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The Meshless Local Petrov-Galerkin (MLPG) Method for Solving Incompressible
Navier-Stokes Equations

H. Lin and S.N. Atluri1

Abstract: The truly Meshless Local Petrov-Galerkin
(MLPG) method is extended to solve the incompressible
Navier-Stokes equations. The local weak form is modi-
fied in a very careful way so as to ovecome the so-called
Babus̃ka-Brezzi conditions. In addition, The upwinding
scheme as developed in Lin and Atluri (2000a) and Lin
and Atluri (2000b) is used to stabilize the convection
operator in the streamline direction. Numerical results
for benchmark problems show that the MLPG method is
very promising to solve the convection dominated fluid
mechanics problems.
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1 Introduction

A number of numerical schemes has been used to solve
the fluid flows. The finite difference method (FDM),
the finite element method (FEM) and the finite volume
method (FVM) have achieved a lot of success in com-
puter modeling in fluid flows. However, their reliance
on a mesh leads to complications for certain classes
of problems. The generation of good quality meshes
presents significant difficulties in the analysis of engi-
neering systems (especially in 3D). These difficulties can
be overcome by the so-called meshless methods, which
have attracted considerable interest over the past decade.
A number of meshless methods has been developed
by different authors, such as Smooth Particle Hydrody-
namics (SPH) [Lucy (1977)], Diffuse Element Method
(DEM) [Nayroles, Touzot, and Villon (1992)], Element
Free Galerkin method (EFG) [Belytschko, Lu, and Gu
(1994)], Reproducing Kernel Particle Method (RKPM)
[Liu, Jun, and Zhang (1995)], hp-clouds method [Duarte
and Oden (1996)], Finite Point Method (FPM) [Oñate,
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Idelsohn, Zienkiewicz, and Taylor (1996)], Partition of
Unity Method (PUM) [Babus̃ka and Melenk (1997)], Lo-
cal Boundary Integral Equation method (LBIE) [Zhu,
Zhang, and Atluri (1998a,b)], Meshless Local Petrov-
Galerkin method (MLPG) [Atluri and Zhu (1998a,b)].
Most of these methods with the exception of MLPG,
LBIE, and FPM, in reality, are not really meshless meth-
ods, since they use a background mesh for the numerical
integration of the weak form.

As discussed in Atluri, Kim, and Cho (1999), the MLPG
method is based on a weak form computed over a local
sub-domain and it is a truly meshless method. It offers
a lot of flexibility to deal with different boundary value
problems. A wide range of problems has been solved by
Atluri and his coauthors. The MLPG method can also be
easily extended to solve the fluid mechanics problems,
due to its very general nature. In Lin and Atluri (2000a)
and Lin and Atluri (2000b), convection-diffusion prob-
lems and nonlinear Burgers’ equations have been solved
by using the MLPG method. Results there show that it is
very promising to use the MLPG method to solve more
general fluid mechanics problems. In this paper, the so-
lution of incompressible flows will be addressed.

As known, the main issues germane to the development
of a successful solver for incompressible Navier-Stokes
equations are: (i) proper treatment of the nonlinear con-
vection term; and (ii) proper treatment of incompress-
ibility. Improper treatments may result in spurious os-
cillations for velocity and/or pressure solutions. To deal
with the first issue - nonlinear convection term, upwind-
ing scheme is needed for high Reynolds number flows. In
Lin and Atluri (2000a) and Lin and Atluri (2000b), sim-
ple and novel upwinding schemes have been introduced
into the MLPG method. Similar ideas can be used to deal
with Navier-Stokes flows. For the second issue, a more
careful consideration is needed for the MLPG method.

In general, incompressible flows can be solved by us-
ing both primitive and derived (such as vorticity and
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stream function) variables. The approaches based on
derived variables, such as vorticity-stream function and
dual-potential methods, can satisfy the incompressibility
condition automatically, and the pressure is eliminated,
but these methods lose some of their attractiveness when
applied to a 3-D flow. Consequently, the incompress-
ible N-S equations are most often solved by the methods
based on primitive variables for 3-D problems. Even for
2-D problems, the use of primitive variables is quite com-
mon, especially when robust codes are needed for vari-
ous applications. Therefore, methods based on primitive
variables are considered here.

For methods based on primitive variables, in order to in-
cooperate the incompressibility constraint, the so-called
mixed formulations will be obtained by introducing an-
other variable, the Lagrange multiplier. It is well known
that there are governing stability conditions for this kind
of mixed formulations. Babus̃ka (1971) and Brezzi
(1974) have established these conditions, usually referred
to as the Babus̃ka-Brezzi conditions. In practice, it is not
easy to satisfy the Babus̃ka-Brezzi conditions for usual
numerical schemes. As known, when a non-staggered
grid is used in FDM, or, equal-order interpolations are
used in FEM, it leads to algebraic systems with singu-
lar coefficient matrices that contain too many zero eigen-
values. Consequently, the resulting pressure solution is
contaminated with pressure modes and is grossly erro-
neous. To avoid this problem, for FDM, staggered grids
are adopted in which the nodal velocity components and
the pressure are placed in different locations; for FEM,
mixed-order interpolations, which try to satisfy the inf-
sup conditions of Babus̃ka and Brezzi, have to be chosen
very carefully.

For meshless methods based on mixed formulations, the
same problems will arise from the treatment of incom-
pressibility constraint. As known, very few studies have
been performed by using meshless methods, to solve in-
compressible flows. In this paper, we solve incompress-
ible N-S equations by using the MLPG method. Since the
MLPG method is based on local weak form, and usually
the standard Galerkin procedure is used, the ways to deal
with the Babus̃ka-Brezzi conditions in FEM should be
good guides for proposing the approaches in the MLPG
method, to cope with the incompressibility constraint.

In FEM, several different approaches have been used
to deal with the incompressibility constraint. As men-
tioned above, mixed-order interpolations may be used,

see, e.g., Fortin (1981), Oden and Jacquotte (1984), Sten-
berg (1984), and etc., but it is difficult to choose proper
interpolations, and may not make sure that the Babus̃ka-
Brezzi conditions are satisfied. So certain “cures” and
“smoothing techniques” for generating “good” pressure
solutions may be necessary. Another way is to use the
so-called “selective-reduced-integration-penalty” (SRIP)
methods. In this approach, the constitutive equation is
modified through the introduction of a penalty parameter
and the pressure is eliminated ab-initio from the formu-
lation but is computed by post-processing the obtained
velocity solutions, see, e.g., Malkus and Hughes (1978),
Hughes, Liu, and Brooks (1979), Oden, Kikuchi, and
Song (1982), and etc. Just as in the mixed-order ap-
proach, this may not satisfy the Babus̃ka-Brezzi condi-
tions and the selective reduced integration is not practical
for the MLPG method. One alternative approach is to in-
troduce the deviatoric stress as an additional variable, as
done in Bratianu and Atluri (1983) and Yang and Atluri
(1984a,b). This method works well for incompressible
flows, but it is not easy to choose the interpolations for
the deviatoric stress and additional variables cause addi-
tional cost.

In the last decade, two more general methods were pro-
posed and became more and more popular: one is to
use the classical FEM method with standard piecewise
polynomials enriched by bubble functions, see Brezzi,
Bristeau, Franca, Mallet, and Roge (1992), Franca and
Russo (1996), Franca, Nesliturk, and Stynes (1998) and
references therein; the other is to modify the mixed for-
mulations by adding approximate ’perturbation’ terms
based on residual forms of the Euler-Lagrange equations
in order to enhance the stability without upsetting con-
sistency, see, e.g., Hughes and Franca (1987), Franca
and Hughes (1988), Pierre (1988), Douglas and Wang
(1989), Franca and Frey (1992), and etc. These two
methods could be related to each other (see Brezzi, Bris-
teau, Franca, Mallet, and Roge (1992)). In practice, the
sencond one is more general and easier to implement
than the first one and thus more popular, although some
parameters have to be tuned. In addition, it is not conve-
nient to extend the first method to the MLPG method.
For the second method, this kind of extension is very
straightforward. In this paper, one kind of this idea, mod-
ifying the standard mixed formulations to circumvent the
Babus̃ka-Brezzi conditions, will be introduced for the
MLPG method, and numerical tests will be performed.
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2 Incompressible Navier-Stokes Equations and the
Local Weak Form

The steady-state incompressible Navier-Stokes equations
can be written as:

u j
∂ui

∂x j
+

∂p
∂xi

� 2
Re

∂εi j

∂x j
� fi = 0 (1)

∂ui

∂xi
= 0 (2)

where, ui is the velocity, p is the pressure, fi is the
body force, Re is the Reynolds number, and εi j = u(i; j) =
1
2(

∂ui
∂x j

+
∂u j

∂xi
). Eq. (1) and Eq. (2) are the momentum

equations and the continuity equation.

The boundary conditions can be assumed to be:

� Dirichlet Boundary Conditions:

ui = ui on Γu (3)

� Neumann Boundary Conditions:
�

2
Re

εi j � pδi j

�
n j = t i on Γt (4)

where, ui and ti are given, n j is the outward unit normal
vector to Γ, Γu and Γt are subsets of Γ satisfying Γu \
Γt = /0 (the empty set) and Γu[Γt = Γ.

The MLPG method is based on a local weak form com-
puted over a local sub-domain, which can be any simple
geometry like a sphere, cube or ellipsoid in 3D. To obtain
the local weak form for N-S equations, Eq. (1) and Eq.
(2 can be weighted by test functions wi and q respectively
and integrated over a local sub-domain Ωs, such that the
following equations are obtained:
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for all wi and q. By using the integration by parts, Eq. (5)
is recast into a local weak form as:
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for all continuous trial functions ui and continuous test
functions wi. By imposing the boundary conditions in a
weak sense, the local weak form Eq. (7) can be rewritten
as:
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where, ΓsI is the part of Γs inside the global domain,
Γsu = Γs \Γu, and Γst = Γs \Γt .

So far, the formulations are based on mixed-form. The
standard Lagrange multiplier is used to impose the in-
compressibility constraints. As known, there are the so-
called Babus̃ka-Brezzi stability conditions for this kind
of formulations. If these conditions are not satisfied, spu-
rious pressure solutions may be obtained. There are sev-
eral approaches to solve this problem as discussed in the
introduction, but the most straightforward approach is to
modify the standard mixed formulations by adding ap-
proximate ’perturbation’ terms based on residual forms
of the Euler-Lagrange equations. To implement this ap-
proach in the MLPG method, Eq. (6) can be modified by
adding a ’perturbation’ term as following:
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where, τ is the stability parameter. By choosing τ care-
fully, the stability problem can be solved without upset-
ting the consistency.

Similar to what being done in the stabilized FEM meth-
ods, see, e.g., Pierre (1988), Franca and Frey (1992), and
etc., τ may be defined as:

τ =
�

βD2 ReL < 1
D

2jjujj ReL � 1 (10)

where, D = 2r is the diameter of support for the weight
functions, ReL = D � jjujj �Re is local Reynolds numer
related to local sub-domain, and jjujj= (uiui)1=2. When
this formula for τ is used, we are left with the problem
of setting parameter β correctly. It may depend on the
size of local sub-domain and the global Reynolds number
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Re. This is still an open problem. More investigation is
needed.

In the implementation, the term related to the second or-
der derivative ( 2

Re
∂εi j

∂x j
) in Eq. (9) will be ignored, because

this term is not that important, especially for the linear
basis functions, and additional cost is required to calcu-
late the second order derivative of the shape functions
(Similar idea was once used by Nayroles, Touzot, and
Villon (1992) to reduce the cost.) This will be studied by
numerical examples.

In practice, to solve the boundary value problems, one
can randomly put nodes in the domain Ω and construct
the local weak form for each node. Theoretically, as long
as the union of all local sub-domains covers the whole
domain Ω, i.e., [Ωs � Ω, Eq. (1) and Eq. (2) will be
satisfied, a posteriori, in the global domain Ω.

3 The Moving Least Square (MLS) approximation
scheme

As in general numerical simulation methods, the MLPG
method needs some kind of interpolation schemes and
discetization methods to generate the algebraic systems,
which can be solved numerically. In order to preserve
the local character of the numerical implementation, the
interpolation schemes should have the local property.
There are different approaches to achieve this aim. In
general, instead of using traditional non-overlapping,
continguous meshes to form the interpolation scheme, a
meshless method uses a local interpolation or approxi-
mation to represent the trial/test functions with the val-
ues (or the fictitious values) of the unknown variable at
some randomly located nodes. There is a number of lo-
cal interpolation schemes, such as MLS, PUM, RKPM,
hp-clouds, Shepard function, etc., available for this pur-
pose. The work done by Babus̃ka and Melenk (1997) has
shown that most meshless interpolation schemes belong
to the partition of unity family and have similar features.
The Moving Least Square (MLS) method is one of them
and is generally considered as one of the schemes to in-
terpolate data with a reasonable accuracy. Therefore, the
MLS scheme is used in this paper.

Consider the approximation of a function u(x) in a do-
main Ω with a number of scattered nodes fxig, i =
1;2; : : :;n, the moving least-square approximant uh(x) of
u(x), 8x 2 Ω, can be defined by

uh(x) = pT (x)a(x) 8x 2 Ω (11)

where, pT (x) = [p1(x); p2(x); : : :; pm(x)] is a complete
monomial basis of order m, which, for example, can be
chosen as linear:

pT (x) = [1;x;y]; m = 3; (12)

or quadratic:

pT (x) = [1;x;y;x2
;xy;y2]; m = 6 (13)

for 2D problems, and a(x) is a vector containing coeffi-
cients a j(x), j = 1;2; : : :;m which are functions of the
space coordinates x, and determined by minimizing a
weighted discrete L2 norm, defined as:

J(x) =
n

∑
i=1

wi(x)[pT (xi)a(x)� ûi]
2

= [P� a(x)� û]T � W�[P� a(x)� û] (14)

where wi(x) is the weight function associated with the
node i, with wi(x) > 0 for all x in the support of wi(x),
xi denotes the value of x at node i, n is the number of
nodes in Ω for which the weight functions wi(x)> 0, the
matrices P and W are defined as
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3
5 (16)

and

ûT = [û1; û2; : : : ; ûn] (17)

where, ûi; i= 1;2; : : :;n are the fictitious nodal values and
not the nodal values of the unknown trial function uh(x)
in general.

The stationarity of J in Eq. (14) with respect to a(x) leads
to the following relation between a(x) and û:

A(x)a(x) = B(x)û (18)

where the matrices A(x) and B(x) are defined by

A(x) = PT WP =
n

∑
i=1

wi(x)p(xi)pT (xi) (19)

B(x) = PT W = [w1(x)p(x1);w2(x)p(x2); : : :;

wn(x)p(xn)] (20)
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Solving this for a(x) and substituting it into Eq. (11), we
get the MLS approximation as

uh(x) = ΦT (x) � û =
n

∑
i=1

φi(x)ûi 8x 2 Ω (21)

where, the nodal shape function corresponding to nodal
point xi is given by

ΦT (x) = pT (x)A�1(x)B(x) (22)

It should be noted that the MLS approximation is well de-
fined only when the matrix A in Eq. (18) is non-singular.
It can be seen that this is the case if and only if the rank
of P equals m. A necessary condition for a well-defined
MLS approximation is that at least m weight functions
are non-zero (i.e. n � m) for each sample point x 2 Ω
and that the nodes in Ω will not be arranged in a special
pattern such as on a straight line.

The partial derivatives of φi(x) can be obtained as

φi;k =
m

∑
j=1

[p j;k(A�1B) ji + p j(A�1B;k +A�1
;k B) ji] (23)

in which A�1
;k is given by

A�1
;k = �A�1A;kA�1 (24)

and the index following a comma indicates a spatial
derivative.

It is known that the smoothness of the shape functions
φi(x) is determined by that of the basis functions and of
the weight functions. Let Ck(Ω) be the space of k-th con-
tinuously differentiable functions. If wi(x) 2 Ck(Ω); i =
1;2; : : :;n and p j(x)2Cl(Ω); j= 1;2; : : :;m, then φi(x)2
Cr(Ω) with r = min(k; l). A number of choices are avail-
able for the basis functions and the weight functions. In
this paper, the linear basis is chosen and a spline weight
function as in Atluri and Zhu (1998a) is used:

wi(x) =
�

1�6( di
ri
)2+8( di

ri
)3�3( di

ri
)4 0 � di � ri

0 di � ri

(25)

where di = jx� xij is the distance from node xi to point
x, and ri is the size of the support for the weight function
wi. It can be easily seen that the spline weight function is
C1 continuous over the entire domain.

From the above discussion, it shows that the MLS shape
functions don’t have the Kronecker delta property. This
causes the difficulty to impose the essential boundary
conditions. Several methods have been proposed, e.g.,
see Belytschko, Krongauz, Organ, Fleming, and Krysl
(1996) and Zhu and Atluri (1998). In this paper, the
transformation method proposed by Atluri, Kim, and
Cho (1999) are used to deal with the essential boundary
conditions.

By using the MLS approximation scheme and dealing
with boundary conditions, the discretization formulation
of the local weak form can be easily obtained. Proper
integration schemes are necessary to generate the alge-
braic equations. The local weak form provides a very
clear concept for a local non-element integration, and
leads to a natural way to construct the global stiffness
matrix through the integration over a local sub-domain.
Any kind of integratioon techniques, such as trapzoidal
rule, Gaussian quadrature, and etc., can be used. So far,
the computational cost is still high, because, in general,
the shape functions obtained from meshless interpolation
schemes are some complicated forms of rational func-
tions, not simplely polynomial functions as those in the
usual Galerkin Finite Element Method. Large number of
integration points are required to obtain good accuracy.
More discussions can be found in Atluri, Kim, and Cho
(1999); Atluri, Cho, and Kim (1999). In this paper, Gaus-
sian quadrature is used.

Further, due to the nonlinear convection term, the alge-
braic equations will be nonlinear. Some kind of iteration
method to solve the algebraic equations is needed. The
Newtonian iteration method will be used in this paper.

4 Upwinding Schemes

In fluid mechanics, the existence of the convection term
makes the problem non-self-ajoint. A special treatment
is needed to stabilize the numerical approximation for
these kinds of problems. Schemes related to upwinding
are the most general techniques to stabilize FDM, FEM
and FVM. The same concept is needed in the meshless
methods, so as to obtain a good accuracy for convection-
dominated flows.

In Lin and Atluri (2000a), two upwinding schemes for
the MLPG method have been developed and used to
solve the convection-diffusion problems with high Peclet
numbers. The results show that the Upwinding Scheme II
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Figure 1 : The MLPG method without Upwinding.

(US-II) is a very good scheme, not only because it always
gives good solutions, but also because of its very gen-
eral nature. As discussed in Lin and Atluri (2000a), this
scheme possesses the desirable feature to be a good up-
winding scheme, which is, that upwinding effect should
be applied only in the streamline direction and consis-
tency for every term should be conserved. This kind of
upwinding scheme has been extended to solve the non-
linear Burgers’ equations successfully in Lin and Atluri
(2000b). For Navier-Stokes equations, the similar idea
will be used.

Because the MLPG method is based on a local weak form
over a local sub-domain, it is very easy to include up-
winding effects for Navier-Stokes equations. The general
MLPG method is based on Petrov-Galerkin weighting
procedures. Different spaces for the test and trial func-
tions can be used, as shown in Fig. 1.

One simple way to include the upwinding effects can be
done as in Lin and Atluri (2000a) and Lin and Atluri
(2000b). One can easily shift the local sub-domain op-
posite to the streamline direction, as shown in Fig.2. The
same spaces for the trial and test functions are used, that
is, the same support and the same interpolation scheme
(MLS) for the trial functions and the test functions are
employed. We don’t need to modify the local weak form.
What we need to do is to move the local sub-domain
when integration is implemented.

Here, the local sub-domain at xi is no longer coinci-
dent with the support for the test functions at xi, but the
size is the same. (It should be noted that in the usual
MLPG method, we usually choose the test functions such

Figure 2 : MLPG Upwinding Scheme II (US-II).

Figure 3 : MLPG Upwinding Scheme II (US-II): Speci-
fication.

that the integration term along the boundary ΓsI equals
to zero, but, in general, this is not true for the MLPG
method with US-II. Therefore, in the local weak form,
the integration term along the boundary ΓsI should be re-
tained.)

In particular, the distance of shift of the local sub-domain
can be specified as γri, where, ri is the size of the support
for the test functions, which is equal to the size of the
local domain, at xi, and γ is given by

γ = coth(
ReL

2
)� 2

ReL
(26)

in which ReL is a local Reynolds number, defined as:

ReL = 2jjujj � ri �Re (27)

where, jjujj=p
u2 +v2 in 2D. The direction of the shift-

ing is opposite to the streamline direction si at xi, as
shown in Fig.3.

For convenience, we denote this as Upwinding Scheme
II (US-II) as before.
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5 Numerical Examples

In this section, Stokes flow problems are solved to illus-
trate that the approach developed here is effective to over-
come the Babus̃ka-Brezzi conditions, and the general in-
compressible N-S equations are calculated, alternatively,
by using the MLPG method without upwinding (MLPG)
and by the MLPG method with Upwinding Scheme II
(MLPG2).

5.1 Stokes Flows

For Stokes flows, there is no nonlinear convection term.
Therefore, no iteration and upwinding schemes are
needed. The modified formulation Eq. (9) with Eq. (8)
is solved. Different values of β in Eq. (10) are chosen for
the purpose of comparison.

5.1.1 A body force problem

This problem was suggested by Sani, Gresho, Lee, and
Griffiths (1981). For an appropriate (polynomial) body
force, the solution of the Stokes problem with homoge-
neous boundary conditions will be

u1 = 2x2(1�x)2y(1�y)(1�2y) (28)

u2 =�2x(1�x)(1�2x)y2(1�y)2 (29)

p = x2 �y2 (30)

This solution is very smooth. It is a good example to
assess the effectiveness of numerical schemes for Stokes
flows. The exact solutions for velocity and pressure fields
are plotted in Fig.4 with 11�11 points.

Different values of β are used and results are shown in
Fig.5-Fig.10 for the MLPG method with 11� 11 points
and radius of support r = 1:3h (h is the nodal distance).

From Fig. 5, it is obvious that the pressure solution is
highly oscillatory when β = 0, i.e., when the standard
mixed formulation is used. It shows that the best choice
for β is β = 0:01. For smaller values of β, oscillations
for pressure may persist, but for larger values of β, the
boundary behaviour deteriorates the pressure solutions
(at the corner near the origin where the pressure is too
small). It also shows that, although the term related to
the second order derivative ( 2

Re
∂εi j

∂x j
) in Eq. (9) has been

ignored in the calculation, the results are good enough.
To consider the effect of the size of radius of support,
Fig.11-Fig.16 show the results for the MLPG method
with 11�11 nodes and radius of support r = 2:1h.

X

Y

velocity field

X

Y

pressure contour

Figure 4 : A body force problem: exact solutions (11�
11 nodes).
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pressure contour

Figure 5 : A body force problem: MLPG with β = 0
(11�11 nodes and r = 1:3h).
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velocity field

X

Y

pressure contour

Figure 6 : A body force problem: MLPG with β = 1
(11�11 nodes and r = 1:3h).
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velocity field

X

Y

pressure contour

Figure 7 : A body force problem: MLPG with β = 0:1
(11�11 nodes and r = 1:3h).
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Figure 8 : A body force problem: MLPG with β = 0:01
(11�11 nodes and r = 1:3h).
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Figure 9 : A body force problem: MLPG with β = 0:001
(11�11 nodes and r = 1:3h).
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Figure 10 : A body force problem: MLPG with β =
0:0001 (11�11 nodes and r = 1:3h).
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Figure 11 : A body force problem: MLPG with β = 0
(11�11 nodes and r = 2:1h).
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Figure 12 : A body force problem: MLPG with β = 1
(11�11 nodes and r = 2:1h).
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Figure 13 : A body force problem: MLPG with β = 0:1
(11�11 nodes and r = 2:1h).
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Figure 14 : A body force problem: MLPG with β = 0:01
(11�11 nodes and r = 2:1h).
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Figure 15 : A body force problem: MLPG with β =
0:001 (11�11 nodes and r = 2:1h).
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Figure 16 : A body force problem: MLPG with β =
0:0001 (11�11 nodes and r = 2:1h).
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As before, if there is no modification for the mixed for-
mulation, i.e., β= 0, the pressure solution is highly oscil-
latory although the velocity field solution appears satis-
factory. When β becomes larger, the pressure oscillations
becomes smaller. But, for too large a β, the boundary be-
haviour comes into effect (see at the corner near the ori-
gin where the pressure is too small). Compared with the
previous results (r = 1:3h), it shows that, with larger ra-
dius support (r = 2:1h), it is not easy to say which value
is the best choice for β. Both oscillations and boundary
behaviour effect appear when β = 0:01. This difficulty
may come from different reasons. One may arise from
the ignored term (the second order derivative term in Eq.
(9). When the radius of support becomes larger, this term
may become more important. But it appears that this is
not the quite reason, because when a proper β is used,
one can obtain reasonably smooth pressure. The more
reasonable explanation may be as follows: when a larger
radius of support is used, the boundary behaviour takes
more effect to the interior solutions; and the transforma-
tion method being used to impose the essential boundary
conditions may make this effect stronger as already dis-
cussed in Lin and Atluri (2000a). A better imposition of
essential boundary conditions, and a better choice for β
may solve this problem.

Furthermore, to consider the effect of refinement, larger
number of points are applied to recompute this problem.
The exact solutions for velocity and pressure fields are
plotted in Fig.17 with 21�21 points.

Again, different values of β are used and the results are
shown in Fig.18-Fig.23 for the MLPG method with 21�
21 points and radius of support r = 1:3h (h is the nodal
distance).

Fig.18 illustrates again that the MLPG method with the
standard mixed formulation (β = 0) gives highly oscil-
latory pressure solutions even though the velocity field
looks quite good. It also shows that ignoring the sec-
ond order derivative term in Eq. (9) is quite reasonable.
As in the case with fewer points, the best choice for β is
β = 0:01.

5.1.2 Lid-driven cavity flow

As an additional example, the results for the lid-driven
cavity flow-through case are presented here. Unlike the
preceding example, this one is known to be very stiff be-
cause of singular boundary conditions.
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Figure 17 : A body force problem: exact solutions (21�
21 nodes).
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Figure 18 : A body force problem: MLPG with β = 0
(21�21 nodes and r = 1:3h).
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Figure 19 : A body force problem: MLPG with β = 1
(21�21 nodes and r = 1:3h).
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Figure 20 : A body force problem: MLPG with β = 0:1
(21�21 nodes and r = 1:3h).
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Figure 21 : A body force problem: MLPG with β = 0:01
(21�21 nodes and r = 1:3h).
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Figure 22 : A body force problem: MLPG with β =
0:001 (21�21 nodes and r = 1:3h).

X

Y

velocity field

X

Y

pressure contour

Figure 23 : A body force problem: MLPG with β =
0:0001 (21�21 nodes and r = 1:3h).
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As in the previous example, different values for β are
used and results are shown in Fig.24-Fig.29 for the
MLPG method with 21� 21 and radius of support r =
1:3h. No exact solutions can be obatined for this case.

Fig.24 show that, unlike the previous example, the
MLPG method with the original mixed formulation (β =
0) not only gives highly oscillatory pressure results as be-
fore, but also produces bad results for velocity due to the
singular boundary conditions. It also shows that when
β becomes smaller, larger pressure oscillations will ex-
hibit; when β becomes larger, both the velocity field and
the pressure becomes more unreasonable. It looks the
best choice for β is β = 0:01. Therefore, in the following
calculation, β is chosen as β = 0:01. Again, good solu-
tions demonstrate that ignoring the second order deriva-
tive term in Eq. (9) seems quite reasonable.

5.2 Steady-State Incompressible N-S Equations

Now we solve the general incompressible steady-state
N-S equations. Due to the nonlinear convection term,
iteration is necessary. The Newtonian iteration method
is used here. To get convergent solutions, the start-
ing solutions are important for the Newtonian iteration
method. Here, the lid-driven cavity flow-through prob-
lem is solved with Re = 100 and Re = 400. For higher
Reynolds number flows, better iteration schemes are nec-
essary for convergence, which will be addressed in fu-
ture. As shown in the case of Stokes flow, the parameter
β = 0:01 is a good choice for the modified formulation.
To deal with high Reynolds number flows, the upwind-
ing schemes are necessary. Both the MLPG without up-
winding and the MLPG with Upwinding Scheme II are
used, and, as before, denoted as MLPG and MLPG2 re-
spectively. 17�17 points and radius of support r = 1:5h
are used. Results for velocity and pressure fields are
shown in Fig.30-Fig.31 show the results for Re = 100,
and Fig.32-Fig.33 are solutions for Re = 400.

The results are quite good, although small oscillations
still exist for pressure. Further investigation for the sta-
bility parameter τ is necessary. In addition, Fig.34 and
Fig.35 show the results for u-velocity along vertical line
and v-velocity along horizontal line through geometric
center of cavity, compared with the classical results by
Ghia, Ghia, and Shin (1982).

It shows that, for low Reynolds number flows, both
MLPG and MLPG2 obtain very good solutions; for high
Reynolds number flows, MLPG2 gives better solutions
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Figure 24 : Lid-driven cavity flow: MLPG with β = 0
(21�21 nodes and r = 1:3h).
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Figure 25 : Lid-driven cavity flow: MLPG with β = 1
(21�21 nodes and r = 1:3h).
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Figure 26 : Lid-driven cavity flow: MLPG with β = 0:1
(21�21 nodes and r = 1:3h).
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Figure 27 : Lid-driven cavity flow: MLPG with β = 0:01
(21�21 nodes and r = 1:3h).
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Figure 28 : Lid-driven cavity flow: MLPG with β =
0:001 (21�21 nodes and r = 1:3h).



MLPG for Incompressible NS Equations 137

X

Y

velocity field

X

Y

pressure contour

Figure 29 : Lid-driven cavity flow: MLPG with β =
0:0001 (21�21 nodes and r = 1:3h).
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Figure 30 : Lid-driven cavity flow: MLPG with Re =
100 (17�17 nodes and r = 1:5h).
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Figure 31 : Lid-driven cavity flow: MLPG2 with Re =
100 (17�17 nodes and r = 1:5h).
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Figure 32 : Lid-driven cavity flow: MLPG with Re =
400 (17�17 nodes and r = 1:5h).
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Figure 33 : Lid-driven cavity flow: MLPG2 with Re =
400 (17�17 nodes and r = 1:5h).
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Figure 34 : Lid-driven cavity flow: Comparison of u-
velocity along vertical lines through geometric center
(17�17 nodes and r = 1:5h).
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Figure 35 : Lid-driven cavity flow: Comparison of v-
velocity along horizontal lines through geometric center
(17�17 nodes and r = 1:5h).

than MLPG with the same number of points.

6 Conluding Remarks

In this paper, several classical problems related to the
incompressible N-S equations are solved by using the
MLPG method. One approach to overcome the so-called
Babus̃ka-Brezzi condition is proposed for the MLPG
method. A ’perturbation’ term is added into the standard
mixed formulation for the purpose of stabilization with-
out upsetting consistency. In order to reduce the cost,
the second order derivative term in the modified mixed-
formulation is omitted in the numerical implementation.
Numerical results show that it works well for both the
Stokes flows and the incompressible Navier-Stokes flows
although further investigation is very important to deter-
mine the stability parameter τ.

In addition, the results for the incompressible N-S flows
show that, the MLPG method with Upwinding Scheme
II (US-II) leads to better performance for high Reynolds
number flows, than the MLPG method without upwind-
ing. It demonstrates that the MLPG method is very
promising to solve the general fluid mechanics problems,
and it may lead to a brand new solver due to its meshless-
ness and simplicity, although still some problems need to
be addressed. Further studies will be done in future.
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