞn +0:5∆t2(1�2β)F̈n
˙̂Fn+1 = Ḟ+∆t(1� γ)F̈n

(23)

Now, the vector F̈ at time (n+1) ∆t, F̈n+1 is obtained
from the following equation:

�
M�+β∆t2 S

�
F̈n+1 = P�n+1�SF̂n+1 (24)

Knowing F̈n+1, the force vector F and the vector Ḟ at time
(n+1) ∆t are obtained from the following relations:

Fn+1 = F̂n+1+β∆t2 F̈n+1

Ḟn+1 =
˙̂Fn+1+ γ∆tF̈n+1

(25)

Constants β and γ in the above equations are the accuracy
and stability parameters in the Newmark method. The
Newmark method is unconditionally stable [Belytschoko
and Huges(1983)] if

0:5� γ� 2β (26)

4 Geometry Optimization

An adaptive truss structure, which can change its config-
uration to maintain its structural strength by lengthening
or shortening some of active member’s length, is con-
sidered for geometry optimization in this study. All re-
cent work in the optimum design of adaptive structures
[Murotsu and Shao(1990a); Murotsu and Shao(1990b);
Murotsu and Shao(1990c)] is based on the conven-
tional displacement method. When optimizing the con-
figuration of the adaptive truss structure, the objective
is to maximize the structural strength [Murotsu and
Shao(1990a); Murotsu and Shao(1990b); Murotsu and
Shao(1990c)], by changing the lengths or angles of the
active members. Here, it is assumed that the truss struc-
ture is composed of f members including fa active mem-
bers. The vector ϕ =

�
ϕ1;ϕ2; : : : ;ϕ fa

	
includes the an-

gles of the fa active members as shown in the Figure 1
and these are selected as the design variables in order
to be consistent with Refs. [Murotsu and Shao(1990a);
Murotsu and Shao(1990b); Murotsu and Shao(1990c)].
The geometry optimization problem for adaptive truss

Figure 1 : Adaptive truss structure with active members.
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structure under dynamic load may be defined mathemat-
ically as:

For a given external load P(t) and its direction ψ find the
vector ϕ such that

Minimize M=MaximumjFn(ϕ;ψ)j
1 � n� N

Subject to g j(ϕ)� 0 1 � j � J
(27)

where Fn is the element force vector at time step n ∆t , g j

are geometrical constraints on active structural members
and j and N are total number of geometrical constraints
and total number of time steps.

For linear structural analysis the structural strength may
be defined as follows:

Ss = Maximum

���� F

F̂(ϕ;ψ)

���� (28)

for static load and,

Sd = Maximum
��� F

F̂n(ϕ;ψ)

���
1 � n � N

(29)

for dynamic load. Where F is the vector of element
strength including allowable element forces, F̂ is the el-
ement load effect vector due to unit external static load
and F̂nis defined as the element load effect due to unit
external impact load.

Considering Eq. (29), it is noted that minimization of the
maximum forces in Eq. (27) is equivalent to the maxi-
mization of the structural strength, Sd.

In this study, the Sequential Quadratic Programming
(SQP) method has been applied to solve the optimiza-
tion problem discussed. The implementation of the
SQP has been done in MATLAB [Coleman, Branch and
Grace(1999)]. Details of the SQP algorithm may be
found in Powell(1978).

The objective function of Eq. (27) is not a smooth
and convex function, thus local optimum result may be
achieved using the gradient-based algorithms such as
SQP algorithm. In this study, several randomly gener-
ated initial points have been used for the SQP algorithm
to make sure that the optimal solution is global or very
close to global solution.

5 Illustrative Example

The twenty-four-bar adaptive truss shown in Figure 2
has been optimized topologically to obtain the maximum

Figure 2 : The 24-bar plane adaptive truss structure with
active members 11, 13, 15, and 17

structural strength in the presence of various static and
dynamic loading conditions [Murotsu and Shao(1990a)].
It has four bays and every bay contains one active mem-
ber. The truss consists of 24 members with active mem-
bers 5, 9, 13 and 17. Angles ϕ1;ϕ2;ϕ3 and ϕ4 are taken
as geometrical design variables , and these are related to
the 4 active member’s length. The ranges for those an-
gles are specified as 0Æ � ϕ1;ϕ2;ϕ3;ϕ4 � 90Æ. The ma-
terial properties are: Young’s modulus E=7�1010 N/m2,
Element strength F=10000 N for all members. The geo-
metrical parameters are: cross-sectional area A=10�4 m2

and
L=2 m.

The minimum and maximum natural frequency of the
structure are ωmin = 8:2815 Hz and ωmax = 1026:5 Hz,
respectively. For static load an external static load, P, is
applied at node 1 and for dynamic load, an external im-
pact load P(t) is applied at node 1, and the following two
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cases are considered:

Case I: P(t) =

�
Ip =∆t (N) 0 � t � ∆t

0 t > ∆t

Case II: P(t) =

�
Ip = (100∆t) (N) 0� t � 100∆t

0 t > 100∆t

where, Ip = ∑P(t) ∆t is applied impact for each case. In
each case, the time increment ∆t=1.3�10�4 sec and a to-
tal numerical time of 1000�∆t =0.13 sec are considered.

First the adaptive structure is optimized under static load.
The structural strength for the fixed configuration is plot-
ted as the solid curve in Figure 3. The structural strength
for the optimal adaptive geometries is plotted as the
dashed curve. The optimal geometries of the adaptive
structure are shown in Figure 4. The optimization re-
sults for the varying load direction ψ are shown in Table
1. The results indicate that the optimal adaptive truss

Table 1 : Optimal values of ϕ1;ϕ2;ϕ3;ϕ4 and structural
strength (N) in the optimal adaptive shapes for static load.

ψÆ Design Variables Structural

ϕÆ1 ϕÆ2 ϕÆ3 ϕÆ4 Strength(N)
-90 78.89 8.54 83.82 4.66 244.1
-80 80.70 6.81 83.16 6.02 346.7
-70 80.90 9.16 80.71 9.71 518.7
-60 76.98 13.43 76.76 14.82 724.2
-50 71.72 18.60 71.72 19.15 880
-40 66.79 23.21 66.79 23.32 1003.8
-30 63.36 26.64 63.36 26.64 1035.3
-20 55.03 34.97 55.03 34.97 1103.4
-10 48.75 41.24 48.76 41.24 1220.8
0 45 45 45 45 1414.2
10 38.31 51.69 38.31 51.69 1220.8
20 32.30 57.70 32.30 57.70 1103.2
30 25.96 64.10 25.90 64.10 1035.3
40 25.49 71.57 18.43 71.57 1003.8
50 20.66 77.60 13.48 77.91 948.5
60 11.89 80.02 11.49 78.62 694.6
70 9.12 82.83 9.07 80.84 508.9
80 10.23 84.74 5.14 83.10 276.7
90 20.43 83.33 7.11 86.22 208.3

structure maintains a high structural strength in compari-
son to the conventional structure by making the structure
align itself with the external applied load direction. The
computational time required by the force method was
found to be about 5 times lower than that of displacement

method for each load direction. The force method clearly
provides a computationally more efficient and faster so-
lution. The results are in excellent agreement with those
in [Murotsu and Shao(1990a)].

For dynamic load in case I, the impact time on the struc-
ture is very short. It was observed that members 23 or
24 always produced the largest element forces, indepen-
dently of the direction of the impact load P(t), but if the
external load is time-independent (static), member 18 in
the bottom of the structure becomes the most critical.
Members 23 and 24 are at the top of the structure where
the direct impact load happens. Figure 5 shows the time-
history of element forces in members 24 and 18 for the
impact Ip = 1 N-sec and load direction of ψ = 90Æ. The
results reveal that for stability parameters β = 0:25 and
γ = 0:5, the numerical solution displays spurious “beat-
ing” in which the amplitude of response repeatedly grows
and decays. The Newmark method, with the selected
stability parameters (average acceleration algorithm or
trapezoidal rule) is unconditionally stable and it does not
have artificial numerical damping, which minimizes nu-
merical noise. Taking γ > 0:5 introduces artificial damp-
ing, which automatically dissipates the high-frequencies
noises.

In order to maximize the high-frequency dissipation for a
given value of γ > 0:5, we have taken β = 0:25 (γ+0:5)2

introduced by Hughes(1987). Using γ = 0:67 and β =
0:25 (γ+0:5)2 = 0:34, it is obvious from the Figure 5
that high-frequency noise is clearly eliminated. The op-
timization algorithm introduced in Section 4 was used to
find the optimal geometries for this case. However, no
optimal geometries were found because the largest inter-
nal forces are always present in members 23 and 24. This
means that for impact load acting in a very short time,
the structural strength (allowable applied impact) is not
affected by the geometry of the structure. The required
CPU time to generate the time-history of element forces
through the force method was 1.7 sec in comparison to
the 32 sec using the displacement method.

For case study II, the time taken for the impact load to
act on the structure has been considerably increased.

Figure 6 shows the time history of the element forces in
members 24 and 18 for the impact Ip = 1 N-sec and load
direction of ψ = 90Æ. It is observed that high-frequency
noise is present for the stability parameters of γ= 0:5 and
β = 0:25, but the numerical noise is eliminated by using
γ > 0:5 and β > 0:25. It is interesting to note that
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Figure 3 : Structural strength, Ss, versus the direction of the applied load for the fixed and optimized adapted
structure under Static load.
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Figure 5 : Time histories of the element forces for case I and impact Ip = 1 N-sec.
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Figure 7 : Structural strength, Sd, versus the direction of the applied load for the fixed structure (Dynamic load).
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Figure 8 : Optimal adaptive and fixed structural strength versus the direction of the applied load (Dynamic load).
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because the impact load acts over a relatively large time
in comparison to the Case I, the effect of high-frequency
noise is not as noticeable as in the Case I, especially for
member No. 18. The structural strength for the fixed
configuration (ϕ1 = ϕ2 = ϕ3 = ϕ4) for both displace-
ment and force methods are shown in the Figure 7 and
the results from both methods totally match, demonstrat-
ing the accuracy of the proposed method. The structure
becomes very rapidly weak for the impact loads applied
in direction other than for ψ = 0Æ. The CPU time for
force and displacement methods are found to be 34 sec
and 738 Sec, respectively. Thus the force method clearly
provides a more efficient and computationally faster so-
lution. The optimal results for the various values of the
external impact load direction ψ are given in the Table 2.

Table 2 : Optimal values of ϕ1;ϕ2;ϕ3;ϕ4 and structural
strength in the optimal adaptive shapes for dynamic load.

ψÆ Design Variables Structural

ϕÆ1 ϕÆ2 ϕÆ3 ϕÆ4 Strength N-Sec
-90 78.70 17.98 83.12 11.19 39.29
-80 77.69 20.03 82.40 11.64 52.29
-70 79.45 21.11 76.91 15.42 61.96
-60 77.68 23.84 72.37 19.50 75.78
-50 63.95 25.72 79.94 22.82 93.82
-40 57.32 30.08 70.55 24.94 105.83
-30 56.50 33.59 68.29 24.96 108.94
-20 51.85 37.10 60.03 29.97 108.69
-10 51.11 47.18 65.37 34.59 110.63
0 53.59 47.46 51.86 41.01 105.33
10 49.39 53.55 42.68 50.56 100.62
20 44.79 65.53 39.67 60.78 96.31
30 39.22 66.83 43.08 80.67 90.45
30 39.22 66.83 43.08 80.67 90.45
40 31.96 81.75 25.62 69.83 83.85
50 29.44 85.05 22.35 72.90 79.66
60 36.12 89.50 39.82 80.69 74.20
70 35.37 89.50 26.88 71.58 73.18
80 30.79 89.49 24.13 74.57 63.80
90 29.65 89.50 19.62 75.44 57.18

Figure 8 illustrates the changes in the structural strength
for the adaptive truss structure in comparison to the fixed
structure for various direction of ψ and it can also be
inferred that the structural strength is improved signifi-

cantly as the structure adaptively changes its geometry to
accommodate the changes in loading direction. The op-
timal geometries of the adaptive structure are shown in
the Figure 9, corresponding to the different load direc-
tions. The results are in good agreement with those in
[Murotsu and Shao(1990a)], which is based on the con-
ventional displacement method.

6 Conclusions

The integrated force method has been implemented to an-
alyze and optimize the geometry of adaptive truss struc-
tures under static and dynamic loading. The compati-
bility matrix is derived directly using the displacement-
deformation relation and the SVD technique. The un-
conditionally stable Newmark algorithm has been imple-
mented to solve the force equations of the motion. It was
found that the average-acceleration New-mark method
for this type of problem may introduce numerical spu-
rious oscillations.

The application and efficiency of the proposed method
was illustrated by optimizing the topology of an adaptive
truss structure using active elements in order to maintain
structural strength under various loading conditions. The
method has proved to be perfectly natural and efficient
because the primary variables in topology optimization
of adaptive truss structures are the member forces. It has
been shown that the structural strength can be improved
significantly by optimally changing the geometric config-
uration to counteract the changes in the direction of the
applied load. The computational time has been reduced
drastically when using the force method to analyze and
optimize adaptive structures when compared to the nu-
merical solution using the displacement method.
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