
Copyright c
 2001 Tech Science Press CMES, vol.2, no.1, pp.15-26, 2001

The Effect of a Rotational Spring on the Global Stability Aspects of the Classical
von Mises Model under Step Loading

D. S. Sophianopoulos1, G. T. Michaltsos2

Abstract: The present work deals with the global sta-
bility aspects of a simple two-degrees-of-freedom au-
tonomous initially imperfect damped model, under step
(conservative) loading. The proposed system is an ex-
tension of the classical limit point one firstly introduced
by von Mises, with the addition of a linear rotational
spring. The effect of its properties (stiffness and damp-
ing) are fully assessed and under certain combinations of
the parameters involved a third possibility of postbuck-
ling dynamic response is revealed. This is associated
with a point attractor response on a stable prebuckling
fixed point, although dynamic buckling has already oc-
curred, a finding validating new relevant phenomena re-
ported recently in the literature.
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1 Introduction

Quite often in engineering practice simple models with a
few degrees of freedom (DOFs) are used either as a pow-
erful tool for the simulation of actual continuous struc-
tures under various types of loading or for the compre-
hensive study of numerous instability phenomena as well
as for the determination of the static and dynamic stabil-
ity characteristics of all kinds of distinct critical points
[Gioncu and Ivan (1984), Thompson and Hunt (1984),
Sophianopoulos (1996)]. Especially one and two DOF
autonomous undamped/damped systems are of particu-
lar interest, since their nonlinear Lagrange equations of
motion can be rather easily treated and the resulting lo-
cal as well as global dynamics may be properly classified
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and visualized.

A characteristic example of such a system is the well-
known 2-DOF arch model introduced by von Mises and
analyzed 30 years ago [Croll and Walker (1972)]. Under
step conservative loading applied statically at its top this
typical limit point model exhibits snap-through buckling,
often called “reverse geometry” or “umbrella” instability.
The dynamics of the relevant imperfect damped system
are associated with a point attractor response in the large,
after the initiation of the dynamic buckling mechanism,
occurring through the vicinity of a saddle, with negative
total potential.

The addition however of a linear vertical translational
spring to the above referenced model, under certain com-
binations of the geometric and other parameters involved,
may give birth to new phenomena, since as shown re-
cently [Sophianopoulos (1999), (2000)] a third possibil-
ity of dynamic postbuckling response is revealed; this is
associated with a point attractor on prebuckling both lo-
cally and globally asymptotically stable fixed points, al-
though dynamic buckling has already taken place.

As a physical extension of the works cited above, the
present study introduces a new variation of the von Mises
model, by adding a linear rotational spring at its top, in-
terconnecting the inclined translational ones and focuses
thereafter on the effect of its properties (stiffness c and
damping βββ ) on the system’s global stability under step
constant directional (vertical) conservative loading of in-
finite duration. Following a straightforward fully nonlin-
ear dynamic analysis it is found that for relatively “high”
geometric configurations the potential system dealt with
is of a typical limit point nature, with global response
similar to that of the parent model regardless of c, if kept
within reasonable values. On the contrary, for “low” ge-
ometries the increase of c leads to limit point-like static
behavior with negative total potential along the phys-
ical equilibrium path. In the sequel the dynamic re-
sponse after dynamic buckling is related to an escaped
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motion, which depending on the value of the damping
coefficient βββ is finally attracted by either remote stable
equilibria or stable prebuckling fixed points. Thus the
pertinent zero total potential criterion and relevant en-
ergy based estimates can no longer be applied [Kounadis
(1996), (1999)] ant the newly reported third possibility of
post-buckling dynamic response, already quoted, is once
again revealed, validating the previous studies and cast-
ing new light upon the whole scientific subject.

2 Geometric considerations and mathematical for-
mulation

Let us consider the slightly initially imperfect 2-DOF dis-
sipative von Misses model illustrated in Fig.1, with the
addition of a linear rotational spring placed at its top,
where a concentrated mass m is located. If ki, ci (i = 1;2)
and c, βββ are the stiffness and damping coefficients of
the translational and rotational springs respectively, the
system is initially at rest at the deformed configuration
AO’ B, a position for which all springs are considered
unstressed.

At this state, if w0, u0 are the initial vertical and horizon-
tal displacement components, the lengths of the model’s
springs are given by the following expressions:
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If the system is acted upon by a constant directional (con-
servative) step loading P, yielding to a new equilibrium
position, defined by AO”B, the new lengths of the springs
are now equal to:
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Setting q1 = u, q2 = w as generalized coordinates, the
strongly nonlinear Lagrange equations governing the
motion of the system are given by the well known re-
lation
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Figure 1 : Geometry and sign convention of the proposed
2-DOF autonomous system

satisfying the following initial conditions

qi = qi0 (q10 = u0; q20 = w0) (8)

q̇i(0) = 0 (i = 1;2) (9)

In these equations K is the positive definite function of
the total kinetic energy, VT the total potential and F the
dissipation function of Rayleigh, while their analytical
expressions are
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Introducing the dimensionless quantities
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substituting the expressions of the energy functions given
in Eq. 10-12 and after cumbersome elaboration, the non-
linear differential equations of motion resulting from
Eq. 7 take the following dimensionless form:
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subject to initial conditions

qi(0) = qi0; q̇i(0) = 0 (i = 1;2) (30)

Eliminating the inertia terms from Eqs. 26 and 27 we ob-
tain the necessary and sufficient criterion for static equi-
librium that follows

∂V T
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with V T being the nondimensionalized total potential en-
ergy function.

3 Numerical results and discussion

3.1 Basic assumptions and model cases

For all the model cases dealt with herein we assume that
q10 = q20 = 0:01, while the translational springs are taken
identical, i.e. k = 1 and c1 = c2 = 0:05. Furthermore, two
significant model geometries are considered, the first re-
lated to “high” systems with d = 0:50 and the second
with “low” ones, for which h = 0:50. Therefore, two
Basic Models are use in the subsequent analysis, abbrevi-
ated to BM1 and BM2 with the following common prop-
erties:

BM1:

q10 = q20 = 0:01; k = 1; ci = β = 0:05; d = 0:50

BM2:

q10 = q20 = 0:01; k = 1; ci = 0:05; h = 0:50
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(a) (b)

Figure 2 : Physical equilibrium paths (qi, λ) [i = 1;2] and total potential variation for BM1 with c = 0:001

(a) (b)

Figure 3 : Physical equilibrium paths (qi, λ) [i = 1;2] and total potential variation for BM1 with c = 0:01

(a) (b)

Figure 4 : Physical equilibrium paths (qi, λ) [i = 1;2] and total potential variation for BM1 with c = 0:1
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Figure 5 : Physical equilibrium 3D construction for
BM1 with c = 0:001

Figure 6 : Physical equilibrium 3D construction for
BM1 with c = 0:01

Figure 7 : Physical equilibrium 3D construction for BM1
with c = 0:1

3.2 Static stability analysis

Solving numerically Eq. 31, by step increasing the value
of the vertical displacement q2 (which is the dominant
one, having the direction of the external loading), with
respect to q1 and λ, we obtain the staic equilibrium paths
(qi, λ) for any given set of the foregoing parameters.

3.2.1 Basic Model 1

For three values of the stiffness c of the rotational spring,
equal to c = 0:001, 0:01 and 0:10 the resulting natural
(physical) equilibrium paths are depicted in Figs. 2, 3
and 4 respectively, while their 3D construction through-
out Figs.5-7. From these it is evident that the system ex-
hibits a limit point instability associated with snapping,
while the variation of V T along these paths is also pre-
sented. Thus, the increase of c within reasonable values,
does not affect the system’s static response qualitatively,
while its corresponding dynamic one, when damping is
accounted for, is associated – as it will be shown below –
with a point attractor response in the large, after dynamic
buckling. Applying the zero total potential criterion, the
values of the approximate dynamic buckling load λ̃D (for
zero damping) is established, being a lower bound of the
exact one λDD valid for the amount of dissipation chose.
Notice that the saddle points D and DD are also shown in
Figs.2-4, from which it is also perceivable that there are
no complementary (physically not accepted) equilibrium
configurations, as reported for other 2-DOF systems of
similar nature [Sophianopoulos (1999)].

3.2.2 Basic Model 2

In the same manner as for BM1 and seeking the effect of
increasing c on the model’s response, the physical equi-
librium paths for c = 0:001, 0.01, 0.1 and 1 are estab-
lished and presented graphically in Figs.8-11, with 3D
views depicted in Figs.12-15.
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(a) (b)

Figure 8 : Physical equilibrium paths (qi, λ) [i = 1;2] and total potential variation for BM2 with c = 0:001, β = 0:05

(a) (b)

Figure 9 : Physical equilibrium paths (qi, λ) [i = 1;2] and total potential variation for BM2 with c = 0:01, β = 0:05

(a)
(b)

Figure 10 : Physical equilibrium paths (qi, λ) [i = 1;2] and total potential variation for BM2 with c = 0:1, β = 0:05
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(a) (b)

Figure 11 : Physical equilibrium paths (qi, λ) [i = 1;2] and total potential variation for BM2 with c = 1

Figure 12 : Physical equilibrium 3D construction for
BM2 with c = 0:001

Figure 13 : Physical equilibrium 3D construction for
BM2 with c = 0:01

From these drawings one can directly observe that this
“low” model has a significantly smaller load bearing ca-
pacity compared to BM1 for the first two values of c, for
which the system is again of a pure limit point nature.
Contrary, for c = 0:10 BM2 exhibits monotonically ris-
ing path, implying local and global stability, while the
most interesting case is the one associated with c = 1:00.

It is found that this particular model is of a limit point-
like nature, since there exist local extremes S and S’ (see
Fig.11) and simultaneously along the natural path the
value of the total potential energy is always negative, a
fact implying no restrictions to the corresponding motion
[Kounadis, Gantes and Bolotin (1999)]. Between S and
S’ the fixed points are in fact nonstable saddles [Wiggins
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Figure 14 : Physical equilibrium 3D construction for
BM2 with c = 0:1

Figure 15 : Physical equilibrium 3D construction for
BM2 with c = 1

(1980)], remaining that way even if the flow is reversed.
Thus, the basins of attraction of the pre- and postbuckling
stable equilibria corresponding to the same amount of
loading λS0 < λ < λS are connected to each other forming
an escaped passage near the saddles, through which the
motion may as well be lead from one domain to the other
from both available directions, since there is no repeller
barrier. A typical example is shown in the VT = 0 con-
tour and corresponding energy surface representation of
Fig.16, for λ = 3:40. In the sequel the dynamic response
should depend on the amount of damping considered, as
shown and discussed in a later subsection. The absence
of complementary equilibria is a further by-product of
the foregoing analysis, as for BM1.

3.3 Dynamic stability analysis

Both basic models, for the cases of limit point instability,
exhibit dynamic snap-through occurring in the neighbor-
hood of a saddle DD with negative total potential. The
motion thereafter escapes and is attracted by a remote
stable fixed point, remaining in its domain and imply-
ing global stability. The only difference in the dynamic
behavior between the relevant models is that for BM2
the dynamic buckling phenomenon does not happen in-
stantly, but after limited in amplitude and duration os-
cillations around the saddle. All the above can be ob-
served in the phase plane portraits [qi(τ); q̇i(τ)], i = 1;2,

Figure 16 : Contour V T = 0 and total potential energy
surface of BM2 for c = 1 and λ = 3:40



The effect of a rotational spring on the global stability aspects of the classical von Mises model under step loading 23

(a) (b)

Figure 17 : Phase plane portraits [qi(τ), q̇i(τ)], (i = 1;2) of BM1 for c = 0:001 at λ = λDD = 0:35927055

(a)
(b)

Figure 18 : Phase plane portraits [qi(τ), q̇i(τ)], (i = 1;2) of BM1 for c = 0:01 at λ = λDD = 0:376377925

fixed points, a new phenomenon recently reported
in the literature.

� Finally, contrary to similar 2-DOF models, the sys-
tem dealt with does not exhibit complementary
physically unacceptable equilibrium configurations.
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