MAADLY Spanning the Length Scales in Dynamic Fracture
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Abstract: A challenging paradigm in the computational sci-
ences is the coupling of the continuum, the atomistic and the
quantum descriptions of matter for a unified dynamic treatment
of a single physical problem. We described the achievement
of such a goal. We have spanned the length scales in a con-
certed simulation comprising the finite-element method, clas-
sical molecular dynamics, quantum tight-binding dynamics
and seamless bridges between these different physical descrip-
tions. We illustrate and validate the methodology for crack
propagation in silicon.

1 Introduction

The traditional approach to coupling length and time scales
is to solve a problem in a serial fashion by doing one set of
calculations at a very fundamental level, and of high compu-
tational complexity, and use the results to evaluate constants
in a more approximate or phenomenological computational
methodology at a longer length/time scales. An example is the
pioneering work of Clementi and coworkers [Clementi (1988)]
in the 1980s where they used quantum mechanics, atomistic
dynamics, and fluid dynamics to predict the tidal circulation
in Buzzard’s Bay Massachusetts: in a series of calculations,
each calculation was used as input to the next up the length
and time hierarchy. There are many examples in the literature
where an appropriate computational methodology is used for
a given scale or task, whether it be the accuracy of quantum
mechanics at the shortest scales, or the approximation of con-
tinuum mechanics at the longest scales. In contrast, there has
been comparatively little effort devoted to the parallel coupling
of different computational schemes for a simultaneous attack
on a given problem. We will present such an effort where our
interest concerns issues in materials physics.

This challenging paradigm of computational science demands
a unified dynamical treatment of a physical problem. This
requires the simultaneous use of the tools of engineering,
physics and chemistry in a seamless formalism. We describe
such an accomplishment for the study of brittle fracture in
silicon, though our approach has general applicability. In a
single concerted simulation of dynamic fracture comprising
the finite-element method, classical molecular dynamics and
quantum tight-binding dynamics, we demonstrate that span-
ning the length scales with dynamical bridges between the dif-
ferent physical descriptions is feasible. Our approach maps
naturally onto scalable computer architectures.
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The traditional approach for studying fracture is to adopt
continuum mechanics [Cottrell (1964); Freund (1990)], the
macroscopic view of matter. Because continuum mechanics
allows material lengths to go to zero, there is no natural small-
length cutoff, such as the size of an atom. Hence, a failure
mechanism describing the loss of local material cohesion (e.g.,
void formation) does not arise naturally from this macroscopic
description. At the finer level of description of classical atoms
interacting through empirical force laws, material decohesion
does arise naturally [Abraham, Brodbeck, Rafey, and Rudge
(1994); Abraham, Schneider, Land, Lifka, Skovira, Gerner,
and Rosendrantz (1997)], and we choose to label this length
scale the atomic regime. We can even go one level finer. Treat-
ing bond breaking with an empirical potential may be unre-
liable, and a quantum mechanical treatment may be desired.
This abinitio level of description we call the quantum regime.
And if the crack is moving, a unified macroscopic, atomistic,
abinitio dynamics (MAAD) description must be brought to-
gether into a seamless union, embracing all of the size-scales,
from the very small to the very big. We do not address the very
important issue of spanning the time-scale.

I will describe an implementation of such a program. The orig-
inal MAAD investigators were Jeremy Broughton, E. Kaxiris,
N. Bernstein and the present author. This review follows
one of our original papers [Abraham, Broughton, Bernstein,
and Kaxiras (1998)] with the incorporation of later extensions
and corrections [Broughton, Abraham, Berstein, and Kaxiras
(1999); Abraham, Broughton, Berstein, and Kaxiras (1998);
Abraham, Bernstein, Broughton, , and Hess (2000)]. Other
recent studies describing a methods for interfacing the con-
tinuum and the atomistic regimes or the atomistic and the
quantum regimes are given in Hoover, De Groot, and Hoover
(1992); Rafii-Tabar, Hua, and Cross (1998); Shenoy, Miller,
Tadmor, and Phillips (1998); Capaz, Cho, and Joannopoulos
(1995); Vanduijnen and Devries (1996). We are unaware of
any study coupling all three regimes either concurrently or dy-
namically.

2 The Spatial Decomposition - FE/MD/TB

Our MAAD simulation is composed of computational proce-
dures formulated in terms of a spatial decomposition of the
system and has an obvious applicability for parallel process-
ing. Our application is the brittle fracture of a silicon slab
flawed by a microcrack at its center and under uniaxial ten-
sion. Figure 4 shows the geometrical decomposition of the
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silicon slab into the five different dynamic regions of the simu-
lation: the continuum finite-element region (FE); the atomistic
molecular dynamics region (MD); the quantum tight-binding
region (TB); the FE-MD handshaking region; and the MD-TB
handshaking region. The image is the simulated silicon slab,
with expanded views of the FE-MD (orange nodes-blue atoms)
interface and the TB (yellow atoms) region surrounded by MD
(blue) atoms. Note that the TB region surrounds the crack tip
with broken-bond MD atoms trailing behind this region. Not
all of the FE and MD regions are shown since their extend is
large.

2.1 FE-Ingredients

In the “far-field” regions, we have a continuum treated by the
well known finite-element (FE) procedure [Hughes (1987)].
This macroscopic description merely needs the constitutive
law for the material. Details of the finite-element method are
now given.

In the FE technique, the continuum elastic energy (which is a
function of the displacement field, a continuous variable) is
integrated over the entire volume of the sample by placing
a mesh over the system. If the displacements are known at
the mesh points (nodes), then interpolation can be used within
each element (cell) of the mesh to determine the displacement
field everywhere. The elastic energy integral is then replaced
by a sum over cells (triangles in 2D, tetrahedra in 3D) and the
important dynamical variables in the problem are the values of
the displacements at the nodes. The kinetic energy integral is
handled similarly. Since an energy is defined for the FE region,
forces on the dynamical variables can be obtained. Thus the
time evolution of the system may be propagated in the same
way as MD. In the FE/MD handshake region it is important to
have FE mesh points coincident with the ideal atomic sites of
the MD region; thus it is academic whether we think of these
sites as representing atoms or nodes. We itemize the key steps
in the finite-element procedure.

e The Hamiltonian, without body forces or tractions, is de-
fined by
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where € is the strain tensor, C is the elastic constant ma-

trix, p is the density and # is the time derivative of the
displacement field.

e The interpolation of a function within the finite element
cell is defined by

f(x) =(A1fi+Arf2+A3f3)/ (A1 + A2+ A3)
where f; is the value of the function at node i and A; is the
corresponding area (as shown in the figure).

e Performing the integral over each cell yields the energy
evaluated on the mesh

E = ypelts{ bt Kigu + S, M it |
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where u' is the displacement field at node i, and K and
M are local stiffness and mass matrices that incoporate
linear interpolation in each triangle.

e Since we have a Hamiltonian, we can advance through
time in lock-step with MD using an identical integrator.

2.2 MD-Ingredients

Around the crack where large deformation occurs with no
bond rupture, we use the classical molecular dynamic (MD)
method to treat the highly nonlinear deformation on the atomic
scale. Because MD has a large computational burden, we par-
tition this region spatially onto several processors. Details of
the molecular dynamics is now given.

In the MD technique, atoms are propagated through space and
time using Newton’s laws of motion. At most ambient temper-
atures and for most elements, a classical (as opposed to quan-
tum) description of the dynamics of atomic motion is perfectly
satisfactory. All that is required is an interatomic force law.
For silicon, many force laws have been parameterized using
equilibrium experimental observations.We chose the potential
due to Stillinger and Weber (1985). They write the total po-
tential energy of the system as a sum over pairs of atoms plus
a sum over triplets of atoms. The pair sum represents bonds
between atoms and is a function of their distance apart. The
triplet sum describes bond bending terms and is a function of
the angle between pairs of bonds centered on any given atom.
In a covalent solid such as silicon, the bond bending terms are
important; they are what differentiate the structural properties
from those of a metal. Forces, required for the MD position up-
date algorithm, are obtained from derivatives of the potential
energy. We itemize the key steps in the molecular dynamics
procedure.

e The Hamiltonian consists of the normal kinetic energy
t 1 2
Ep =X zmlvi]
plus a potential energy defined by the function
_ohairs ¢,(2 tripletsy,(3
E, =% v (r)) + 2k VO (rij, rjx, Bijs)
where r;; is the distance between atoms i and j, 0; j; is the

angle between bonds i-j and j-k, V(?) is the pair potential
and V(3 is the three body potential.

e The equations of motion are integrated with respect to
time using a multiple time step algorithm based on a
Trotter expansion of the Liouville operator [Tuckerman,
Berne, and Martyna (1990)].

e The code is parallelized using a 1D domain decomposi-
tion; data flows via 1D shift operator.

2.3 TB-Ingredients

Lastly, in the region of bond failure at the crack tip, we use the
tight-binding (TB) formalism which is a semiempirical elec-
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tronic structure description of matter. It is one of the fastest nu-
merical quantum methods containing electronic structure in-
formation. Rather than evaluating costly integrals, it uses pre-
determined parameterized matrix elements for the material un-
der study. For this silicon study, we employ the nonorthogonal
TB scheme due to Bernstein and Kaxiras (1997). The nuclei
are treated as classical point objects. Because the TB region is
the most computationally demanding part of the overall code,
a small TB region must be used so as to allow overall load
balancing. Details of the tight-binding method follow.

In the TB technique, the energy of the system is written as an
eigenvalue sum plus interatomic pairwise terms. The eigen-
values are parameterized to be as close as possible to those of
an abinitio quantum mechanical calculation. The sum is over
occupied one electron states up to the Fermi level. The param-
eterization is of the elements which comprise the TB Hamilto-
nian matrix. This matrix has to be diagonalized at every time
step of the simulation; i.e. for every configuration of atoms
in the TB region. Since diagonalization is order N* computa-
tionally expensive, this is the most computationally complex
part of the whole coupled algorithm. Each matrix element is a
function of (a) the distance between pairs of atoms and (b) the
basis function sitting on either site. Each silicon has one s and
three p atomic basis orbitals. The other term in the total en-
ergy originates because, in ab-initio one-electron theories like
Hartree-Fock or Density Funtional Theory, the total energy is
not just an eigenvalue sum: it has additional terms due to dou-
ble counting of Coulomb integrals and exchange-correlation
terms. To good approximation these can be parameterized via
a pairwise sum. As with the FE and MD regions, forces are
obtained from derivatives of the energy. The atoms in the TB
region can be updated in lock-step with the rest of the system.

In the MD/TB handshake region, the surface dangling bonds
of the embedded TB cluster are terminated with monovalent
atoms: “’silogens”. These silogens are constrained to be coin-
cident with the silicons of the inner perimeter the MD region.
The coupling may therefore be envisaged as a TB cluster re-
siding in an MD void but with the outer TB silogens sitting
on top of the inner MD silicons. Careful book-keeping in the
handshake region allows all bonds to be accounted for. Each
silogen has a single s atomic basis orbital. The TB matrix is
thus (4N;, + Ny )? in size where N;, represents the number
of silicons and N, represents the number of silogens in each
TB region. We itemize the key steps in the tight-binding pro-
cedure.

e The Hamiltonian consists of the same kinetic energy as
for MD plus a potential energy defined by

# airs
E, =3¢+ 25 o(rij)
where €, is the eigenvalue of state n, the first sum is car-

ried out over the occupied electronic states, and @(r;;) is
the pairwise interaction between atoms i and j.

e The eigenvalues are calculated by solving the matrix
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equation
HY, =¢,SY,

where H is the electronic Hamiltonian matrix, S is the
overlap matrix, and ¥, is the eigenvector of state n.

e The matrix elements

Hip <¢I|H|¢m>

Sim = <¢1 |¢Wl>
are computed within the two-center approximation and
decay smoothly to zero at r = r,.

e Solving the generalized eigenvalue problem yields the
forces which are the expectation values of derivatives of
Hand S.

e The TB dynamics is advanced in lock-step with MD using
using same time integrator.

We track the path of the crack by placing the center of the
TB region at the apex of the crack and along the line defining
the forward direction of motion. In the approach discussed
in our original study [Abraham, Broughton, Bernstein, and
Kaxiras (1998)], a cluster of eight small TB subregions was
used to speed up the calculations for the TB region, which is
the most computationally demanding part of the overall code.
We have since found that this overlapping TB cluster scheme
is inaccurate and makes the TB region behave more like a re-
gion Stillinger-Weber atoms [Abraham, Bernstein, Broughton,
, and Hess (2000)]. With the multicluster scheme, the TB crack
tip and the SW crack tip had essentially identical dynamics.
We now use a single TB cluster of atoms. Bernstein has devel-
oped a new method for computing the forces in the TB region
that is presently computationally more expensive in practice
but scales linearly with the number of atoms [Abraham, Bern-
stein, Broughton, , and Hess (2000)]. It was the results of
Bernstein’s method that led to the discovery that the original
tight-binding multicluster approximation was inaccurate. We
will not discuss Bernstein’s method here, but it is discussed in
Abraham, Bernstein, Broughton, , and Hess (2000).

2.4 FE/MD and MD/TB Handshaking

Two crucial aspects of our MAAD procedure are the hand-
shaking algorithms between the FE and the MD and be-
tween the MD and the TB where seamless couplings are re-
quired [Abraham, Broughton, Bernstein, and Kaxiras (1998);
Broughton, Abraham, Berstein, and Kaxiras (1999); Abraham,
Broughton, Berstein, and Kaxiras (1998); Abraham, Bern-
stein, Broughton, , and Hess (2000)]. In the FE/MD hand-
shake region (Figure 1), the FE mesh spacing is scaled to
atomic dimensions. Moving away from the FE/MD region
and deep into the continuum, we can expand the mesh size.
Thus we can embed our atomistic simulation in a large contin-
uum solid. FE cells contribute fully to overall the Hamiltonian
(unit weight). FE cells contributing to handshake Hamiltonian
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Figure 1 : Illustration of FE/MD handshake Hamiltonian (see
text).
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Figure 2 : Illustration of MD/TB handshake Hamiltonian (see
text).

have half weight. Two and three body terms of SW interaction
which cross boundary also carry half weight. The FE region
has displacements associated with each mesh point which fol-
low a Hamiltonian given by continuum linear elasticity theory.
We employ an update algorithm identical to that used in con-
ventional MD so that the displacements now are dynamical
variables which follow in lock-step with those of their atomic
cousins in the MD region. The FE/MD interface is chosen to
be far from the fracture region; hence atoms and the displace-
ments of the FE lattice can be unambiguously assigned to one
another. This is accomplished by taking the interactions across
the FE/MD boundary to be the mean of the FE Hookian de-
scription and the MD interatomic potential description.

For the MD/TB handshake interface (Figure 2), dangling
bonds at the edge of the TB region are passivated with special
terminating atoms. These are fictitious atoms that interact with
the electrons of the silicon atoms at the surface of the region
so0 as to tie off a single bond each, minimizing the effects of
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TB atomic bonds must break
before SW atomic bonds

stress

max Ssy >> max S

strain

Figure 3 : Energy-strain and stress-strain relations for bulk
silicon as predicted using Stillinger-Weber (SW) empirical po-
tential and the Tight-Binding (TB) method.

the surface on the forces inside the cluster. The TB terminat-
ing atoms bond like silicon, but are monovalent like hydrogen,
hence the name silogens. At the surface of the TB region
we place silogens that sit directly on top of the atoms of the
MD simulation. The SW force is computed for these bound-
ary atoms considering only bonds to atoms in the MD region.
The contribution from the missing bonds is accounted for by
adding the force computed for each silogen to the atom it rep-
resents. As before, the atomic positions of the TB atoms are
updated in lock step with their FE and MD cousins. The entire
procedure is formulated in such a way that the simulation, in
the absence of dynamic TB tracking of the crack front, con-
serves total energy. A detailed discussion of the MAAD tech-
niques is given in Broughton, Abraham, Berstein, and Kaxiras
(1999).

2.5 The Total System

For small deformations, overall consistency was ensured by
making sure that the linear elastic constants in all three regions
are the same.

A Hamiltonian, Hr,,, is defined for the entire system. Its de-
grees of freedom are atomic positions, r, and their velocities,
I, for the TB and MD regions; and displacements, u, and their
time rates of change, u, for the FE regions. (The velocities
and conjugate momenta are simply related). Equations of mo-
tion for all the relevant variables in the system are obtained
by taking the appropriate derivatives of this Hamiltonian. All
variables can then be updated in lock-step as a function of time
using the same integrator. Thus the entire time history of the
system may be obtained numerically given an appropriate set
of initial conditions. Conceptually, Hr,; may be written:
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MAAD SPATIAL
DECOMPOSITION

Figure 4 : The geometrical decomposition of the silicon slab
intothe five different dynamic regions of the MAAD simula-
tion.

Classical and Quantum Atoms

Figure 6 : Constructing the tight-binding (TB) region at the
crack tip.

Hro = Hre({u,0} € FE) + Hpgyp({u, 0,1, 1} € FE/MD)
+Hup({r,t} € MD)+ Hyp/rp({r,t} € MD/TB)
+ Hrp({r, i} € TB) (1
This equation should be read as implying that there are three
separate Hamiltonians for each sub-system as well as Hamilto-
nians which dictate the dynamics of variables in the handshake
regions. "MD/TB” and "FE/MD” imply such handshake re-
gions. Following a trajectory dictated by this Hamiltonian will
result in a conserved total energy.

3 Application to Fracture

In Figure 3, we present the energy-strain relation and the
stress-strain relation for bulk silicon as predicted using the SW
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Classical Atom Crack Structure

rough surface

stress waves
passage

Figure 5 : The stress waves propagating through the slab using
a finely tuned potential energy color scale. The crack tips are
described by the empirical potential of Stillinger-Weber and
are rough with fracture.

FE/MD Simulation

FR

classical
tip

quantum
tip

FE/MD/TB Simulation

Figure 7 : Crack propagation in silicon using the MAAD
method: TB atoms at crack tip, SW atoms surrounding crack,
and FE beyond the MD region. The top image shows the sys-
tem with no tight-binding atoms at the crack tip. The bottom
picture shows the brittle fracture via interplanar cleavage for
tight-binding atoms at the crack tip region.

empirical potential and the TB method [Abraham, Bernstein,
Broughton, , and Hess (2000)]. Uniaxial tension is applied to
the bulk silicon with the additional constraint that the inter-
atomic separations change by simple scaling in the stretched
direction. The crystal is stretched in the (100) direction. We
note that the SW behavior and the TB behavior differs signifi-
cantly in the hyperelastic regime that governs materials failure
at a crack tip. Since the mechanical stability limit occurs at
a lower strain using tight-binding, it is reasonable to expect
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that a crack tip of TB atoms will fail for a smaller strain than
a crack tip of SW atoms. Also, this comparison suggests that
the empirical potentials should be fitted to the hyperelastic fea-
tures of a bulk solid when the interest is to simulate materials
failure by empirical potential MD. An important step would
be to obtain a reliable data base from accurate quantum me-
chanical calculations (density functional theory) in the hyper-
elastic region so that such a program may be carried out. Of
course, this would also provide an effective tool for evaluating
empirical potentials and tight-binding schemes. For now, we
are assuming that our adopted TB scheme is accurate in the
hyperelastic regime.

Using MAAD method, we have simulated the fracture of sili-
con. We create a thin crack in a single crystal silicon samples
with either (111) and (100) faces. A system is periodic in
the direction perpendicular to the loading direction and crack
length. A typical simulated system may have a thickness on
the order of 11 A, and the MD region about 800 A long in
the loading direction and 3500 A long parallel to the length of
the crack. The full system, including the MD and FE regions is
about 4000 A long in the loading direction. The FE region may
describe a system four times larger than the MD region while
increasing the number of degrees of freedom by only 20% and
without significantly increasing the computational effort. The
TB region is moved to remain approximately around the crack
tip. The simulation is started by imposing a constant strain rate
across the pre-cracked sample.

In Figure 5, we show stress waves propagating through the
slab by variations in color that correspond to potential energy
variations. The stress waves passing from the MD region to
the FE regions show no visible reflection at the FE-MD in-
terface; i.e., the coupling of the MD region with the FE re-
gion appears seamless. Both crack tips are characteristic of
the fracturing behavior govern by the empirical force law of
Stillinger-Weber. We note that the travelling crack’s surface
are rough and disordered for the crack tips; hence, brittle in-
terplanar cleavage is not observed.

Using the MAAD method by embedding a TB region at the
crack tips (Figure 6), we see brittle fracture of silicon proceed-
ing via interplanar cleavage (Figures 7 and 8). For the initial
crack length chosen, the TB crack tip starts propagating at a
bulk strain of 3.5 percent while a SW crack tip requires a bulk
strain above eight percent, consistent with the stress-strain be-
haviors in Figure 5. Unlike the tight-binding brittle cleavage,
the empirical-potential molecular dynamics simulates a blunt-
ing crack accompanied by significant atomic disorder. Using
the MAAD simulation method, we have simulated the brittle
fracture of silicon proceeding via interplanar cleavage.

We have chosen an ideal problem, brittle fracture, applied to
an ideal system, silicon, to illustrate the MAAD simulation
approach to spanning the length scales. Further applications
are being pursued, including dynamical apportioning of TB
processors to multiple regions of the physical system (e.g.,
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MAAD Crack Structure

ey SRy I""?.‘
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Figure 8 : Time sequence showing the brittle fracture of sili-
con via interplanar cleavage for the MAAD simulation which
incorporates FE/MD/TB.

if crack branching occurs). We wish to emphasize that al-
though progress has been achieved, we view our effort as a
beginning to a new and obviously challenging endeavor where
improved techniques for the three mechanics will be applied,
where more robust procedures for interfacing the three regimes
will be invented, and where applications will only be limited
by the imagination of the researcher.
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