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An Innovative Open Boundary Treatment for Nonlinear Water Waves in a
Numerical Wave Tank

S.-P. Zhu 1

Abstract: Problems defined on infinite domains must
be treated on a finite computational domain. The treat-
ment of the artificially placed boundaries (usually re-
ferred to as open boundaries) of such domain trunca-
tions can be quite subtle; an over truncation would nor-
mally result in large, undesirable reflection of signals
back to the computational domain whereas an under trun-
cation would imply an injudicious use of computational
resources. In particular, problems occur when strongly
nonlinear free surface waves generated in a numerical
wave tank are passing through such an open boundary.
In this paper, some recent numerical test results of an
innovative treatment of open boundaries are presented.
One of popularly adopted techniques of minimizing wave
reflections at open boundaries is to use an “absorbing
beach”, over which wave energy is dissipated. In addi-
tion to a kinetic energy based dissipation term tradition-
ally added to the dynamical boundary condition to form
an “absorbing beach”, a potential energy based term is
added, tested and compared with the case of kinetic en-
ergy dissipation alone. Our numerical results show that
the newly added dissipation mechanism can dissipate en-
ergy more effectively over an absorbing beach and con-
sequently result in a much less reflection of wave energy
back to the computational domain.

keyword: Open boundary conditions, absorbing
beach, nonlinear water waves

1 Introduction

In engineering and applied sciences, there are many
problems that are modeled mathematically on an infinite
domain as it is simpler sometimes to demand the phys-
ical properties to be modeled have certain behaviour at
infinity rather than to work out some very specific bound-
ary conditions defined on some given boundaries. How-
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ever, unless analytical solutions can be worked out for
the formed governing differential system, such type of
mathematical simplification at the modeling stage may
become a burden for a modeler when the formulated
problem needs to be solved numerically; the infinite do-
main must be truncated to a finite computational domain
again before a computer can be utilized to solve the prob-
lem numerically. Mathematically, this poses a new type
of problems: to place an artificial boundary and impose
appropriate boundary conditions or some type of treat-
ment immediately behind the open boundary so that the
problem can now be computed on a finite domain. The
treatment of the artificially placed boundaries (usually re-
ferred to as open or fictitious boundaries) of such domain
truncations can be quite subtle; an over truncation would
normally result in large, undesirable reflection of signals
back to the computational domain whereas an under trun-
cation would imply an injudicious use of computational
resources. In particular, problems occur when strongly
nonlinear free surface waves generated in a numerical
wave tank are passing through such an open boundary.

Several different types of treatment have been proposed
in the past. In wave diffraction and refraction problems,
a commonly adopted technique is to make some further
assumption or simplification from the fictitious bound-
ary to the infinity so that eigenfunctions of a linear prob-
lem in the outer region can be found and matched with
the inner solution on the fictitious boundary [Houston
(1981), Tsay and Liu (1983)]. The behaviour of the un-
known function at infinity is usually well represented by
the eigenfunctions. However, the matching of the inner
and outer solution on the fictitious boundary may still
create reflections, particularly when the inner solution is
highly nonlinear.

A Sommerfeld-type of radiation condition was proposed
by Orlanski (1975) for hyperbolic flow problems. Chap-
man (1985) discussed various forms of the Orlanski con-
ditions; implicit version of the Orlanski conditions seems
to perform better, overall, in comparison with its explicit
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counterpart. However, the requirement of evaluating the
local phase velocity impedes the usage of this type of ap-
proaches.

Absorbing beaches (or they are sometimes referred to as
“sponges”) are another type of techniques used to ensure
minimum reflection back to the computational domain
once an infinite domain is truncated. Artificial damp-
ing (dissipation) is introduced within a finite zone (called
an “absorbing beach” or a “sponge”) beyond a finite
computational domain. The challenge here is to choose
a right form of dissipation and beach length to mini-
mize the reflection while maximize the computational
efficiency. Betts and Mohamad (1982) added a “damp-
ing” term to the free surface dynamic boundary condi-
tion while Baker, Merion and Orszag (1981) and Cointe,
Geyer, King, Molin and Tramoni (1990) added damp-
ing to both dynamic and kinematic boundary conditions.
On the other hand, some people even argued [Chapman
(1985)] that the combination of a radiation condition and
an absorbing beach would have the best damping effect.
For example, Ohyama and Nadaoka (1991) and (1994)
used friction damping in conjunction with a Sommerfeld-
type radiation boundary condition at the lee side of the
sponge layer placed at the end of their numerical tank.
However, it is not clear that how a radiation condition
which is supposed to filter only one frequency can be
applied in conjunction with the “absorbing beach” tech-
nique, which is capable of damping a wild range of fre-
quencies.

Grilli and Horrillo (1994) proposed that the added sur-
face pressure term along the dissipation beach be propor-
tional to the product of the free-surface normal velocity
and the free surface elevation. They calculated the prop-
agation of periodical waves over a numerical tank of con-
stant water depth and also the shoaling of periodic waves
over a constant slope and found that the proposed dissi-
pation term works better for short waves than for long
waves.

In this paper, we shall concentrate on the “absorbing
beach” technique and present some recent numerical test
results of an innovative damping term added to the dy-
namic boundary condition. The work is primarily based
on Cao, Beck and William (1993). However, instead of
having a term dissipating kinetic energy, we found that
adding a term that is of the form of potential energy
made a significant difference in terms of reflection. Our
numerical results show that the newly added dissipation

mechanism can dissipate energy more effectively over an
absorbing beach and consequently result in a much less
reflection of wave energy back to the computational do-
main.

This paper is subdivided into 5 sections. In Section 2,
we shall outline the numerical approaches for simulat-
ing the nonlinear waves. In Section 3, we shall present
our absorbing beach with a new dissipation term added.
In Section 4, a test problem based on a benchmark test
at ISOPE98 Montréal Conference and some preliminary
numerical results are presented and discussed. Our con-
cluding remarks are given in Section 5.

2 The Desingularized Boundary Integral Method

For water wave problems, we solve, at each time step, a
mixed boundary value problem of
8<
:

4φ = 0 (in Ω)
φ(ξ;x) = φ0 (in Γ f )
∂φ
∂n = q0 (in Γs)

(1)

where φ is the wave potential, 4 is the Laplacian oper-
ator, Ω is the domain occupied by water, Γ f is the free
surface and φ0 is a known function resulting from the up-
dating of potential function values on the free surface at
each time step; q0 is the prescribed normal derivative on a
solid boundary Γs (usually it is the normal velocity of the
solid boundary). Although the governing equation is lin-
ear and time independent, the problem is highly nonlin-
ear and time dependent as the position of the free surface,
which advances with time, is part of the solution and the
dynamic boundary condition imposed on the free surface
is usually nonlinear. The kinematic boundary condition,
which is used to advance the position of the free surface
and the dynamic boundary conditions will be discussed
in the next section.

With the well known free-space fundamental solution of
the Laplace operator

φ� =
1

2π
ln

1
jx�ξj

;

an integral equation

c(ξ)φ(ξ)+
Z

Γs

φ(x)q�(ξ;x)dΓ(x)�
Z

Γ f

q(x)φ�(ξ;x)dΓ(x)

=
Z

Γs

q0(x)φ�(ξ;x)dΓ(x)�
Z

Γ f

φ0(x)q�(ξ;x)dΓ(x)

(2)
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can be easily derived for any source point ξ, using either
Green’s second identity or integration by parts twice. In
Eq. (2), x is a so-called field point, with respect to which
the surface integral is carried out, and c(ξ) is geometric
parameter depending of the location of ξ (for 2D prob-
lems):

c(ξ) =

8<
:

1 if ξ 2 Ω
1
2 if ξ 2 Γ f [Γs

0 if ξ 62 Ω[Γ f [Γs.

If the source points are chosen to be on the boundary
Γ f
S

Γs, this results in a traditional boundary integral
equation, the solution of which requires the treatment of
the singularity when the field point x coincides with the
source point ξ. As pointed out by Cao, Beck and William
(1991), the numerical calculations can be quite costly
for the evaluation of a singular integrand, especially for
time-dependent non-linear free surface problems.

One way of avoiding the evaluation of singular integrand
is to let the source point ξ be located outside of the
boundary Γ f

S
Γs. Then, Eq. (2) becomes

Z
Γs

φ(x)q�(ξ;x)dΓ(x)�
Z

Γ f

q(x)φ�(ξ;x)dΓ(x)

=
Z

Γs

q0(x)φ�(ξ;x)dΓ(x)�
Z

Γ f

φ0(x)q�(ξ;x)dΓ(x)

(3)

which is no longer singular and is a Fredholm integral
equation of the first kind.

It is usually more difficult to solve a Fredholm equation
of the first kind than that of the second kind, mainly be-
cause the ill-posed nature of this type of integral equa-
tions as pointed out by de Hoog (1980) and many oth-
ers. Such an ill-posed nature is somehow reflected
by the unstable numerical solutions as experienced by
many researchers. However, for first-kind equations, if
a proper functional space to which the solution belongs
to is adopted, the equation system will become properly-
posed as pointed out by Baker (1977) and many others.
Cao, Beck and William (1991) showed that by properly
choosing the characteristic distance by which the source
points are placed outside the computational domain, sta-
ble and accurate numerical results can be obtained. Ac-
cording to Cao, Beck and William (1991), if these source
points are placed too far away from the boundary, the
resulting linear algebraic system is poorly conditioned,

resulting in large numerical errors. On the other hand, if
they are placed too close to the boundary, the integrand
is “almost” singular and numerical accuracy is poor too.
Cao, Beck and William (1991) proposed a formula for
such a distance:

Ld = `d(Dm)
α;

where Ld is the smallest distance between a source point
and a field point, ld is a parameter that reflects how far the
integral equation is desingularized, Dm is the local mesh
size and α is a parameter to be determined by numer-
ical experiments. As recommended by Cao, Beck and
William (1991), we chose ld = 1 and α = 0:5 in all of
our calculations for the results presented in Section 4.

3 New Absorbing Beach

On the free surface, the kinematic boundary condition

Dx
Dt

= ∇φ (4)

and dynamic boundary condition

Dφ
Dt

= �gη�
1
2

∇φ �∇φ (5)

are used to advance our calculation at each time step. In
Eq. (5), g is the gravitational acceleration and η is the
free surface elevation. Eq. (4) is used to advance the
free surface to its new position and Eq. (5) is used to
advance the velocity potential on the new location of the
free surface.

In the zone where artificial damping is switched on (i.e.,
on the absorbing beach where energy is expected to be
“absorbed”), one can add an additional term, Pdamp, in
the dynamic boundary condition:

Dφ
Dt

= �gη�
1
2

∇φ �∇φ�
Pdamp

ρ
; (6)

where Pdamp is some kind of artificial pressure applied on
the free surface and ρ is the water density. As pointed out
by Cao, Beck and William (1993), the energy absorption
rate associated with the damping term is

dE f

dt
=
Z

Γ f b

PdampφndΓ (7)

where φn denotes the normal derivative of the potential φ
on Γ f b, which denotes the free surface above the absorb-
ing beach.
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There have been various forms of Pdamp proposed in the
literature. Pdamp = νφ is used in Betts and Mohamad
(1982), Baker, Merion and Orszag (1981) and Cointe,
Geyer, King, Molin and Tramoni (1990). Such a choice
does not guarantee a positive definite kernel in Eq. (7)
and consequently the energy may even be “pumped” into
the fluid. Cao, Beck and William (1993) suggested that
Pdamp take the form

Pdamp = ν(x)sign(φn) jQ j; (8)

where Q can be any function including nonlinear func-
tions of φ and/or φn and ν(x) is a positive function that
allocates different amount of dissipation at each point
along the beach. In their numerical tests, they tested two
functions with Q = φ and Q = φn and found that the total
energy decay for the case of Q = φn is always monotonic,
which indicates that the beach always absorbs energy. On
the other hand, For the case of Q = φ, the total energy
decay is not alway monotonic. They appeared to favor
the former choice more. Subramani, Beck and William
(1998) used Q =5φ �5φ and suggested that their form
of energy dissipation works better when waves break.
However, they did not directly compare their results with
those of Cao, Beck and William (1993).

The current research was motivated by the fact that most
of the researchers linked Pdamp with quantities that are
directly associated with the kinetic energy (e.g., velocity
potential, normal velocity or even the square of the mag-
nitude of the total velocity on the free surface), no one
seems to have linked the Pdamp with the counterparts of
the kinetic energy in this problem, the potential energy.
A combination of these two effects being included in the
Pdamp term seems to be so natural as these two forms
of energy both appear in the original dynamic boundary
condition (5) already. Therefore, we propose that Pdamp

take a more general form

Pdamp

ρ
= ν(x)sign(φn)[rj∇φj2+(1� r)gjηj] (9)

where r is the percentage of the contribution of each
term and ν(x) is a function that distributes the dissipa-
tion along the beach. When r is equal to 1, the dissipa-
tion is purely kinetic energy based as the cases studied
before. On the other hand, if r is set to zero, the dissi-
pation becomes purely potential energy based. The ob-
jective of this project is to find what is the best combina-
tion of these two forms of dissipation in order to render

Figure 1 : A sketch of the computational domain and the
“absorbing beach”.

minimum reflection. Test results of a benchmark case is
presented in the next section to illustrate the best r values
in terms of numerical dissipation on the absorbing beach.

It should be noted that the proposed Pdamp is different
from that used by Grilli and Horrillo (1994); the one pro-
posed in this paper is clearly based on an energy consid-
eration whereas it is not clear what physically the product
of ∂φ

∂n and η in Grilli and Horrillo (1994) represents. In
addition, it is not guaranteed that the energy is always
dissipated along the beach if the form of Pdamp proposed
by Grilli and Horrillo (1994) is taken, since η itself can
be positive or negative.

There are several forms of distribution functions (e.g.,
Cao, Beck and William (1993) and Subramani, Beck and
William (1998)). But, all these distribution functions
have a common feature; it is equal to zero at the be-
ginning of the beach and monotonically increase along
the beach. In order to focus on the dissipation mecha-
nism rather than the optimal distribution of dissipation,
we adopted the distribution function used in Cao, Beck
and William (1993), i.e.,

ν(x) = ν0(
x�L

Lb
)2; (10)

for all the results presented in the next section. In Eq.
(10), ν0 gives the strength of the overall dissipation and
will be referred to as the beach strength from now on.
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Figure 2 : Displacement of the wavemaker.

4 Numerical Test Results and Discussions

At its ISOPE98 Montréal conference, the International
Society for Offshore and Polar Engineering set up a se-
ries of benchmark problems to test the numerical absorp-
tion of outgoing waves in numerical tanks. The purpose
of these benchmark tests seems to match our objective
quite well, i.e., to avoid wave reflection and make the
open boundary of a numerical wave tank as transparent
to the incoming waves as possible.

We adopted one of these benchmark problems in a nu-
merical wave tank to test our new dissipation terms. As
illustrated in Fig. 1, the tank is 9.81 m high and 58.86
m long. Although the physical dimension of the tank can
be given other values so long as the ratio of these two
is equal to 6 as required in the benchmark problem, we
chose these two numbers so that the ratio of g

h = 1s�2.
On the right hand side of the tank, an absorbing beach
of various beach length is placed at the exit of the nu-
merical tank. On the left hand side of the tank, a piston
wavemaker, the position of which is prescribed by

x = A tanh(t)sin(ωt) tanh(n
2π
ω
� t); (11)

is located at the left end of the tank. In Eq. (11), A is the
amplitude, ω is the angular frequency, t is time and n is
the number of periods in the wave packet. The motion of
the piston within a typical packet is depicted in Fig. 2.

It was recommended that the dimensionless wave ampli-
tude be taken as 0.012 (non-dimensionalized by the mean
water depth). For the wave tank we took, this is equiva-

Figure 3 : Free surface elevations at different time steps:
(a) at t = 10 s; (b) at t = 37:25 s; (c) at t = 50 s; (d) at
t = 85 s.

lent to 0.11772 m. However, when we tried to establish a
solution with a sufficiently long tank (such a solution is
needed in order to check the amount of reflection of each
beach under test), we found that with this amplitude, non-
linear waves always break before the recommended sim-
ulation time of 85 s is reached no matter how long the
tank is. Therefore, we had a choice of either taking a
short simulation time or a sightly smaller amplitude. We
chose the latter as we felt that so long as the amplitude
of the piston is large enough to generate highly nonlin-
ear waves, it would serve the objective of this study. On
the other hand, if we had shorten the simulation time, the
dissipation effect of a beach might not have been fully
explored before the simulation is over.

Four free surface positions corresponding to t = 10, t =
37:25, t = 50 and t = 85 s are respectively shown in Fig.
3, with a beach length of 91.14 m (a total length of 150
m), which is more than one and half times of the tank
length. Here, ω was chosen to be 8 s�1 and n = 8 as
suggested in the benchmark test guideline. As one can
see, waves in the test section are indeed highly nonlin-
ear as they evolve with the time. This is the solution that
we are going to regard as the “true” solution so that all
the other solutions with various beach lengths and dis-
sipation mechanisms can be tested against. The reason
we chose the solution corresponding to a total length of
150 m was because there was very little change in the
test section once the total length passes beyond 120 m.
We also varied the dissipation strengths to make sure that
less than 0.5% of changes in the test section were found.
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Figure 4 : Variation of norms vs. KE/PE ratio.

Using this “true” solution, we can now define some L2

norms to measure the transparency of the open boundary.
To measure the temporal difference of the free-surface
elevation at a specific location i, we let

Ni =

M

∑
m=1

(η(i)
m �η(ir)

m )2

M

∑
m=1

η(ir)
m

2
; (12)

where M is the total number of time steps included in
the norm, η(i)

m is the free-surface elevation of a test at the
time step m and at the probe location i and η(ir)

m is the
corresponding free-surface elevation of the “true” solu-
tion at same time and location. To measure the spatial
differences of a test case with that of the “true” solution,
we let

Ns =

M

∑
m=1

N

∑
n=1

(η(i)
mn�η(ir)

mn )
2

M

∑
m=1

N

∑
n=1

η(ir)
mn

2
; (13)

where the subscripts mn denote the corresponding quan-
tity being measured at mth time step and at the nth nodal
point.

Five probes were placed in the wave tank to record the
time series of the free surface elevation. Four of these
were placed at 5, 20, 40 and 58.86 m locations and one
was at the end of the “absorbing beach”. It is expected
that in general the reflection of waves should increase if

Figure 5 : Comparison of free surface elevations when
KE/PE ratio is 100%.

one moves towards the open boundary placed at 58.86
m. For a given dissipation distribution function, there
are three variables we can test, the percentage of the ki-
netic energy term vs. the potential energy term, the beach
length and the beach strength.

Fig. 4 shows the variations of Ni norms (i = 1;2;3;4)
and Ns norm in terms of different proportion of kinetic
and potential energies when the beach strength and the
beach length are fixed at ν0 = 1:0 and Lb = 12 m, re-
spectively. Clearly shown is the small difference between
the solution with 12 m beach and that of the “true” so-
lution at location closer to the wavemaker (e.g., at the
5 m probe) for a given KE/PE (kinetic energy/potential
energy) ratio. Such difference increases as the probe lo-
cation gets closer to the open boundary. In other words,
reflections from the open boundary decays as one moves
away from it, which is as expected. The most interest-
ing is that all the norms monotonically decrease when
the component of potential energy dissipation becomes
larger. For 100% potential energy, the Ns norm reaches
about 0.0019, which is more than 30 times less than that
of 100% kinetic energy. This is a significant improve-
ment!

The Ns for the case of 100% kinetic energy is equal to
0.057. To have a feeling of what the difference of the
free surface elevations this amount of norm is equivalent
to, we ploted out the comparison of the free surface ele-
vation at the last moment of our simulation, i.e., t = 85
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Figure 6 : Comparison of free surface elevations when
KE/PE ratio is 0%.

s, in Fig. 5. As one can see, the difference between the
solution of a 12 m beach and that of the “true” solution
is quite large. On the other hand, for the case of 100%
potential energy, such a difference is considerably small
as shown in Fig. 6. For any time before the end of sim-
ulation, the difference is even smaller. Fig. 7 shows the
difference between the solution of a 12 m beach and that
of the “true” solution at t = 37:25 s. Clearly, one can
hardly tell any difference between the two curves, except
in the beach zone.

One must have also observed that the difference becomes
large in Figs. 5-7 on the beach between x = 58:86 and
x = 70:86. This clearly shows that the effect of the dis-
sipation on the beach. As the strength of the dissipation
increases towards the end of the beach, so did the differ-
ences between the free surfaces there. Once again, this
is what we expected. What we didn’t expect was that for
the quadratic distribution function, the potential energy
term appears to work best alone, in terms of minimum
reflection or the transparency of the open boundary.

For beach strength ν0, what we like is a reasonably large
range of ν0, within which the norms don’t change too
much. In other words, we would like to identify a range
of ν0, within which the results are insensitive to the se-
lection of ν0. This is because once we have found an
optimal beach profile in terms of its dissipation strength,
beach length, the ratio of potential energy vs. kinetic en-

Figure 7 : Comparison of free surface elevations when
KE/PE ratio is 0%.

ergy, and strength distribution, we would not like them to
be problem dependent.

Figs. 8, 9 and 10 show the variations of 5 norms vs. the
beach strength ν0 when the beach length is fixed at 12 m
and the percentage of the kinetic energy is fixed at 0, 50
and 100, respectively. For the case that the percentage
of the kinetic energy dissipation is 50 and 100, around
ν0 = 2 clearly appears to be the optimal value. However,
for the case that the percentage of the kinetic energy dis-
sipation is 0, the spatial norm corresponding to ν0 = 2 is
actually slightly larger than those when ν0 = 1 and ν0 = 3
while the other four temporal norms are still the lowest
at ν0 = 2. Therefore, we can safely recommend ν0 = 2.
More importantly, one should notice that there is indeed a
reasonably wide range of ν0 such that these norms remain
low. Such a range shifts a little bit from 1 < ν0 < 3 for
KE/PE ratio being 100 and 50 to 2 < ν0 < 4 for KE/PE
ratio being 0. Therefore, it is believed that choosing ν0

around 2 would yield the minimum reflection.

Another aspect is of course the influence of the beach
length. Naturally, we expect that the longer the beach
length is, the more energy will be absorbed and conse-
quently resulting in less reflection. On the other hand,
longer beach of course increase the computational ex-
penses in terms of both data storage and CPU time. It
is certainly a great advantage if we can find a guideline
for the ratio of the beach length to that of the wave tank.
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Figure 8 : Variation of norms vs. beach strength ν0 when
KE/PE ratio is 0%.

Figure 9 : Variation of norms vs. beach strength ν0 when
KE/PE ratio is 50%.

Figs. 11, 12 and 13 show the variations of 5 norms vs.
the beach length when the beach strength ν0 = 1 and the
percentage of the kinetic energy is fixed at 0, 50 and 100,
respectively. Clearly, a 3 m beach would be too short for
all cases (for KE/PE ratio being 0, the errors were so big
that we could not even plot it out). Beach length of 6 m
still renders reasonably good results as shown in Fig. 14,
in which the comparison of free surface elevation from
Lb = 6 to that of the “true” solution is plotted. Our other
sets of data display some similar behaviour. Therefore,
a 10 to 20% beach length to that of the tank length is
recommended.

Figure 10 : Variation of norms vs. beach strength ν0

when KE/PE ratio is 100%.

Figure 11 : Variation of norms vs. beach length Lb when
KE/PE ratio is 0%.

Figure 12 : Variation of norms vs. beach length Lb when
KE/PE ratio is 50%.
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Figure 13 : Variation of norms vs. beach length Lb when
KE/PE ratio is 100%.

5 Conclusions

In this paper, a new dissipation term is proposed to be
added to the dynamic boundary condition on an “absorb-
ing beach” in order to minimize the wave reflection due
to the truncation of an infinite domain to a finite one. Our
numerical test results show that the newly proposed po-
tential energy based dissipation term indeed works bet-
ter in comparison with the previously adopted kinetic en-
ergy based dissipation term. It is recommended that the
beach strength take a value of ν0 = 2 and beach length
take about 10 to 20% of the numerical tank length under
study.
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