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A Naturally Parallelizable Computational Method for Inhomogeneous Parabolic
Problems

M. Ganesh,1 D. Sheen2

Abstract: A parallel numerical algorithm is intro-
duced and analyzed for solving inhomogeneous initial-
boundary value parabolic problems. The scheme is based
on the method recently introduced in Sheen, Sloan, and
Thomée (2000) for homogeneous problems. We give a
method based on a suitable choice of multiple parame-
ters. Our scheme allows one to compute solutions in a
wide range of time. Instead of using a standard time-
marching method, which is not easily parallelizable, we
take the Laplace transform in time of the parabolic prob-
lems. The resulting elliptic problems can be solved
in parallel. Solutions are then computed by a discrete
inverse Laplace transformation. The parallelization of
the algorithm is natural in the sense that it requires no
data communication among processors while solving the
time-independent elliptic problems. Numerical results
are also presented.
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1 Introduction

In this work we are interested in describing and analyzing
a parallelizable method to solve linear inhomogeneous
parabolic problems of the form

ut +Au = f (x; t); (x; t)2 Ω� (0;T ];

u(x;0) = u0(x); x 2Ω; (1.1)

where Ω 2 Rd is a bounded domain with a smooth
boundary ∂Ω, T > 0 and A is a symmetric, strongly ellip-
tic, invertible operator defined on a dense subset D(A) of
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L2(Ω). The inhomogeneous term f 2C1([0;T];L2(Ω)),
and the initial data u0 2 L2(Ω) are given and we assume
the homogeneous Dirichlet boundary condition. (Our
approach could be extended, with appropriate technical
details, for other types of linear homogeneous boundary
conditions.)

Instead of solving the above initial-boundary value prob-
lem based on the traditional time-marching approach,
which is not easily parallelizable in the time axis, we em-
ploy an alternative approach by using the Laplace trans-
formation in the time variable.

The solution of (1.1) can be written as Pazy (1983) (p.
105)

u(�; t) = S(t)u0(�)+
Z t

0
S(s) f (�; t� s) ds;

0 < t � T; (1.2)

where, for t > 0, S(t) : L2(Ω)! D(A) is the analytic
semigroup generated by the operator �A Pazy (1983)
(Theorems 7.2.7 and 2.6.13). In particular, for t > 0 and
v0 2 L2(Ω), S(t)v0 := v(t); where v is the solution of the
linear initial-boundary value problem

vt +Av = 0; v(�;0) = v0(�); 0 < t � T; (1.3)

with the zero boundary condition. Thus, in (1.2) S(t)u0

can be computed if we solve (1.3) with v0(�) = u0(�).
Further, for each 0 < s � t � T , S(s) f (�; t� s) can be
computed by solving (1.3) with v0(�) = f (�; t� s). In our
parallel computational scheme to follow, we compute the
most expensive part of solving the homogeneous prob-
lem (1.3) only once by a non-time stepping scheme, and
handle several initial data by relatively inexpensive ma-
trix vector multiplications.

For notational convenience, throughout the paper, for any
v 2C([0;T];L2(Ω)), we do not distinguish between v(t)
and v(�; t); t 2 [0;T ]:

In order to solve (1.3) for several initial data v0 2 L2(Ω),
we adopt the method given in Sheen, Sloan, and Thomée
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(2000). First we apply the Laplace transform

bv(z) = Z ∞

0
e�zt v(t)dt for Rez ��γ:

to (1.3) and obtain the complex-valued elliptic problems

zbv+Abv = v0 for Re z ��γ: (1.4)

Here, γ is a suitably chosen real number less than the
smallest positive eigenvalue λ0 of A . The solution of
(1.4) is bv(z)= R(z;�A)v0, where R(z;�A)= (zI+A)�1

is the resolvent of �A . Since all the eigenvalues of �A
are real and bounded above by �λ0, the resolvent ex-
ists for all z 2 C n (�∞;�λ0]. This enables one to re-
trieve the solution v(t) = S(t)v0 of (1.3) by using the in-
verse Laplace transform defined through a contour inte-
gral Pazy (1983) (Theorem 1.7.7):

v(t) = S(t)v0 =
1

2πi

Z
Γ

eztR(z;A)v0 dz

=
1
π

Im
Z

Γ+
eztbv(z)dz; 0 < t � T; (1.5)

where the contour Γ in the complex plane is chosen as
Γ = Γγ = fz = �γ�σ� iσ;σ � 0g, with Imz increas-
ing from �∞ to ∞, and Γ+ the portion of Γ lying in the
second quadrant of the complex plane Sheen, Sloan, and
Thomée (2000). The last equality (1.5) is obtained by
using bv(z) = bv(z): Hence, by using the properties of the
deformed contour Γγ in (1.5), we get

v(t) =
e�γt

π
Imν

Z ∞

0
eνσtbv(�γ+νσ)dσ;

ν = �1+ i: (1.6)

The above Laplace transform approach enables a natu-
ral parallelization as the set of elliptic problems (1.4)
can be solved independently for all z. The choice of
Γγ (a deformation of the vertical line f�γ� iσ;σ � 0g)
is an essential ingredient in obtaining a robust discrete
Laplace transform based approach (with analysis) in
Sheen, Sloan, and Thomée (2000). Due to the choice of
Γγ, the algorithm in Sheen, Sloan, and Thomée (2000)
for solving homogeneous parabolic initial-value prob-
lems cannot be directly applied to (1.1). In this work
using semigroup theory and a multiparameter variant of
the method in Sheen, Sloan, and Thomée (2000), we pro-
pose a non-time stepping algorithm (with analysis) for
the inhomogeneous equation (1.1).

A different non-time stepping approach to tackle in-
homogeneous parabolic and hyperbolic problems with
zero initial data based on the Fourier transformation has
been discussed in detail in Douglas, Jr., Santos, Sheen,
and Bennethum (1993), Douglas, Jr., Santos, and Sheen
(1994), Lee, Lee, Sheen, and Yeom (1999). These earlier
results and the recent work Sheen, Sloan, and Thomée
(2000) and Chaplain, Ganesh, and Graham (2001) are
the main motivations for this paper.

In fact, this paper is a first step towards a future project to
tackle a tumour growth mathematical model on general
domains described by semi-linear reaction-diffusion sys-
tems with parameters from the Turing space, see Chap-
lain, Ganesh, and Graham (2001) and references therein.
In Chaplain, Ganesh, and Graham (2001), simulation of
the model was considered on simple spherical surfaces
using a spectral method of lines approach with time-
stepping. The long time simulation process for the model
on general domains naturally requires as a first step
a non-time stepping method to tackle linear parabolic
problems of the form (1.1) (arising by an appropriate lin-
earization of the model). For time-stepping methods for
parabolic problems, we refer to the book Thomée (1997)
and references therein.

In the next section the algorithm introduced in Sheen,
Sloan, and Thomée (2000) is reviewed briefly for solving
homogeneous parabolic problems, and motivations for
its variant are introduced. Then in Section 3 we present
our algorithm for solving inhomogeneous problems with
a convergence analysis. Numerical results are given in
Section 4.

2 Linear homogeneous problems

2.1 The algorithm

In this section we describe in a compact algorithmic fash-
ion the method introduced in a recent work Sheen, Sloan,
and Thomée (2000) to solve general linear homogeneous
problems of the form (1.3). This will form a basis to in-
troduce our approach to solve the inhomogeneous linear
problem (1.1).

Algorithm Lin-Hom:

1. Choose a quadrature rule (of degree of precision q�
2) on [0;1].
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2. Convert the half-line integral in (1.6) into an equiv-
alent integral on [0;1].

3. Apply the quadrature rule to discretize the resulting
integral on [0;1].

4. For each quadrature point, obtain the unknowns bv
by solving (1.4).

In Step 1, we choose either the composite trapezoidal or
Simpson rule on [0;1], i.e. q = 2 or 4 respectively.

In Step 2, we use the change of variables σ = q
τ ln1

y to
convert the integral in (1.6) in the σ variable to an inte-
gral on [0;1] in the y variable where τ > 0 is a crucial
parameter independent of the time variable t. A precise
choice of τ will be explained later.

For a positive integer N, let the quadrature points be yn =
n=N 2 [0;1] and the weights be βn;n = 0; � � � ;N. The
discrete approximation to (1.6) is given by

vN(t) := SN(t;τ)v0

:=
qe�γt

τπ
Imν

N�1

∑
n=1

βny
(� qt

τ ν�1)
n bv(zn(τ)); (2.1)

where the end point singularities are ignored as in Sheen,
Sloan, and Thomée (2000); Davis and Rabinowitz (1975)
and zn(τ) is defined by

zn(τ) =�γ+ν
q
τ

ln
N
n
; n = 1; � � � ;N�1: (2.2)

Thus to compute vN(t) in (2.1), we need to solve (1.4)
only for z = zn(τ);n = 1; � � � ;N� 1: It is clear that zn(τ)
is independent of t. Hence, the elliptic problem (1.4) for
each zn(τ);n = 1; � � � ;N � 1; can be solved in parallel,
by using for example finite element approximation (with
spatial mesh size h). Let bvh

N be the resulting approxima-
tion. Hence our fully-discrete approximation to S(t)v0 is
given by

vh
N(t) := Sh

N(t;τ)v0

:=
qe�γt

τπ
Imν

N�1

∑
n=1

βny
(� qt

τ ν�1)
n bvh

N(zn(τ)); (2.3)

For each n = 1; � � � ;N � 1, we need to solve finite-
dimensional systems of linear algebraic equations of the
form

(zn(τ)Ih+Ah)bvh
N = vh

0: (2.4)

The approximate solutions vh
N can then be obtained

by multiplying the matrices (zn(τ)Ih + Ah)
�1 with vh

0 .
Throughout the paper, by multiplying an inverse ma-
trix with a vector we mean computing a sparse LU-
decomposition of the matrix and then applying forward
elimination and backward substitution with the vector.
The expensive part of the computation in the above al-
gorithm is the computation of the LU-decomposition of
the matrix (zn(τ)Ih+Ah) for n = 1; � � � ;N� 1. This can
solved in parallel, independent of the time-variable for
each zn(τ)Ih; n = 1; � � � ;N� 1: Then Sh

N(t;τ)v0 can be
evaluated for each t 2 (0;T ] by using the formula (2.3).

An error analysis of the above method for linear homo-
geneous problem (1.3) is carried out in detail in Sheen,
Sloan, and Thomée (2000); for convenience, we quote
the main result below.

Theorem 2.1. There exists a constant C =C(λ0�γ)> 0,
such that for N � 3,

kSN(t;τ)v0�S(t)v0k �

Ckv0ke�γt

8><>:
1

Nq

�
1+tq

τq(1+t�τ) +
tq

τq ln+ 1
t�τ

�
; t > τ;

1
Nq

�
ln+ lnN + 1

τq + ln+ 1
τ
�
; t = τ;

1
Nqt=τ

�
1+τq

τq + ln+ 1
τ�t + ln+ 1

t

�
; 0 < t < τ;

where ln+ denotes the usual nonnegative part of the nat-
ural logarithm ln.

(Here, and in what follows k � k will denote the usual
L2(Ω) norm.)

Remark 2.1. Based on the above theorem and observa-
tions in Sheen, Sloan, and Thomée (2000), we list some
important factors that are to be considered for implemen-
tation of Algorithm Lin-Hom and motivate the need to
consider a variant of the algorithm with multiple param-
eters.

1. For a single choice of the parameter τ, for optimal
convergence it is recommended that vN(t) is to be
computed only for t > τ. Further, the term ( t

τ)
q in

the error estimate of Theorem 2.1 forces the restric-
tion that t 2 (τ;bτ] for some appropriate constant
b. Based on empirical results computed using the
trapezoidal rule (i.e. q = 2), it is recommended in
Sheen, Sloan, and Thomée (2000) that b = 2. For
simplicity, we take b = q.

2. Consequently, if we are interested in computing an
approximation solution vN(t) for all t 2 (0;T ], we
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need to use a parameter, say τ1 = T=q for t 2 (τ1;T ],
another parameter τ2 = T=q2 for t 2 (τ2;qτ2] and
so on. Thus we need to divide (0,T] into parame-
ter based subintervals in geometric way by choosing
multiple parameters τ1; � � � ;τL for some finite num-
ber L so that τL = T=qL.

3. To compute vN(t), for small time t, we need to
choose τL also small. In this case the error estimate
in Theorem 2.1 involves the term 1

(NτL)q . So an ar-
bitrary choice of N ( independent of τL) would not
yield convergence. This entails N and L to be de-
pendent on each other.

In our algorithm to follow, we proceed by first choosing
several values of the parameter τ (with re-ordering of the
indices, for convenience). Let

τl = T=qL�l+1 for l = 1; � � � ;L; (2.5)

where the number of parameters L (depending on N) is
chosen later in (3.1) based on convergence analysis.

3 Linear inhomogeneous problems

3.1 The algorithm

Now we are in a position to describe an algorithm to
obtain an approximation to the solution u(t);0 < t � T;
given by (1.2) of the inhomogeneous problem (1.1). This
involves solving the linear homogeneous problem (1.3)
with several initial data u0(�) and f (�; t� s) for 0 < s �
t � T based on Algorithm Lin-Hom with N � 2q. As
motivated in the last section, our first step consists of
choosing several parameters τl; l = 1; � � � ;L; as in (2.5).
We choose L � 1 in the formula (2.5) to be

L = L(N)

=

8>>>><>>>>:

�
logq N

�
if f (�; t) =2 D(A)

for some t 2 (0;T ];h
q

q+1 logq N
i

if f (�; t)2 D(A)

for all t 2 (0;T ];

(3.1)

where [�] denotes the usual integer part function. For ex-
ample, in the case of Simpson’s rule (q = 4) and N = 100
or 400, we have L = 3 or 4 respectively, if f (�; t) =2 D(A)
for some t 2 (0;T ] and L = 2 or 3 otherwise. The above
choice of L is required to obtain convergence properties,
as we shall see in Theorem 3.1.

It is easy to show that (2.5) and (3.1) imply the following
relations:8>>>><>>>>:

T
N � τ1 <

qT
N if f (�; t) =2 D(A)

for some t 2 (0;T ];
T

Nq=(q+1) � τ1 <
qT

Nq=(q+1) if f (�; t)2 D(A)

for all t 2 (0;T ]:

(3.2)

For time-discretization on [τ1;T ] based on a quadrature
rule of degree of precision p� 2, first we choose an inte-
ger M > 0:

M =

8>>>><>>>>:
1 if f (�; t) =2 D(A)

for some t 2 (0;T ];�
Nq=(p(q+1))+1

�
if f (�; t)2 D(A)

for all t 2 (0;T ]:

(3.3)

(For p = q = 4, for instance, if N = 100 or 400, it would
suffice to choose M = 3 or 4 respectively.) Next we sub-
divide [τ1;τ2] into M equal subintervals of width ∆t. This
implies using (2.5),

∆t =
τ2� τ1

M
=

T (q�1)
MqL =

(q�1)
M

τ1: (3.4)

Further for each l = 1; � � � ;L, since τl+1� τl = ql�1(τ2�
τ1), we subdivide [τl;τl+1] into Ml(= Mql�1) equal
subintervals of width ∆t. Consequently, we have a uni-
form partition of [τ1;T ] with MT (=∑L

l=1 Ml) subintervals
of width ∆t: Let

sk = τ1 +k∆t; k = 0; � � � ;MT (3.5)

be the equally spaced grid points in [τ1;T ]:

For any t 2 [τ1;T ] fixed with t = s j; for some j =
2; � � � ;MT ; we write the solution u(t) in (1.2) as

u(t) = S(t)u0+
Z τ1

0
S(s) f (t� s) ds

+
Z t

τ1

S(s) f (t� s) ds: (3.6)

To discretize the second integral in (3.6), we choose a
quadrature rule on [τ1; t] of degree of precision p with
equally spaced quadrature points sm as in (3.5) and some
weights wm; m = 0; � � � ; j: Since the semigroup operator
S(s) is not smooth for s close to 0, we discretize the in-
tegral on [0;τ1] in (3.6) using the two point trapezoidal
rule.
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Then we get the first discrete approximation euN(t) to the
solution u(t) (with t = s j):

euN(t) = S(t)u0+
τ1

2
[S(τ1) f (t� τ1)+S(0) f (t)]

+
j

∑
m=0

wmS(sm) f (t� sm): (3.7)

We discretize the semigroup operators S(sm); m =
0; � � � ; j; using Algorithm Lin-Hom with parameter
τ(m), where

τ(m) =

8><>:
τ1 if τ1 � sm � τ2

τl if τl < sm � τl+1;

for some l = 2; � � �L;

(3.8)

(with τL+1 = T ): More precisely, for a fixed time
t = s j, and for a given initial data v0, we approxi-
mate S(sm)v0; m = 0; � � � ; j; by SN (sm;τ(m))v0, where
SN (�;τ(m))v0 is as defined in (2.1) with τ = τ(m). Using
(3.5), we have

τ(m) =

8><>:
τ1 if 0� m�M1

τl if 1+ � � �+Ml�1 < m� 1+ � � �+Ml;

for some l = 2; � � �L:

(3.9)

Thus, for a fixed time t = s j; j = 2; � � � ;MT , our com-
putable approximation uN(t) to the solution u(t) of the
inhomogeneous problem (1.1) is given by

uN(t) = SN (t;τ( j))u0 +
τ1

2
[SN (τ1;τ1) f (t� τ1)+ f (t)]

+
j

∑
m=0

wmSN (sm;τ(m)) f (t� sm): (3.10)

Equivalently, for t = s j; j = 2; � � � ;MT ,

uN(t) = SN (s j;τ( j))u0+
τ1

2
[SN (τ1;τ1) f ( j∆t)+ f (s j)]

+
j

∑
m=0

wmSN (sm;τ(m)) f (( j�m)∆t): (3.11)

Finally, using finite-element/difference or spectral ap-
proximation for elliptic problems (1.4) for each z =
zn (τ(m)) ;n = 1; � � � ;N� 1; m = 0; � � � ; j, we obtain the
fully-discrete approximation to the solution of (1.1):

uh
N(t) = Sh

N (s j;τ( j))u0+
τ1

2

h
Sh

N (τ1;τ1) f ( j∆t)+ f (s j)
i

+
j

∑
m=0

wmSh
N (sm;τ(m)) f (( j�m)∆t): (3.12)

The involved terms Sh
N (sm;τ(m)) f (( j�m)∆t)’s in

(3.12) can be computed by solving finite dimensional
systems of the form (2.4) in parallel. Then for each
zn (τ(m)) ;n = 1; � � � ;N � 1; m = 0; � � � ; j, given by
(2.2) with τ = τ(m), the spatial approximation of (1.4)
with mesh size h gives the inverse [zn (τ(m))Ih +Ah]

�1.
Multiply these inverse matrices by vectors uh

0 and
f(�;( j�m)∆t)h, in order to obtain the fully-discretized
approximation uh

N(t).

We summarize our method for solving inhomogeneous
problems as follows:

Algorithm Lin-Inhom:

1. Fix N and choose parameters τl; l = 1; � � � ;L; as in
(2.5) and (3.1).

2. Subdivide [τ1;T ] by choosing equally spaced grid
points given by (3.5).

3. For any t = s j 2 [τ1;T ]; j = 2; � � � ;MT , and for
each m = 0; � � � ; j; use the algorithm Lin-Hom to
get the approximate inverse [zn (τ(m))Ih +Ah]

�1,
n = 1; � � � ;N�1:

4. For n = 1; � � � ;N � 1;m = 0; � � � ; j, multiply
[zn (τ(m))Ih +Ah]

�1 by the vectors uh
0 and

f(�;( j�m)∆t)h and obtain uh
N(t) using (3.12).

It is important to note that in the above Algorithm Lin-
Inhom we compute the inverse (more precisely, com-
pute a sparse LU-decomposition) of [Ah + zn (τl)Ih], n =
1; � � � ;N�1; l = 1; � � � ;L, only once. The computation of
such inverse matrices is the most expensive part in solv-
ing parabolic problems. So compared to solving a lin-
ear homogeneous parabolic problem, our algorithm for
solving inhomogeneous problems involves only a few ad-
ditional relatively inexpensive matrix vector multiplica-
tions, and this can also be done in parallel.

We described the discrete approximation uN(t) to the so-
lution u(t) given by (1.2) only for t = s j for j = 2; � � �MT :

For j = 0;1 the above procedure holds with natural mod-
ifications. If j = 0, i.e. t = τ1, the third term on the RHS
of (3.6) vanishes and hence we ignore the last term in
our approximation uN(t) given by (3.10). If j = 1, i.e.
t = τ1+∆t, we use the Simpson’s rule with three quadra-
ture points 0;τ1;τ1 + ∆t (possibly not equally spaced)
and get the corresponding approximation uN(t). For N
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sufficiently large, carrying out the computation only for
t = s j; j = 0; � � �MT is sufficient for most practical cases.
In case uN(t) is required at a non-nodal point, it can be
obtained by the usual interpolation technique.

It is important to choose equally spaced points s j given
by (3.5) on [τ1;T ] to get only maximum O(N) matrix
vector multiplications in Step 4 of Algorithm lin-inhom.
However, we may choose τ1 smaller than ∆t to grade
appropriately to tackle the non-smooth behaviour of the
semigroup operator S(s) for s sufficiently close to 0. Our
choice of L;M gives such a grading from the point of
view of optimal computational cost and from our next
subsection analysis of rate of convergence .

Clearly, choosing non-equally spaced points in [τ1;T ] in-
creases the computational cost substantially due to the
terms S(s) f (t� s). Hence we need to avoid Gauss type
quadrature rules for time discretization.

3.2 Convergence Analysis

In this section we will derive an error analysis of Lin-
Inhom. We use the following notation: k � k∞ denotes
the norm in C([0;T ];L2(Ω)) (i.e. supremum norm in
the time-variable and L2(Ω) norm in the space vari-
able); k � kk;∞ denotes the norm in Ck([0;T ];L2(Ω)), for
k = 1; � � � ; p; for g 2 C([0;T ];L2(Ω)) and for a fixed
s 2 [0;T ], kg(s)k denotes the usual norm in L2(Ω).

Throughout the paper, for a;b 2 R, by a <
�

b we denote
a � Cb for some generic constant C independent of the
number of degrees of freedom N: It is useful to note that
in practice N � 1000 and hence L � 4.

Theorem 3.1. Assume that in (1.1), the inhomogeneous
term f 2 Cp([0;T ];L2(Ω)); p � 2. Let N be given. Let
L;M and the equally spaced quadrature points be re-
spectively given by (3.1), (3.3) and (3.5). Let k be the
smallest integer such that (k� 1)q � L. Then for any
t = s j > τk; M < j�MT , the approximate solution uN(t)
given by (3.10) and the solution u(t) of (1.1) satisfy

ku(t)�uN(t)k

<
�

8>>>>>><>>>>>>:

ln N
N (ku0k+k fk∞) if f (�; t) =2 D(A)

for some t 2 (0;T ];

lnN
N2q=(q+1) (ku0k+k fk∞ if f (�; t) 2 D(A)

+kA fk∞) for all t 2 (0;T ]:

(3.13)

Proof. We have

u(t)�uN(t) = [u(t)�euN(t)]+ [euN(t)�uN(t)]; (3.14)

where euN(t) is given by (3.7). Since t = s j > τk, using
(3.8), we have τ( j) = τl for some l = 2; � � �L with (l �
1)q� (k�1)q � L. We write

u(t)�euN(t) = J1 +J2 (3.15)

where

J1 =
Z τ1

0
S(s) f (t� s) ds�

τ1

2
[S(τ1) f (t� τ1)+S(0) f (t)]; (3.16)

J2 =
Z t

τ1

S(s) f (t� s) ds�
j

∑
m=0

wmS(sm) f (t� sm) (3.17)

Further

J1 =
Z τ1

0
[S(s)�S(0)] f (t� s) ds+

Z τ1

0
S(0) f (t� s) ds

�
τ1

2
[S(0) f (t)+S(0) f (t� τ1)]

+
τ1

2
[S(0) f (t� τ1)�S(τ1) f (t� τ1)] : (3.18)

Since f 2C2([0;T];L2(Ω)), using the standard error es-
timate for the trapezoidal rule, we have

kJ1k
<
�

Z τ1

0
kS(s) f (t� s)�S(0) f (t� s)k ds+ τ1

3k f 00k∞

+ τ1 kS(0) f (t� τ1)�S(τ1) f (t� τ1)k (3.19)

For the case of f (�; t)2 D(A) for all t 2 (0;T ], using the
Lipschitz continuity of the analytic semigroup S(�) Pazy
(1983)(Theorem 2.6.13), from (3.19) we get

kJ1k
<
�
kA fk∞

Z τ1

0
s ds+ τ1

3k f 00k∞ + τ2
1kA fk∞

<
�

τ2
1

�
kA fk∞+k f 00k∞

	
: (3.20)

If, instead, f (�; t) =2D(A) for some t 2 (0;T ], by the con-
tinuity of the semigroup S(�) it follows from (3.19) that

kJ1k
<
�

τ1k f 00k∞: (3.21)

To estimate J2 in (3.15), since S(�) is the analytic semi-
group generated by �A , we have Pazy (1983)(Lemma
2.4.5)

dp

dsp S(s) =

�
S0(

s
p
)

�p
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and Pazy (1983)(Theorem 2.5.2)



S0(s)


= kAS(s)k <

�

1
s

for s > 0;

so that



 dp

dsp S(s)





 <
�

1
sp for s > 0: (3.22)

Hence, using the fact that the time-quadrature rule has
the degree of precision p � 2 and f 2Cp([0;T ];L2(Ω)),
it follows from (3.17), (3.22) and (3.4), that

kJ2k
<
�

∆t p
Z t

τ1





 dp

dsp fS(s) f (�; t� s)g





ds

<
�

∆t pk fkp;∞

Z t

τ1

1
sp ds

<
�

∆t pk fkp;∞

h
t�p+1 + τ�p+1

1

i
<
�

∆t pk fkp;∞τ�p+1
1

<
�

�τ1

M

�p
k fkp;∞τ�p+1

1

<
�

τ1

Mpk fkp;∞: (3.23)

Hence, from (3.15), (3.20), (3.21), and (3.23), (3.3) and
(3.2), we get

ku(t)� euN(t)k

<
�

8>>>><>>>>:
τ1k fkp;∞ if f (�; t) =2 D(A)

for some t 2 (0;T ];

τ2
1 [kA fk∞+k fkp;∞] if f (�; t)2 D(A)

for all t 2 (0;T ]:

(3.24)

Using (3.2) in (3.24),

ku(t)� euN(t)k

<
�

8>>>><>>>>:
1
Nk fkp;∞ if f (�; t) =2 D(A)

for some t 2 (0;T ];
1

N2q=(q+1) [kA fk∞+k fkp;∞] if f (�; t)2 D(A)

for all t 2 (0;T ]:

(3.25)

We turn to estimate the second term in (3.14) by decom-
posing it as follows:

euN(t)�uN(t) = I1 + I2 + I3; (3.26)

where,

I1 = [S(t)�SN (t;τ( j))]u0;

I2 =
τ1

2
[S(τ1)�SN(τ1;τ1)] f (t� τ1);

I3 =
j

∑
m=0

wm[S(sm)�SN(sm;τ(m))] f (t� sm)

Using t > τl , Theorem 2.1, (3.3) and (2.5),

kI1k
<
�
ku0ke�γt 1

Nq

� 1+ tq

τq
l (1+ t � τl)

+
tq

τq
l

ln+
1

t� τl

�
<
�
ku0ke�γt 1

Nq

� 1
τq

l

+
tq

τq
l

ln+
1

t� τl

�
<
�
ku0ke�γt 1

(Nτl)q

�
1+ ln

1
∆t

�
<
�
ku0ke�γt 1

(Nτl)q

�
1+ ln

M
τ1

�
<
�
ku0ke�γt 1

(Nτl)q lnN

<
�
ku0k

1
(Nτ1)q

�
τ1

τl

�q

lnN

<
�
ku0k

1
(Nτ1)q q(1�l)q lnN; (3.27)

where we have used M = O(Nα);τ1 = O(N�β) for some
α;β > 0. Since (l�1)q� L, we have q(1�l)q <

�
q�L <

�
τ1.

Thus, using (2.5) and (3.2) in (3.27),

kI1k
<
�

1

Nqτq�1
1

ku0k

<
�

8>>>><>>>>:
lnN
N ku0k if f (�; t) =2 D(A)

for some t 2 (0;T ];
ln N

NqN�q(q�1)=(q+1) ku0k if f (�; t)2 D(A)

for all t 2 (0;T ]:

<
�

8>>>><>>>>:
lnN
N ku0k if f (�; t) =2 D(A)

for some t 2 (0;T ];
ln N

N2q=(q+1) ku0k if f (�; t)2 D(A)

for all t 2 (0;T ]:

(3.28)

Further by Theorem 2.1

kI2k
<
�

τ1k fk∞e�γτ1
1

Nq

�
ln+ lnN +

1
τq

1
+ ln+

1
τ1

�
:
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Following the arguments used to derive (3.28), we have

kI2k
<
�

lnN

Nqτq�1
1

k fk∞

<
�

8>>>><>>>>:
ln N
N k fk∞ if f (�; t) =2 D(A)

for some t 2 (0;T ];
lnN

N2q=(q+1) k fk∞ if f (�; t)2 D(A)

for all t 2 (0;T ]:

(3.29)

Using (3.9), we have

kI3k � w0 k[S(τ1)�SN(τ1;τ1)] f (t� τ1)k

+
MT

∑
m=1

wm k[S(sm)�SN (sm;τ(m))] f (t� sm)k

= w0 k[S(τ1)�SN(τ1;τ1)] f (t� τ1)k+
L

∑
i=1

1+���+Mi

∑
m=(1+���+Mi�1)+1

k[S(sm)�SN (sm;τ(m))] f (t� sm)k ;

(3.30)

where we have used the notation 1 + � � � + Mi�1 =
0; for i = 1: Now, applying Theorem 2.1, (3.8) and fol-
lowing arguments used for estimates I1 and I2, we get

kI3k
<
�

k fk∞w0
lnN

Nqτq
1
+k fk∞

lnN
Nq

L

∑
i=1

M1+���+Mi

∑
m=(1+���+Mi�1)+1

wm
1
τq

i
:

Since [τ1;T ] = [L
i=1[τi;τi+1] and the time quadrature rule

has degree of precision p � 2, using (2.5),

kI3k
<
�
k fk∞

lnN
Nq

L

∑
i=1

τi+1� τi

τq
i

<
�
k fk∞

lnN
Nq

L

∑
i=1

1

τq�1
i

<
�
k fk∞

lnN

Nqτq�1
1

L

∑
i=1

q(1�i)(q�1)

<
�
k fk∞

lnN

Nqτq�1
1

: (3.31)

As in (3.29) it follows from (3.31) that

kI3k
<
�(
ln N
N k fk∞ if f (�; t) =2 D(A) for some t 2 (0;T ];

ln N
N2q=(q+1) k fk∞ if f (�; t)2 D(A) for all t 2 (0;T ]:

(3.32)

Combining the estimates (3.28), (3.29), and (3.32) in
(3.26), we get

keuN(t)�uN(t)k
<
�8>>>><>>>>:

ln N
N (ku0k+k fk∞) if f (�; t) =2 D(A)

for some t 2 (0;T ];
lnN

N2q=(q+1) (ku0k+k fk∞) if f (�; t)2 D(A)

for all t 2 (0;T ]:

(3.33)

The theorem now follows by using (3.24) and (3.33) in
(3.14).

Remark 3.1. Since in practice L � 4 (i.e. N � 1000),
if we use Simpson’s rule (q = 4) in our approximation,
Theorem 3.1 holds for all t = s j 2 (τ2;T ]. Accordingly,
in addition to tackling general inhomogeneous problems,
our approach generalizes the method in Sheen, Sloan,
and Thomée (2000) for homogeneous problems for small
time.

Remark 3.2. According to Theorem 3.1 the rate of
convergence of our numerical scheme with N degrees
of freedom (and without spatial discretization of the
resulting elliptic problems) is O(N�α), where nonumber

α =

8>>>><>>>>:
1� ε if f (�; t) =2 D(A)

for some t 2 (0;T ];
2q

q+1 � ε if f (�; t)2 D(A)

for all t 2 (0;T ]:

(3.34)

In (3.34), 0 < ε < 1 is a sufficiently small number occur-
ing due to lnN term in Theorem 3.1 (and certain overes-
timates in our proof). The sub-optimal convergence rate
is due to the approximation of non-smooth integrands (a
common feature in quadrature schemes). However, we
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can obtain optimal O(N�q) convergence if the inhomo-
geneous term is sufficiently smooth as we shall see in the
next subsection.

If the spatial discretization (using for example, continu-
ous piecewise linear functions) with mesh size h is used
to solve the resulting elliptic problems, then the error in-
volved in the computable fully discrete approximation uh

N
in (3.12) is given by

uh
N(t)�u(t) =

h
uh

N(t)�uh(t)
i
+
h
uh(t)�u(t)

i
: (3.35)

As above the error in the first term of (3.35) is O(N�α),
while for smooth initial data the second term in (3.35)
is O(h2). Hence following Remark 3.1 for all t = s j 2
(τ2;T ], we have

kuh
N(t)�u(t)k= O(N�α +h2): (3.36)

3.3 Higher order convergence

Throughout this subsection, we assume that f (�; t) 2
D(Aq); for all t 2 (0;T ] and for simplicity let f be
smooth. Since D(Aq) � D(A j); j = 1; � � �q� 1 (see
Pazy (1983),Theorem 2.6.8), using Pazy (1983)(Theo-
rem 2.6.13) we have for all s > 0,

d j

ds j S(s) f (�; t)= S(s)A j f (�; t); j = 1; � � �q: (3.37)

Due to this smoothness property we do not split the in-
tegral on [0; t] in (1.2). For simplicity, in this subsection
we let p = q.

For approximation we proceed as follows: Firstly, we
choose L;M as in f (:; t) 2 D(A) case. With sk; k =
0; � � �MT defined in (3.5) and s�1 = 0, and for t = s j fixed
we choose a quadrature rule on [0,t] of degree of pre-
cision p with quadrature points sk; k = �1; � � �MT and
weights wk; k = �1; � � �MT . Our approximation to the
solution u of (1.2) is

uN(t) = SN (s j;τ( j))u0

+
j

∑
m=�1

wmSN (sm;τ(m)) f (( j�m)∆t) : (3.38)

The main reason for expecting higher order convergence
is that, if we let

E1 =
Z t

0
S(s) f (t� s) ds

�
j

∑
m=�1

wmS(sm) f (t� sm) (3.39)

then using (3.37), continuity of the semigroup and the
fact that the quadrature rule has degree of precision p =
q, we get

kE1k
<
�

∆t p
Z t

0+





 dp

dsp fS(s) f (�; t� s)g





ds

<
�

∆t p <
�

�τ1

M

�p
<
�

1
Nq : (3.40)

Accordingly, based on the ideas in the last subsection
and following the results in Sheen, Sloan, and Thomée
(2000), we conjecture that for t not small, for example
t > 1

ku(t)�uN(t)k = O(N�α) (3.41)

where (with 0 < ε < 1 is a sufficiently small)

α = q� ε if f (�; t)2 D(Aq) for all t 2 (0;T ]: (3.42)

This brief subsection was in fact motivated by our com-
putational results in the next section.

4 Numerical Results

We demonstrate the applicability of our algorithm for
an inhomogeneous heat equation. The parallelization of
our scheme is essentially based on the parallel approach
involved in Algorithm Lin-Hom of Sheen, Sloan, and
Thomée (2000) for homogeneous problems. The parallel
nature of Algorithm Lin-Hom is substantiated in Sheen,
Sloan, and Thomée (2000)(p. 193-194) and hence we
skip the parallel demonstration in this work.

We substantiate the theory in Section 3 in detail below
for a test example with inhomogeneous terms f chosen
so that one of the following criteria

� f (�; t)2 D(A) for all t 2 (0;T ], but f (�; t) =2 D(A2)
for some t 2 (0;T ];

� f (�; t) =2 D(A) for some t 2 (0;T ];

� f (�; t)2 D(Aq), for all t 2 (0;T ],

is satisfied and that exact solutions for the corresponding
examples are known.

Example Consider the linear inhomogeneous parabolic
problem

ut �uxx = f (x; t); (x; t)2 (0;π)� (0;4]; (4.1)

u(0; t) = 0 = u(π; t); t 2 (0;4]; (4.2)

u(x;0) = u0(x); x 2 (0;π): (4.3)
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Here Au =�uxx with domain

D(A) =
�

v 2 H2(0;π) : v(0) = v(π) = 0
	
:

We choose appropriate smooth functions f (x; t) and
u0(x) so that an exact solution of (4.1)–(4.3) is of the
form

u(x; t) = ae�c2t sindx+bxr(π�x)s (4.4)

for some parameters a;b;c;d;r;s to be specified below.
In fact if we take

f (x; t) = ae�c2t(d2�c2)sindx+bxr�2(π�x)s�2��
(r� r2)(π�x)2 +2rsx(π�x)+(s� s2)x2	 (4.5)

and

u0(x) = asindx+bxr(π�x)s (4.6)

it is easy to check that u defined by (4.4) is a solution
(4.1)–(4.3). In (4.5), if we choose b = 0, then clearly
f (x; t) and all its even derivatives w.r.t. x vanish at the
boundary x = 0;π. Further it is easy to show the follow-
ing:

� Case 1: b 6= 0;r = s = 3. Then f (�; t) 2 D(A), but
f (�; t) =2 D(A2) for all t 2 (0;T ];

� Case 2: b 6= 0;r = s = 2. Then f (�; t) =2D(A) for all
t 2 (0;T ];

� Case 3: b = 0. Then f (�; t) 2 D(A4), for all t 2
(0;T ].

For numerical experiments, for all Case 1,2 and 3, we
took a = 0:1;c = 2;d = 1 and for Case 1,2 we chose
b = 0:01.

We implemented our Algorithm Lin-Inhom for the
above test example for all the three cases using Simp-
son’s rule (q = 4) for discretization of the spectral inte-
gral in (1.6). Further we chose a quadrature rule of de-
gree of precision p = 4 (described in Cox (1975)) with
equally spaced quadrature points sk to discretize the time
integral on [τ1; t] (on [0; t] for Case 3). The weights wm

of the quadrature are used to compute uh
N in (3.12) (and

in (3.38)).

The quadrature rule in Cox (1975) was obtained by cubic
spline approximation of the integrand (with not-a-knot

condition). Since the rule allows both even and odd num-
ber of quadrature points, we chose the quadrature rule
in Cox (1975) and its implementation in a NAG subrou-
tine (EO2BDF) for time-discretization (instead of Simp-
son’s rule) to handle several values of t = s j.

In all our numerical experiments for spatial discretiza-
tion we used continuous piecewise linear finite element
approximations on uniform meshes with h = π=K. To
check the O(N�α) convergence of our algorithm, with α
given by (3.34) and (3.42), we chose K in such a way that
the error is dominated by the time discretization part. In
fact, we increased K according to the increment in N so
that the order of convergence in the spatial discretiza-
tion is higher: precisely, h2 < N�β, where for Case 1
β = 2q=(q+ 1) = 1:6, for Case 2 β = 1 and for Case 3
β = 4. Due to this choice and using (3.36), (3.34) and
(3.42), we expect in our numerical experiments for all
t = s j 2 (τ2;4]

EN;K := kuh
N(t)�u(t)k= O(N�EOC); (4.7)

where the expected order of convergence EOC is approx-
imately 1:6;1 and 4 for Case 1,2 and 3 respectively. We
chose γ in (2.2) to be zero.

In our computation we chose the number L of τ parame-
ters first and then N according to the formula (3.1). The
computed numerical results for Case 1,2 and 3 given re-
spectively in Table 1,2 and 3 substantiate our theoretical
results. Results in Table 1,2 and 3 are given for certain
selected comparable time values t = s j 2 (1;4]. (Note
that for L = 2, from (2.5) we get τ2 = 1.)

Table 1 : Error for Case 1

t L = 2 L = 3 EOC L = 4 EOC
E32;5 E180;25 E1024;125

1.5 .10E-1 .67E-3 1.58 .45E-4 1.56
2.0 .10E-1 .67E-3 1.58 .45E-4 1.56
2.5 .10E-1 .68E-3 1.58 .45E-4 1.56
3.0 .10E-1 .68E-3 1.58 .45E-4 1.56
3.5 .10E-1 .68E-3 1.58 .45E-4 1.56
4.0 .10E-1 .68E-3 1.58 .45E-4 1.56

Acknowledgements The support of the Australian Re-
search Council (ARC) is gratefully appreciated by both
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Table 2 : Error for Case 2

t L = 2 L = 3 EOC L = 4 EOC
E32;5 E180;25 E1024;125

1.75 .74E-2 .20E-2 0.92 .60E-3 0.90
2.50 .73E-2 .21E-2 0.90 .60E-3 0.90
3.25 .69E-2 .21E-2 0.90 .60E-3 0.90
4.00 .67E-2 .21E-2 0.83 .60E-3 0.90

Table 3 : Error for Case 3

t L = 2;E32;5 L = 3;E180;160 EOC

1.5 0.565E-03 0.108E-05 3.62
2.0 0.232E-03 0.302E-06 3.85
2.5 0.123E-03 0.136E-06 3.94
3.0 0.714E-04 0.763E-06 3.96
3.5 0.425E-04 0.456E-07 3.96
4.0 0.255E-04 0.278E-07 3.95

authors. This work was carried out while the second au-
thor was an ARC-IREX visiting fellow. The support of
the Australian Research Council is gratefully appreciated
by both authors. The second author was also supported
by GARC, and KOSEF 97-0701-01-01-3. The authors
thank Professors I. H. Sloan and V. Thomée for invalu-
able discussions and constant encouragements.
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