Implicit Boundary Conditions for Direct Simulation Monte Carlo Method in
MEMS Flow Predictions

W.W. Liou !

Abstract: A simple implicit treatment for the low speed in-
flow and outflow boundary conditions for the direct simulation
Monte Carlo (DSMC) of the flows in microelectromechanical
systems (MEMS) is proposed. The local mean flow veloc-
ity, temperature, and number density near the subsonic bound-
aries were used to determine the number of molecules enter-
ing the computational domain and their corresponding veloc-
ities at every sample average step. The proposed boundary
conditions were validated against micro-Poiseuille flows and
micro-Couette flows. The results were compared with ana-
Iytical solutions derived from the Navier-Stokes equations us-
ing first-order and second order slip-boundary conditions. The
results show that the implicit treatment of the subsonic flow
boundaries is robust and appropriate for use in the DSMC of
the flows in MEMS.

keyword: DSMC, MEMS, boundary conditions, micro-
Poiseuille flow, micro-Couette flow.

1 Introduction

The Micro-Electro-Mechanical system (MEMS) technologies
have attracted a great deal of attention in different discipline
areas. These devices are manufactured using processes sim-
ilar to those used in the fabrication of microprocessors and
promise the abilities to sense and to control physical processes
with length scales in the order of a micron [Ho and Tai (1994)].
Potential applications for such devices can be found in a num-
ber of discipline areas, including chemical sensors, pressure
sensors, and laminar flow control. Many of these proposed de-
signs involve internal fluid flows, such as microchannel flows.
A thorough understanding of the properties of such flows is
important to the design, fabrication, and operation of MEMS.

In most MEMS flows, the mean free path of the fluid, A, is
of the same order as the characteristic system size, s. A ra-
tio of the two length scales, A/h, is commonly referred to as
the Knudsen number, Kn. For many MEMS flows, the value
of Kn is in the range of 0.1 to 10 and the fluid can no longer
be approximated as a continuum. The fluid motions are better
described from the molecular point of view, as opposed to the
continuum point of view. The use of continuum-based tech-
niques in MEMS flow analyses may therefore lead to large
errors in the predictions.
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The direct simulation Monte Carlo (DSMC) method of
Bird(1994) is a well-developed technology. It is widely used
for rarefied gas calculations and has been implemented in a
parallel manner for high performance computation. This tech-
nique models a gas flow as thousands or millions of simulated
“molecules”, with each of them representing a large number of
real gas molecules. As the simulated molecules move through
the computational domain, they may collide with one another
as well as with physical boundaries. The molecular properties
are then sampled to determine the macroscopic flow quanti-
ties, such as the velocity and temperature. DSMC has also
been applied successfully in the prediction of high speed flows
in MEMS|[Liou and Fang (2000)].

In a DSMC simulation, the numerical treatment of the bound-
aries of the computational domain is important. At the up-
stream boundary, the Dirichlet type of boundary conditions
has usually been used. For a downstream or exit bound-
ary, one traditional approach is to apply the uniform upstream
flow condition at the downstream boundary. In this approach,
which is often applied in the simulation of external flows,
the downstream boundary is required to be far away from the
base region. Another conventional approach is to impose a
“vacuum” condition at the downstream boundary, where no
molecules are allowed to enter the computational domain.
These treatments of the flow conditions at the boundaries have
been applied successfully in high speed flow calculations [Bird
(1994), Liou and Fang (2000), Piekos and Breuer (1995)]. For
low speed flows in atmospheric operating conditions, such as
the flows in MEMS, these boundary conditions become inap-
propriate.

In a subsonic flow, the flow speed can be much lower than
the most probable thermal speed. The boundary treatments
mentioned above become physically unrealistic as they do not
properly model the mass flux due to thermal fluctuations. It is
important to take into account the necessary flow characteris-
tic information at the boundaries of the computational domain
for a subsonic flow. Although these issues are well known,
methods to impose effectively boundary conditions for DSMC
of low speed flows have not been as widely studied as those
for continuum computational fluid dynamics (CFD). Piekos
(1995) introduced particles based on the differences between a
targeted number density and the values calculated by the ideal
gas relations. Nance, etc.(1998) applied characteristics-based
boundary conditions.
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In this study, a new implicit treatment for the upstream and the
downstream boundary conditions is proposed for the DSMC
of low-speed micro-flows. Gas molecules are allowed to enter
the flow domain from both the upstream inlet and the down-
stream exit boundaries. The number of the entering molecules,
their velocities, and internal energies are determined by the lo-
cal mean velocities, temperature, and number densities at the
boundaries at every sample average step. The new implicit
boundary condition formulations have been implemented in a
DSMC code originally developed by Bird(1994). In this paper,
some results of DSMC for micro-Poiseuille flows and micro-
Couette flows are presented. For comparison, the DSMC re-
sults are also compared with continuum-based analytical so-
lutions using the Maxwellian first-order and Beskok’s (1996)
second-order slip-boundary conditions.

2 New implicit boundary treatment

Microflows often operate with a given pressure (gradient) at
the inlet and the outlet boundaries. The inlet velocity distri-
butions are often not available due to experimental difficulties.
In this section, the new implicit treatment for the low-speed
inlet and exit boundaries for the DSMC of micro-flows in such
operation conditions is described.

2.1 Implicit velocity distributions for entering molecules

For an equilibrium gas with a one-dimensional mean flow, the

quantities associated with the molecules entering the compu-
tational domain from either the upstream inlet boundary or the
downstream exit boundary can be determined according to the
Maxwellian equilibrium distribution function,

3
fo= %exp (-p2?) (1
where
B=1/V2RT 2)

R denotes the universal gas constant, ¢’ the thermal speed of
molecule, and 7' gas temperature. Using the Maxwellian dis-
tribution function, the number flux of the molecules entering
the computational domain can be calculated based on the local
temperature and the mean flow velocity. At either the upstream
or the downstream boundaries, the number flux, F}, from a
boundary cell j can be written as

nj

_ e
Fj= N [exp (—s7 cos”6)

++/Tsjcos B { 1 +erf (s cos0) }] 3)
where
sj=UjB; “)
B = 1/y/3RT; ©
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‘erf” represents the error function, n; the number density of
molecules in cell j. T; and U; denote the local temperature
and the streamwise mean velocity component, respectively.
s; denotes the molecular speed ratio and 3; is related to the
thermal scattering. The value of 0 is zero for the upstream
boundary and 7 for the downstream exit boundary. The veloc-
ity components of the entering molecule can be determined by
using the acceptance-rejection method [Bird (1994)] and the
Maxwellian distribution function.

At the upstream inlet boundary, the streamwise thermal ve-
locity, u', of the molecules entering the computational domain
should be found in the interval [—Uj, <o), with a distribution
function,

fur e (Bul +55) exp (—B2u?) ©)
To numerically implement the acceptance-rejection method
using Eq. 6, the upper limit of o is replaced by a cut-off value

of 3Cyp. Cpyp represents the local most probable thermal speed
of molecules, or,

Conp = \/2RT;

In other words, the thermal velocity, i/, is randomly sampled
in the interval [—u, 3C,,,]. The resulting streamwise total ve-
locity, u=Uj+u', of the molecules entering the computational
domain becomes

(N

u=(Uj+3Cup) Ry ®)

Ry represents a random fraction number. The two cross-stream
velocity components are assumed to be of the following form,

v==Acosd

w=Asin0

€))
(10)

The magnitude, A, lies between O and oo, with a distribution
function,

fa = exp (—p*A?) (11)

Using the acceptance-rejection method, the magnitude, A, can
be written as

A=/=In(Ry)/B=1/—In(Rf)Cpp

The angle, 0, is uniformly distributed between 0 and 2xt. That
is,

12)

O =2nRy (13)
Similarly, at a downstream exit boundary, the streamwise ther-
mal velocity of the molecule entering the computational do-
main from downstream is set in the interval [—3C,,,, —U|].
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The resulting distributions of the velocity components for the
molecule entering the computational domain become,

u=(U;j—3Cup)Rys (14)
v=Acosd+V; (15)
w=Asing (16)

where, V; denotes the computed local mean transverse veloc-
ity. Eq. 3 can be used to obtain the net mass flux at a sub-
sonic boundary with given mean velocity and temperature. In
the following two sections, the methodologies to determine the
mean quantities at the boundaries are described.

2.2 Downstream pressure conditions

As is mentioned earlier, it is often the pressure, instead of
the velocity, that is given at the downstream exit boundary of
microflows. A set of physically reasonable boundary condi-
tions to determine the flow properties with a given pressure is
needed. These boundary conditions at the exit are of critical
importance to a successful DSMC simulation of microflows.

In continuum CFD, the downstream pressure condition in a
subsonic, pressure-driven flow can be imposed by using the
method of characteristics. Inspired by a characteristic theory
used in continuum CFD [Whitfield and Janus (1984)], Nance,
etc.(1998) proposed a set of correction equations for the pres-
sure boundary conditions. We begin by applying the correction
equations proposed by Nance, etc.(1998) for the flow proper-
ties at the exit boundary in the following form,

Pe— P
(pe)s = ph+ - - (17)
(“f)
k
Pi— Pe
=
(ve)§ =% (19)
(T.)5 =P/ [(pe)R] (20)

The subscript e represents quantities at the exit boundary, su-
perscript k the computed quantities at the k-th time step, R the
gas constant, and a’j‘. the local exit speed of sound. p, denotes
the imposed pressure at exit. There is little details given in
Nance, etc.(1998) regarding the implementation of the equa-
tions. The current implementation of the characteristics-based
equations (17-20) ensures a proper account of the influx of
mass from the exit boundary and the overall mass balance in
the microchannels. The updated mean quantities are first de-
termined by the following sample average equations

1
U=—u @1
1

pj=njm (23)
Tj = (3Ttr+&.rTmt)/(3+&,.r) (24)
pj=n;KT; (25)

where 7;, denotes the translational temperature, T,, the ro-
tational temperature, and &, the number of rotational degree
of freedom. K represents the Boltzmann constant. The cal-
culated mean quantities were then used in equations (17-20)
to determine the number and the velocity distribution of the
molecules required to enter the computational domain from
the exit boundary. The current treatment of the pressure down-
stream boundary conditions consists of the following steps:

Step 1. Determine the number density of the molecules at
the exit by
(ne)j =p./m (26)

where m is the gas mass in the microchannel. A mass conser-
vation is then satisfied in the computational domain.

Step 2. Determine the exit temperature by Eq. 20 and the
corrected velocity components of the simulated molecules at
the boundary cells using Eq. 18 and 19.

Step 3. Determine the exit mean flow velocity by sampling.

(Ue)j—ﬁjzue (27)
1

(28)

Step 4. The implicitly determined downstream properties
can then be used to calculate the number of the entering
molecules from the number flux function, Eq. 3, and their
velocity components from the velocity distribution functions,
Eq. 14-16.

2.3  Upstream mean flow condition

Several types of treatment have been proposed [Nance,
etc.(1998), Ikegawa and Kobayashi (1990)] for the veloc-
ity at a subsonic upstream inlet boundary. In Ikegawa and
Kobayashi (1990), the mean flow velocity U(t) at the bound-
aries was determined based on the number of molecules flow-

ing in, Ni(,f_ " and out, N[(,L,_&), from the upstream or the
downstream boundaries at previous time,
(t—0r) (t—0r)
N; —N,

Ur)=—"= = 29

®) notA (29)
where the molecule number N, is
N;, = F 8tA (30)

Ot represents a time step and A the boundary cross-section area.
F denotes a number flux determined by averaging Eq. 3 over
the whole inlet boundary. In a single time step, both (ndrA)
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and N;, — Ny, are small and the scattering of may become
rather large, causing the numerical solution to become unsta-
ble. Ikegawa and Kobayashi (1990) reduced the scattering by
using the average value of two consecutive time steps.

The inflow mean velocity condition used in Nance, etc. (1998)
is quite similar to that proposed by lkegawa and Kobayashi
(1990). In stead of using a constant mean flow velocity, the
particle conservation was applied on a per-cell basis. The par-
ticle fluxes were computed from the Maxwellian distribution.
In contrast, Ikegawa and Kobayashi determined the particle
fluxes by the actual particle counts across the computational
boundaries.

A rather simple implicit type of condition is proposed in this
paper for the mean flow velocity at the upstream inlet. A first-
order extrapolation is used to determine the inlet mean velocity
from inside the computational domain. That is,

(Uin);=U; (31

The term on the right side is the cell-average velocity of the up-
stream boundary cells, which can be calculated from Eq. 21.
This method is commonly used in continuum CFD and has
been found successful for a wide range of internal as well as
external flows. The inflow temperature, 7j,, and number den-
sity, nj,, can then be obtained from the given pressure, pj,,
and density, p;,, according to the conservation of mass and the
equation of state. That is,

(32)
(33)

(”in)j = Pin/m
(Tin)j = pin/pinR

The particle number fluxes and the velocity components
of entering molecules were determined locally from the
Maxwellian distribution.

3 Microflow predictions

The new implicit boundary treatment has been implemented
into a DSMC code. The original version of the code was de-
veloped by Bird(1994). The modified DSMC code has been
applied to calculate two types of microscale flows, the micro-
Couette flow and the micro-Poiseuille flow shown in Fig. 1.
Some of the computational results are presented and compared
with the analytical results based on the Navier-Stokes equa-
tions with velocity-slip boundary conditions.

For fully developed parallel flows with low Reynolds numbers,
the Navier-Stokes equations can be simplified,

dp d’u
= =p——
dx dy

For the micro-Couette flow, the pressure gradient is zero and

the upper plate moves at a speed of U. A slip boundary condi-
tion at the wall proposed by Maxwell can be written as,
2—06,  du

Kne=
Gy ndy

(34)

(35)

U— Uty =
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Figure 1 : Simulated micro-geometries.

This is considered first order in Kn. A second-order slip
boundary condition has been proposed in Beskok (1996),
2—06, Kn n@

o, 1+Kn dy

U— Uy = (36)
A distribution of the mean flow velocity, u, for the micro-
Couette flow can be obtained by solving Eq. 34 and 35, which
gives,

u 1 <y+2—(5VK)
2 _ 2 n
U 2(2—6V)Kn+1 h o

v

(37)

Eq. 37 shows that, according to this continuum-based model,
the Kn of the microflow determines the slop of the velocity
profile and the slip velocity on the walls. Note that a use of the
second-order slip condition would result in the same velocity
distribution as Eq. 37 due to the linear nature of the velocity
profile [Beskok (1996)].

For a pressure-driven micro-Poiseuille flow, the use of the first-
order slip boundary condition results in the following distribu-
tion for the mean velocity.

h*dp[(y\2 vy 2-0,
u=L1(2) -2~ Kn
2udx | \h h (o
By using the second-order slip boundary condition, Eq. 36,
one would obtain a more accurate distribution for the velocity,

M_hzdp (y)l y 2-0, Kn
T 2udx [\h h oy, 1+Kn

(38)

(39)
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Figure 2 : Comparison of the velocity profiles for micro-Couette flows. (a) Kn = 0.08; (b) Kn = 0.163; (c) Velocity difference
between the present DSMC and the continuum-based solutions.
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Figure 3 : Comparison of pressure distributions of micro-Poiseuille flow, Case 1. (a) Comparison of pressure distributions; (b)
Relative errors of pressure distribution; (c) Deviations from linear pressure drop.

Both Eq. 38 and 39 show that the velocity is a function of the
local Knudsen number, the distance to the wall, as well as the
pressure gradient. For a full diffusely reflecting wall, 6, = 1,
nondimensional forms of Eq. 38 and 39 can be obtained by us-

[_ (%)2—1—%—1—&1] /(%—i—Kn) (40)

y\2 Yy Kn 1 Kn
[_ (E) +E+1+Kn]/<1+1+1<n) “D

Sl=s &=

ing the centerline velocity as the velocity scale. The resulting
nondimensional forms of the first-order and the second-order In the slip-flow range with Kn less than 0.1, the continuum-
accurate velocity profiles are, respectively,

based solution approximates well the microflows and is com-
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Figure 4 : Comparison of velocity profiles of micro-Poiseuille flow, Case 1.

monly used for comparison with DSMC results.

4 Results and discussions

In this section, the predicted micro-Couette flows and micro-
Poiseuille flows are presented. The results were obtained by
using a DSMC solver and the new implicit treatment of the
upstream and downstream conditions. For comparison, ana-
Iytical solutions based on the Navier-Stokes equations and the
slip flow boundary conditions are also presented.

4.1 Micro Couettef flow

For the simulated micro-Couette flow of Nitrogen, there is no
pressure gradient and the pressure at the inlet and the outlet
boundaries are both set at 0.83 atm (p, = pin = 0.83 arm). The
inlet flow temperature, 7;,, and the temperature of the upper
and the lower walls, T, are all set equal to 300 K. The upper
wall moves with a speed of 100 m/s. Two cases were sim-
ulated. The channel heights are 0.4 ym and 0.8 um, respec-
tively. The Knudsen numbers, based on the channel height
and the inlet condition are 0.08 and 0.163. Rectangular cells
(100 x 60) were used in the computational grid for both cases.
The simulated number of molecules is about 320,000. Runs
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Figure 5 : Comparison of pressure distributions of micro-Poiseuille flow, Case 2. (a) Comparison of pressure distributions; (b)
Relative errors of pressure distribution; (c) Deviations from linear pressure drop.

on SGI-Octane typically took roughly 48 hours of CPU time.

Fig. 2(a) and 2(b) show the predicted velocity profiles for
Kn =0.08 and Kn = 0.163, respectively. The corresponding
linear profiles given in Eq. 37 are also shown for comparison.
Overall, there is a good agreement between the continuum-
based solutions and the DSMC results for Kn = 0.08, which
suggests that the current implicit boundary condition is suit-
able for DSMC. In the center portion of the channel, the
DSMC solution agrees well with the continuum-based lin-
ear solution. There appears to be a slight difference between
the two solutions away from the center portion. For the case
with a higher Kn (0.163), a nonlinear profile was obtained by
the DSMC. Compared with the linear, continuum-based solu-
tion, the DSMC method has predicted a velocity profile with
a lower value of slope in the center portion of the channel and
with slight curvatures approaching the wall. Fig. 2(c) shows
the velocity differences between the DSMC results and the
continuum-based analytical solutions across the channel for
both cases. The nonlinear, wavy behavior of the DSMC solu-
tion is evident, specially for the higher Kn case. The effect of
Kn on the micro-Couette flow observed in the present DSMC
results has not been reported in prior published articles that we
are aware of. The difference in the wall slip velocity between
the DSMC and the analytical solution is small. For the higher
Kn case (0.163), the calculated slip velocity at the lower wall,
11.87 m/s, is roughly 3% lower than that of Eq. 37. It suggests
that the difference between the velocity profiles predicted by
the present DSMC method and the analytical form based on

the continuum assumption is not necessarily due entirely to
the low-order of accuracy in the slip-boundary condition.

4.2 Micro Poiseuille flow

Two micro-Poiseuille flows were calculated. The value of the
local Kn in the channels for Case 1 varies between 0.055 and
0.123 and between 0.19 and 0.72 for Case 2. The height of the
micro-channel, A, is 0.4 um for both cases. The pressure ratios
are 2.5 for Case 1 and 4.54 for Case 2. The computation grid
contains 100 x 60 rectangular cells. The simulated number of
molecules is about 180,000. Runs on SGI-Octane typically
took nearly 36 hours of CPU time.

Fig. 3(a) shows the predicted pressure distribution along
the channel centerline for Case 1. A continuum-based an-
alytical form obtained using the first-order slip condition
[Piekos(1995)] was also included for comparison. Fig. 3(b)
shows the relative difference of pressure between the DSMC
result and the analytical solution. The maximum difference
is roughly 2%, indicating that the current boundary treatment
is appropriate to use with the DSMC techniques. Both meth-
ods predicted pressure that are nonlinearly distributed along
the channel, which has been observed experimentally for mi-
crochannel flows. Fig. 3(c) compares the deviations of the
DSMC and of the analytical pressure drops from the linear
distribution, p;. The nonlinearity exhibited by the DSMC so-
lutionis 0.5% lower than that of the continuum-based solution.

Fig. 4 shows a comparison of the DSMC velocity profiles with
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Figure 6 : Comparison of velocity profiles of micro-Poiseuille flow, Case 2.

the continuum-based analytical solution of Eq. 40 and 41 at
six different locations along the channel. The value of the
Kn changes from 0.055 to 0.118. For the small Kn, there is
little difference between the first- and the second-order accu-
rate continuum-based velocity profiles. The calculated profiles
agree well with the continuum solutions for all the stations
compared. In this low Kn range, the continuum-based analyt-
ical result provides an approximated solution to the microflow
considered. The results show that the present implicit treat-
ment of the upstream and the downstream boundary conditions
is consistent with the DSMC procedure and has produced ac-
curate numerical predictions to the microflows considered.

For Case 2, the pressure ratio is 4.54, compared with 2.5 for

Case 1. The local Kn are higher than Case 1. Fig. 5(a) shows
the pressure distribution along the centerline of the channel.
Fig. 5(b) shows the difference of pressure distribution between
the DSMC solutions and the continuum-based form, with a
maximum difference of 3%. Compared with Case 1, a stronger
nonlinearity is predicted by both methods. Fig. 5(c) shows that
the deviation from the linear distribution is 9% for the DSMC
results and 10% for the continuum-based results.

Fig. 6 shows the calculated mean velocity profiles at six dif-
ferent stations along the channel. Continuum-based solutions
using the first-order and the second-order slip-wall conditions
were also included for comparison. The differences between
the first-order profiles and the second-order profiles for this
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Figure 7 : Evolution of mass fluxes at the upstream and the
downstream boundaries, Case 2.

case are more significant than those for Case 1. While the
second-order profiles give reasonable approximations to the
DSMC results for Kn up to 0.641, the first-order profiles move
away from the DSMC results as the value of the Kn increases,
with the highest difference occurring at the channel wall.

Fig. 7 shows the evolution of the mass fluxes at the upstream
and the downstream flow boundaries as the solution progresses
for Case 2. After an initial transient from the uniform ini-
tial conditions set for the entire computational domain, the
mass fluxes converge and a mass balance in the channel is es-
tablished. Fig. 8 shows the variation of the pressure at the
downstream boundary, nondimensionalized by the imposed
exit pressure, p,, during the same print cycle. Again, the pres-
sure converges to the imposed value after a transient variation
from the uniform initial conditions. Fig. 7 and 8 show that the
present implicit treatment of the low-speed boundaries sup-
ports a stable and converging solution process for the DSMC
of micro-flows.

As is mentioned earlier, boundary conditions previously de-
veloped for the DSMC of high-speed flows do not properly
model the mass flux due to thermal fluctuations in flows of
low-speed. Fig. 9(a) shows the distribution of the influxes of
fluid mass into the computational domain due to the thermal
fluctuations, nmu, at the upstream and the downstream bound-
aries for the two micro-Poiseuille flows. The distributions have
been nondimensionalized by the local mean mass flux. Since
the number flux at the boundaries was determined by the lo-
cal mean properties, the local thermal mass fluxes are not uni-
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Figure 8 : Evolution of the downstream pressure, Case 2.

formly distributed across the channel. According to the present
results, however, the nonuniformity does decrease at higher
Kn (Case 2). The sectional thermal mass fluxes obtained by
integrating the thermal mass flux over the inlet and the outlet
boundaries are shown in Fig. 9(b). At the upstream boundary,
the thermal mass flux into the computational domain increases
with pressure gradient due to the increased mean velocity. At
the downstream boundary, the influx of fluid mass due to ther-
mal fluctuations is nearly 50% of that of the total mass flux for
Case 1 and 20% for Case 2. The results show that the thermal
mass flux entering the flow domain at a downstream bound-
ary is significant and the “vacuum” boundary condition used
for high-speed flows is not physically reasonable to use in the
DSMC of the subsonic micro-flows in MEMS.

5 Concluding remarks

A new implicit treatment of the boundary conditions for the
DSMC of low-speed MEMS flows has been presented. The
local mean flow velocity, temperature and number density
near the boundaries were used to determine the number of
molecules entering the computation domain and their corre-
sponding velocities. The pressure exit condition has been
physically imposed. The method enforces mass conservation
and is consistent with the characteristic theory of subsonic
flows.

Micro-Couette flows and micro-Poiseuille flows were com-
puted and compared with analytical solutions derived from the
Navier-Stokes equations using slip-boundary conditions. The
results show that the proposed implicit treatment of subsonic
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flow boundaries is robust and appropriate for use in the DSMC
of the flows in MEMS.

The DSMC results indicate that the velocity profile of the
micro-Couette flow exhibits a nonlinear wavy behavior that
has not been reported previously.

The results also show that the mass influx due to thermal fluc-
tuations represents a significant portion of the overall mass flux
balance in subsonic MEMS flows.
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