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Abstract: A Boundary Element formulation is presented for
the solution of three-dimensional problems of anisotropic elas-
todynamics. Due to the complexity of the dynamic fundamen-
tal solutions for anisotropic materials and the resulting high
computational costs, the approach at hand uses the fundamen-
tal solution of the static operator. This leads to a domain in-
tegral in the representation formula which contains the inertia
term. The domain integral can be transformed to the boundary
using the Dual Reciprocity Method. This results in a system of
ordinary differential equations in time with time-independent
matrices. Several general questions concerning the anisotropic
solutions, the use of DRM, and the choice of the time stepping
scheme are investigated by numerical examples, and the ca-
pacity of the method for the solution of forced vibration prob-
lems and transient analyses is demonstrated. The results show
excellent agreement for the displacements, and an improved
accuracy in stress calculations when compared to Finite Ele-
ment analyses.
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1 Introduction

Growing requirements of modern engineering structures ne-
cessitate the development and use of new materials. An in-
creasing number of these materials is anisotropic, among oth-
ers composite materials, which have gained importance in a
wide range of applications, as e.g. in aero- and astronautics.
This raises the demand for numerical techniques which can
accurately account for material anisotropy. In the past two
decades, Boundary Element Methods have emerged as a very
powerful tool for the numerical computation of problems of
mathematical physics. Their most striking feature is the fact
that only the boundary of the domain needs to be discretized,
rather than the domain itself. This offers significant advan-
tages over other discretization methods such as the Finite El-
ement Method. Depending on the complexity of the actual
structure and load case under investigation, this simplified dis-
cretization can lead to important time savings in the mesh cre-
ation and modification process. Therefore, extensive research
activities on Boundary Element Methods have been under-
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taken, and their range of applicability has been extended to
many areas of engineering such as structural mechanics, fluid
dynamics, heat transfer, electromagnetics, etc.

In general, Boundary Element Methods are very well suited
for mechanical problems, especially for problems involving
infinite or semi-infinite domains (acoustics, soil-structure in-
teraction, etc.) and for stress concentration problems. This
is because they make use of the so-called fundamental solu-
tion, which is an analytical free space solution of the gov-
erning differential equations for point source excitation, and
thus represents far-fields and stresses very accurately. How-
ever, it is this very fundamental solution which, albeit being
responsible for the advantages of the Boundary Element Meth-
ods, also poses some problems in anisotropic analyses with
Boundary Elements. Due to the complexity of the anisotropic
field equations, closed form fundamental solutions for three-
dimensional anisotropic elasticity only exist for special cases
like transversely isotropic or cubic media (see e.g. Dederichs
and Leibfried (1969); Pan and Chou (1976); Ding, Liang, and
Chen (1997)). For general anisotropic elastostatics, for which
the elasticity tensor contains up to 21 independent material
constants, only an integral representation as given, e.g., by Ba-
con, Barnett, and Scattergood (1980) is available. The compu-
tation of this fundamental solution is extremely time consum-
ing, so that it should not be used directly in a BE program
code. However, the integral depends only on two coordinates.
This allows pre-computation and storage in a two-dimensional
array, so that the fundamental solution can rapidly be evalu-
ated in the actual BE program by interpolation from this ar-
ray. Therefore, the lack of a closed form fundamental solu-
tion should not be considered as a drawback in elastostatics.
Among others, Vogel and Rizzo (1973); Wilson and Cruse
(1978); Deb (1991); Schclar (1994) have obtained good results
using anisotropic Boundary Element formulations.

The situation is different for three-dimensional elastodynam-
ics. In the frequency- as well as in the time-domain, inte-
gral expressions for the fundamental solutions have been de-
rived recently by Wang and Achenbach (1993, 1994, 1995)
using the Radon transform. Unfortunately, the interpolation
approach used for the static fundamental solution cannot be
applied here, for reasons that will be explained later. Since the
computational costs for the evaluation of the dynamic funda-
mental solutions are even higher than for the static solution,
their use in a Boundary Element code does not seem to be
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very promising. It is probably due to these problems that, to
the best of the authors’ knowledge, no implementation of a
direct Boundary Element Method for three-dimensional prob-
lems of anisotropic elastodynamics can be found in the litera-
ture. However, it should be noted that anisotropic wave scatter-
ing problems have been solved successfully in two dimensions
by Wang, Achenbach, and Hirose (1996), and in three dimen-
sions using an indirect BEM by Zheng and Dravinski (2000).

The aim of the present article is therefore to close this gap and
present a Boundary Element Method which allows an accurate
calculation of anisotropic elastodynamics. Since the imple-
mentation of the anisotropic static fundamental solution does
not present any important obstacles, contrary to the anisotropic
dynamic fundamental solutions, it is the authors’ opinion that
a practical Boundary Element formulation of elastodynamics
should employ the static fundamental solution.

When using the static fundamental solution in the Boundary
Element formulation, an additional domain integral, which
contains the effects of inertia, appears in the representation
formula. In order to avoid the discretization of the domain,
which would greatly reduce the attractiveness of the Boundary
Element Method, this domain integral has to be transformed
to the boundary. This can be done very elegantly by using the
Dual Reciprocity Method (DRM), proposed by Nardini and
Brebbia (1982) for free vibration analysis in isotropic elas-
ticity. The Dual Reciprocity approach leads to a system of
equations with time independent mass and stiffness matrices,
similar to the systems known from elastic Finite Element anal-
ysis. Apart from avoiding the use of the anisotropic dynamic
fundamental solution, several other advantages result from this
formulation, concerning the calculation of free vibrations and
transient analyses (see e.g. Nardini and Brebbia (1985, 1986)).

The present article first introduces the basics of anisotropic
analysis using Boundary Elements, considering the derivation
of the Dual Reciprocity equations, representation formula, and
the process leading to the final system of equations. After that,
the anisotropic fundamental and particular solutions and their
implementation are discussed. Finally, some general questions
arising in anisotropic BE analysis are investigated, and a num-
ber of three-dimensional example problems are solved.

2 Basic equations

The basic equations governing the motion of an elastic body
in the linear theory of elasticity are the balance of momentum
and moment of momentum, respectively

σi j; j+bi = ρüi ; σi j = σ ji ; (1)

which describe the dynamics of an elastic body. The infini-
tesimal strain tensor

εkl =
1
2
(uk;l +ul;k) (2)

describes the kinematics of deformation, and Hooke’s law for
an anisotropic body

σi j =Ci jkl εkl (3)

connects the kinematic and kinetic variables. The physical
quantities introduced in Eqs. 1-3 are the Cauchy stress ten-
sor σi j, body force density bi, displacements ui, strain tensor
εkl, mass density ρ, and elasticity tensor Ci jkl. Here and in
the following, Einstein’s summation convention is applied, the
comma denotes partial differentiation with respect to the spa-
tial coordinates, and the superimposed dot denotes partial dif-
ferentiation with respect to time. The material tensor exhibits
the symmetries

Ci jkl = Cjikl = Ckli j ; (4)

thus for general anisotropy it contains up to 21 independent
material constants. The traction vector ti is related to the
displacement vector uk through Cauchy’s formula ti = σi jn j,
which leads to

ti = Ci jkl uk;l n j ; (5)

where n j denotes a unit vector pointing in the direction in
which the traction vector is evaluated.

Now, introducing the elliptic operator of anisotropic elasto-
statics

Lik :=Ci jkl ∂l ∂ j ; (6)

the motion of an anisotropic elastic body can be described by
Navier’s equations

Lik uk +bi = ρüi ; (7)

which can be obtained from Eqs. 1-3, and suitable boundary
conditions

ui = ui on Γu ; (8)

ti = ti on Γt ; (9)

where the bar denotes prescribed values, as well as initial con-
ditions

ui(t = 0) = u0
i ; (10)

u̇i(t = 0) = u̇0
i : (11)

3 Dual Reciprocity Boundary Element formulation

To obtain the boundary integral equation (BIE), which is the
starting point for the discretization with boundary elements,
the representation formulae for the displacement and displace-
ment gradient fields have to be derived first. In this work, the
fundamental solution of the anisotropic static operator is used
instead of the fundamental solution of the dynamic operator,
for the reasons already mentioned.
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First, Navier’s equation (7) is weighted with the fundamen-
tal solution, which serves as test function in a weighted resid-
ual statement. Because of the use of the static fundamental
solution, the representation formula contains a domain inte-
gral with inertia and body force terms. This domain integral
is transformed to the boundary using the Dual Reciprocity
Method, which was first proposed by Nardini and Brebbia
(1982) for free vibration analysis in linear isotropic elastic-
ity. As was shown by Polyzos, Dassios, and Beskos (1994),
the DRM is equivalent to the particular integrals method, in-
troduced by Ahmad and Banerjee (1986).

3.1 Representation formula

The process of deriving the representation formula for the dis-
placement field is well known from the standard boundary ele-
ment literature (see e.g. Brebbia, Telles, and Wrobel (1984),
Banerjee (1994), Gaul and Fiedler (1996)) and is therefore
only briefly outlined here. Weighting Navier’s equation (7)
with a test function u�

mi and integrating twice by parts, one ob-
tains the reciprocity relation
Z

Ω

(Likuk u�
mi �Liku�

mk ui) dΩ =
Z

Γ

(u�
mi ti� t�mi ui) dΓ ; (12)

where t�mi := Ci jkl u�
mk;l n j. Choosing the test function as a fun-

damental solution of the elastostatic operator

Liku�
mk(x;ξ) =�δim δ(x;ξ) (13)

leads to the representation formula

um(ξ) =
Z

Γ

(u�
mi ti� t�mi ui) dΓ�

Z

Ω

u�
mi (ρüi�bi) dΩ ; (14)

where the sifting property of the Dirac distribution for ξ 2 Ω
has been used.

3.2 Dual Reciprocity formulation

Due to the existence of a domain integral containing the body
forces bi and inertia term ρüi, Eq. 14 is not a pure boundary
representation of the displacement field um. However, by using
the DRM, it is possible to transform the domain integral to the
boundary. To this end a ‘dual reciprocity’ similar to Eq. 12 is
derived by weighting the inhomogeneous differential equation

Lik uq
kn = f q

in (15)

with the fundamental solution u�
mi. This leads to a ‘dual repre-

sentation formula’

uq
mn(ξ) =

Z

Γ

�
u�

mi t
q
in� t�mi uq

in

�
dΓ�

Z

Ω

u�
mi f q

in dΩ : (16)

Here, uq
kn is a particular solution of the elastostatic Eq. 15, and

tq
in :=Ci jkl u

q
kn;l n j is the corresponding traction field.

Now the source term in Eq. 14 is approximated by a series of
tensor functions f q

in and unknown coefficients αq
n

ρüi(x)�bi(x) �
N

∑
q=1

f q
in(x)αq

n ; (17)

so that, by substituting the approximation Eq. 17 into Eq. 14,
and making use of Eq. 16, a new representation formula for
the displacement field uk can be obtained

uk(ξ) =
Z

Γ

(u�
ki ti� t�ki ui)dΓ

+
N

∑
q=1

0
@uq

kn(ξ)�
Z

Γ

�
u�

ki t
q
in� t�ki u

q
in

�
dΓ

1
Aαq

n ; (18)

representing uk(ξ) ; ξ 2 Ω in terms of field quantities on the
boundary only. From Eq. 18, the interior displacements uk(ξ)
can be calculated at any point ξ 2 Ω if the boundary solution
and the coefficients αq

n are known.

In order to calculate internal strains and stresses, Eq. 18 has to
be differentiated with respect to ξl . Taking into account that
∂=∂ξl = �∂=∂xl , one obtains

∂uk(ξ)
∂ξl

=�

Z

Γ

�
u�

ki;l ti� t�ki;l ui
�

dΓ

+
N

∑
q=1

0
@∂uq

kn(ξ)
∂ξl

�

Z

Γ

�
t�ki;l u

q
in�u�

ki;l t
q
in

�
dΓ

1
Aαq

n : (19)

It has to be noted that the comma denotes partial differentiation
with respect to x, not ξ.

Having calculated the displacement gradient uk;l from Eq. 19,
the strains εkl and stresses σi j can easily be obtained from Eq. 2
and Eq. 3, respectively.

3.3 Boundary integral equation and discretization

For the solution of a given initial-boundary-value problem, the
representation formula Eq. 18 must first be converted into a
boundary integral equation (BIE) containing only unknowns
on the boundary Γ. Following the well-known procedure of
transferring the load point ξ to the boundary and performing
the limiting process, one obtains

cki(ξ)ui(ξ)+
Z

Γ

C t�ki ui dΓ�
Z

Γ

u�
ki ti dΓ

=
N

∑
q=1

0
@cki(ξ)u

q
in(ξ)+

Z

Γ

C t�ki u
q
in dΓ�

Z

Γ

u�
ki t

q
in dΓ

1
Aαq

n ;

(20)

where
R
c denotes a Cauchy principle value integral, and cki(ξ)

is the free term coefficient at ξ 2 Γ.
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The BIE Eq. 20 is now amenable for numerical implementa-
tion by the BEM. To this end, the boundary Γ is subdivided
into finite surface elements Γ(e), which are mapped onto ref-
erence elements by means of shape functions and nodal coor-
dinates. In most analyses, the isoparametric concept is used,
which means that the same shape functions are also used for
the approximation of the displacement and traction fields ui, ti,
and particular solutions uq

in, tq
in, i.e.,

fxi;ui; ti;u
q
in; t

q
ing

(e) � ∑
m

Φm fx̌i; ǔi; ťi; ǔ
q
in; ť

q
ing

m ; (21)

where ˇ(�) denotes nodal values.

Point collocation of the BIE Eq. 20 on the boundary nodes of
the discretization yields a system of equations

HǔHǔHǔ�GťGťGť =
�

HǓHǓHǓ�GŤGŤGŤ
�

ααα (22)

for the unknown nodal values of the displacement field ǔ̌ǔu and
traction field ť̌ťt . In Eq. 22 the matrices Ǔ̌ǓU and Ť̌ŤT stem from
the DR formulation and contain the particular solutions. The
vector ααα contains the unknown coefficients from the approxi-
mation given in Eq. 17 and can be expressed in terms of nodal
values of the body force and acceleration field as described in
the next section.

3.4 System of equations

Forcing the approximating series in Eq. 17 to coincide with
the source term ρüi� bi at the N collocation points ξp of the
boundary discretization,

ρüi(ξp)�bi(ξp) =
N

∑
q=1

f q
ik(ξ

p)αq
k ; p = 1:::N (23)

leads to a linear system of equations ρˇ̈ǔ̈ǔ̈u�b̌̌b̌b=FFF ααα, the solution
of which yields the unknown coefficients

ααα = FFF�1
�

ρˇ̈ǔ̈ǔ̈u� b̌̌b̌b
�

: (24)

Replacing the coefficient vector ααα in Eq. 22 by Eq. 24, one
obtains the following system of ordinary differential equations

MMM ˇ̈ǔ̈ǔ̈u+HHHǔ̌ǔu =GGGť̌ťt +V b̌V b̌V b̌ ; (25)

where the spatial discretization has been performed using a
Dual Reciprocity Boundary Element formulation. The volume
matrix VVV and mass matrix MMM introduced in Eq. 25 are defined
by

VVV :=
�

GŤGŤGŤ �HǓHǓHǓ
�

FFF�1 and MMM := ρ VVV ; (26)

respectively.

The system of equations in Eq. 25 is similar to the one obtained
in Finite Element analysis. Hence solving dynamic problems

like transient analysis, free and forced vibrations, can be done
in a similar manner. When compared to FE-matrices, the sys-
tem matrices in the DR-BEM have the disadvantage of being
non-symmetric and non-banded. However, due to the reduc-
tion of the problem to the boundary, they are much smaller in
size than comparable Finite Element matrices.

3.5 About the use of internal nodes

The domain term ρüi�bi is approximated by the series given
in Eq. 17. When choosing the interpolation functions f q

in so
that the series converges, then an increased number of collo-
cation points will improve the accuracy of the approximation.
While it is possible to obtain reasonable results using colloca-
tion points on the boundary only, the results improve if a cer-
tain number of collocation points are distributed throughout
the domain. For some configurations, these internal nodes are
even necessary to obtain any results at all. This can be seen by
considering a body which is clamped on the whole boundary.
If only boundary nodes are used, the complete displacement
vector uuu—and hence the acceleration vector ü̈üu—vanishes, so
that inertia effects are no longer taken into account. However,
by using internal nodes, new degrees of freedom for the dis-
placements are introduced, and inertia effects can be modeled
even when the whole boundary is clamped.

4 Fundamental and particular solutions

4.1 Fundamental solutions

The fundamental solution u�
mk of the elastostatic operator Lik

is defined by Eq. 13. Due to the complexity of the constitu-
tive tensor Ci jkl, closed form solutions for general anisotropy
do not exist. However, an integral representation of the fun-
damental solution can easily be obtained by using the Radon
transform, which is described in Gel’fand, Graev, and Vilenkin
(1966).

Introducing the tensor function

M ab
mk = Cimkl ai bl (27)

where ai, bl are arbitrary vectors, the fundamental solution is
given by

u�
mk =

1
8π2r

2πI

0

�
M zz

mk

��1
(z(φ)) dφ : (28)

The contour integration in Eq. 28 has to be performed numer-
ically along a unit circle lying in the plane ziro

i = 0, with nor-
mal vector ro

i and its centre at the origin (for more details see
Bacon, Barnett, and Scattergood (1980)). Since the kernel is
regular and well behaved, Gauss quadrature formulae can be
used for the numerical integration.

In order to calculate the traction fundamental solutions t�m j and
t�m j;s, the first and second derivatives of u�

mk are needed. They
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have been calculated by Barnett (1972) and can also be repre-
sented by line integrals along a unit circle

u�
mk;l =

1
8π2r2

2πI

0

�
�ro

l

�
M zz

mk

��1
+ zlFmk

�
dφ ; (29)

u�
mk;ls =

1
8π2r3

2πI

0

�
2ro

l ro
s

�
M zz

mk

��1
�2 (zlr

o
s + zsro

l )Fmk

+ zl zsEmk

�
dφ ; (30)

with

Dnq =M roz
nq +M zro

nq ; (31)

Fmk =(M zz
mn)

�1 Dnq

�
M zz

qk

��1
; (32)

Emk =Fmn Dnq

�
M zz

qk

��1
+(M zz

mn)
�1 Dnq Fqk

�2 (M zz
mn)

�1 M roro

nq

�
M zz

qk

��1
: (33)

Now, the traction and traction gradient

t�mi =Ci jkl u
�
mk;l n j ; (34)

t�mi;s =Ci jkl u
�
mk;ls n j ; (35)

needed in Eq. 18 and Eq. 19, respectively, can be calculated
using the derivatives given by Eq. 29 and Eq. 30.

The fundamental solutions in Eqs. 28, 29, and 30 are functions
of the distance vector~r =~x�~ξ between the field point~x and
the load point~ξ. They can be written in the following form

u�
mk =

1
r

G0
mk(θ1;θ2) ; (36)

u�
mk;l =

1
r2 G1

mkl(θ1;θ2) ; (37)

u�
mk;ls =

1
r3 G2

mkls(θ1;θ2) ; (38)

where the regular functions G0
mk , G1

mkl, and G2
mkls depend only

on the polar and azimuth angles θ1 2 [0;π] and θ2 2 [0;2π] of
the radius vector ~r =~r(r;θ1;θ2), but not on its norm r. Set-
ting up a two-dimensional grid over the angles θ1 and θ2 and
storing the values of the functions G0

mk, G1
mkl, and G2

mkls for
a particular anisotropic material in a corresponding array, it
is possible to obtain any value of these functions for arbitrary
θ1 and θ2 by interpolation from the values stored in the array.
Using Eqs. 36-38, the fundamental solutions u�

mk, t�mi and their
derivatives u�

mk;l, t�mi;s which are needed in the implementation
can easily be calculated. This procedure greatly speeds up the
calculation of the BEM matrices, since the direct evaluation of
Eqs. 28-30 is extremely time consuming. As the grid size cer-
tainly has an influence on the accuracy of the results, its effect
will be the subject of investigation in a later section.

4.2 About the use of the frequency domain fundamental
solution

A frequency domain fundamental solution for anisotropic dy-
namic elasticity has been derived by Wang and Achenbach
(1995). It can be written as

u�
mk = u�;stat

mk +u�;dyn
mk ; (39)

where the singular static part u�;stat
mk is given by Eq. 28, and the

regular dynamic part can be expressed in terms of an integral
over half a unit sphere

u�;dyn
mk (~r;ω) =

i
4π2

Z

j~nj=1
~n�~r>0

3

∑
q=1

k(q)Em(q)Ek(q)

2ρc2
(q)

eik(q)j~n�~rj dS(~n) :

(40)

In Eq. 40, λ(q) and Ek(q) are the eigenvalues and correspond-
ing eigenvectors of the Christoffel matrix Γik(n) = Ci jkl n jnl ,
which is well known from anisotropic wave propagation the-

ory; c(q) :=
q

λ(q)=ρ are the wave velocities of a plane wave,

moving in the n-direction, and k(q) = ω=c(q) are the corre-
sponding wave numbers.

Regarding the regular dynamic part given by Eq. 40, one rec-
ognizes that both the angular frequency ω and the radius r ap-
pear under the integral. Above all the occurrence of the radius
r poses great problems, since it means that the integral now
depends on three variables r, θ1, and θ2. Consequently, the
interpolation array would have to be three-dimensional, with
r ranging from 0 to ∞. The same is true for the time-domain
fundamental solution of Wang and Achenbach (1993).

The interpolation procedure used for the static fundamental
solution can therefore not be used for the dynamic fundamen-
tal solutions. Since their direct evaluation, too, is far too time
consuming, and because of the advantages of the Dual Reci-
procity formulation with respect to the treatment of free vi-
brations and transient analysis, the authors consider the DRM
approach presented in this paper to be the most promising for
Boundary Element calculations of anisotropic elasticity prob-
lems.

4.3 Particular solutions

As in the case of the fundamental solutions, the complexity of
the constitutive tensor prevents the existence of closed form
particular solutions. Several methods for an approximate cal-
culation of particular solutions have been presented in the lit-
erature, see e.g. Atkinson (1985); Gründemann (1989); Gol-
berg (1995). A much simpler approach, however, has been
suggested by Schclar (1994). Instead of choosing radial ba-
sis functions for the approximation functions ( f q

in = f q
in(r

q))
and solving the differential equation 15 to obtain the partic-
ular solutions, simply choose uq

kn = uq
kn(r

q) and calculate the
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Figure 1 : Fundamental solution ru�
22 for: a) steel; b) PIC 151; c) spruce; d) graphite-epoxy

corresponding traction field tq
in =Ci jkl u

q
kn;l n j and forcing term

f q
in =Ci jkl u

q
kn;l j by derivation.

This approach is used in the present paper, where the particular
solution is chosen as

uq
kn = δkn (r

2 + r3) ; (41)

which yields the derivatives

uq
kn;l =δkn(2r+3r2) r;l ; (42)

uq
kn;l j =δkn

�
(2+3r)δl j+3rr; jr;l

�
: (43)

It is very difficult to make any statements about the conver-
gence of the resulting approximation functions

f q
in =Ci jkl u

q
kn;l j : (44)

However, in the present paper, excellent results have been ob-
tained using Eqs. 41-43, as will be shown in the next sections.
The question is therefore not addressed any further, but cer-
tainly merits to be investigated.

5 General aspects concerning the anisotropic BEM im-
plementation

In the preceding sections, a Boundary Element Method for
three-dimensional anisotropic elastodynamics has been devel-
oped. Before applying the method to dynamic anisotropic
problems, some general questions have to be answered, con-
cerning

� the grid size needed for an accurate interpolation of the
fundamental solutions,

� the particular solution used in the interpolation of the do-
main field, and

� the influence of the internal nodes on the results.

In the following section, calculations for simple elastostatic
problems are performed using different materials, in order to
determine the influence of the aforementioned aspects on the
accuracy of the results.

5.1 Materials

Four materials with different degrees of anisotropy are used
in the calculations. Their classification and mass density are
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Figure 2 : Fundamental solution r3t�23;1 for: a) steel; b) PIC 151; c) spruce; d) graphite-epoxy

given in Tab. 1, the elastic constants can be found in Tab. 2.

5.2 Anisotropic fundamental solution

As mentioned previously, closed form fundamental solutions
are known only for certain material classes with a limited
number of elastic constants (isotropic, cubic, transversely
isotropic). However, since it is the aim of this paper to present
a Boundary Element Method applicable to materials with ar-
bitrary degree of anisotropy, the fundamental solution of the
general anisotropic elastostatic operator is used, which incor-
porates all simpler classes such as isotropy and transverse
isotropy. This fundamental solution and its derivatives are
given by the contour integral representations in Eqs. 28-30.

The integrals over the boundary elements are evaluated nu-
merically, usually by means of Gauss quadrature. This means
that the fundamental solution, which appears in the integration
kernels, has to be calculated at every Gauss point. The num-
ber of Gaussian integration points, however, can be very high,
owing to the occurrence of quasi-singular, weakly or strongly
singular integrals. Especially for three-dimensional calcula-
tions, the computation time needed for the evaluation of the
fundamental solutions is a crucial factor in the system matrix
calculation. Since the anisotropic fundamental solution does
not exist in closed form, the contour integrals have to be eval-

Table 1 : Classification and mass densities of anisotropic ma-
terials

Material Class
Elastic
const.

density ρ
(kg/m3)

steel isotropic 2 7850
PIC 151 transv. iso. 5 7800
spruce orthotropic 9 430
graphite-epoxy monoclinic 13 1600

uated numerically by Gauss quadrature. This is a very time
consuming procedure, and doing this at every integration point
is much too costly for implementation in a Boundary Element
program.

In Section 4.1, an interpolation method for the calculation
of the anisotropic fundamental solutions has been described.
Since execution speed is of great importance, linear Lagrange
interpolation is used. In order to get an idea of the functions
that have to be interpolated, a plot of the fundamental solution
ru�

22 and its derivative r3t�23;1 over θ1 and θ2 is given for all
four materials in Figs. 1 and 2. It can be seen that for higher
degrees of anisotropy, a finer grid is needed for an accurate
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Table 2 : Elasticity matrices C of anisotropic materials ([C]=1
GPa)

steel (isotropic)
2
666664

282:7 121:2 121:2 0 0 0
121:2 282:7 121:2 0 0 0
121:2 121:2 282:7 0 0 0

0 0 0 80:8 0 0
0 0 0 0 80:8 0
0 0 0 0 0 80:8

3
777775

PIC 151 (transversely isotropic)
2
666664

107:6 63:1 63:9 0 0 0
63:1 107:6 63:9 0 0 0
63:9 63:9 100:4 0 0 0

0 0 0 19:6 0 0
0 0 0 0 19:6 0
0 0 0 0 0 22:2

3
777775

spruce (orthotropic)
2
666664

0:44 0:32 0:19 0 0 0
0:32 16:27 0:45 0 0 0
0:19 0:45 0:78 0 0 0

0 0 0 0:61 0 0
0 0 0 0 0:039 0
0 0 0 0 0 0:76

3
777775

graphite-epoxy (monoclinic)
2
666664

95:5 28:9 4:03 0 0 44:7
28:9 25:9 4:65 0 0 15:6
4:03 4:65 16:3 0 0 0:54

0 0 0 4:40 �1:78 0
0 0 0 �1:78 6:45 0

44:7 15:6 0:54 0 0 32:7

3
777775

interpolation, especially for the derivatives of the fundamental
solution. The ‘degree of anisotropy’ is a term that is some-
what difficult to define. Within the framework of this paper,
however, a higher degree of anisotropy means a higher devi-
ation of the anisotropic results from those that are obtained
using the isotropic part of the elasticity tensor. This devi-
ation is influenced by the differences in magnitude between
the elastic constants rather than by the number of independent
constants (Figs. 1 and 2 show steep gradients for the strongly
anisotropic materials like spruce and graphite-epoxy). This
means that, e.g., a monoclinic material does not necessarily
possess a higher degree of anisotropy (as defined in this paper)
than a transversely isotropic material, even though this is the
case for the materials used in this publication.

To assess the effect of the grid size on the accuracy of the cal-
culations, an elastostatic analysis is performed with the model
shown in Fig. 3. The sidelength of the cube is 10 mm, it
is clamped at one face and subjected to a surface traction of

Table 3 : Discretizations used in the computations

Method Elements dofs

FEM 125
lin.
quad.

648
2268

BEM 150
lin.
quad.

456
1356

x1

x2

x3

t1

O

origin O

Figure 3 : Cube loaded with surface pressure t1 = 10 N/mm2

t1 =�10 N/mm2 on another. The discretization is uniform, as
shown in the figure, and the methods which have been used are
listed in Tab. 3.

5.2.1 Convergence of interpolation

Boundary Element computations have been performed for all
four materials using linear and quadratic elements, with in-
terpolation grids of size 100�100, 200�200, 400�400, and
800�800. The results are shown in Tab. 4. For the isotropic
material, the results obtained using the closed form Kelvin so-
lution are listed as a reference instead of the results obtained
using the 800�800 grid. It can be observed that for increasing
degree of anisotropy, a finer grid is needed for an accurate in-
terpolation. For the materials used in this paper, it appears that
a grid size of 400�400 gives sufficiently accurate results, even
for the highly anisotropic materials spruce and graphite-epoxy.
This is true for the displacements as well as stresses, so that in
all the following calculations, a 400�400 linear Lagrange in-
terpolation scheme is used for the approximate calculation of
the fundamental solutions.

5.2.2 Accuracy of results compared to FEM

In order to assess the accuracy of the results obtained with
the proposed Boundary Element Method, the results are com-
pared with Finite Element computations, see Tab. 5. FE
computations have also been performed on a refined mesh
of 10�10�10 elements, using both linear and quadratic ele-
ments. The solutions obtained with the quadratic elements are
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Table 4 : BEM computations for different grid sizes (units [u]=10�4 mm, [σ]=1 N/mm2)

steel (isotropic)
u1(10;0;10) σ13(6;6;8) σ11(6;6;8)

grid lin. quad. lin. quad. lin. quad.
100�100 -7.280 -7.489 -2.302 -2.427 -3.180 -3.213
200�200 -7.297 -7.506 -2.309 -2.435 -3.179 -3.212
400�400 -7.301 -7.511 -2.312 -2.437 -3.179 -3.212
isotropic -7.303 -7.512 -2.312 -2.438 -3.180 -3.213

PIC 151 (transversely isotropic)
u1(10;0;10) σ13(6;6;8) σ11(6;6;8)

grid lin. quad. lin. quad. lin. quad.
100�100 -27.90 -28.73 -2.286 -2.400 -3.200 -3.227
200�200 -27.98 -28.81 -2.295 -2.409 -3.199 -3.226
400�400 -28.00 -28.83 -2.298 -2.412 -3.199 -3.226
800�800 -28.00 -28.83 -2.298 -2.412 -3.199 -3.226

spruce (orthotropic)
u1(10;0;10) σ13(6;6;8) σ11(6;6;8)

grid lin. quad. lin. quad. lin. quad.
100�100 -6789 -7189 -2.100 -2.465 -2.996 -3.010
200�200 -6830 -7233 -2.121 -2.489 -3.009 -3.023
400�400 -6841 -7244 -2.126 -2.495 -3.017 -3.032
800�800 -6843 -7247 -2.128 -2.497 -3.014 -3.028

graphite-epoxy (monoclinic)
u1(10;0;10) σ13(6;6;8) σ11(6;6;8)

grid lin. quad. lin. quad. lin. quad.
100�100 -92.41 -97.23 -2.153 -2.403 -2.842 -2.829
200�200 -92.93 -97.79 -2.170 -2.419 -3.004 -3.004
400�400 -93.06 -97.93 -2.176 -2.425 -2.996 -2.995
800�800 -93.09 -97.96 -2.177 -2.426 -2.993 -2.991

taken as a reference.

Regarding the displacement solution u1(10;0;10), it can be
observed that the Boundary Element computations yield about
the same accuracy as the Finite Element computations for all
materials used in the calculations. This is the case for linear as
well as for quadratic elements, although with linear elements,
the BEM has a slight advantage for weakly anisotropic mate-
rials, and the FEM for strongly anisotropic materials.

Analyzing the results of the internal stress calculations, how-
ever, reveals an increased accuracy of the Boundary Element
computations. Regarding first the computational results ob-
tained using linear elements, it can be seen that independent of
the degree of anisotropy of the material, the Boundary Element
results are much more accurate than the Finite Element results.
This is due to the fact that the Boundary Element Method is
a mixed method, approximating both displacements and trac-
tions with shape functions of the same degree, whereas in the
classical Finite Element Method the stresses are calculated by

derivation of the shape functions, which reduces the accuracy.
The results from Tab. 5 also show that in the present example,
the advantage of the BEM over the FEM with respect to stress
calculations is not as evident when using quadratic elements,
where it seems that the FEM yields about the same accuracy.

5.3 Anisotropic particular solution

In the Dual Reciprocity Method, the source term, which ap-
pears under the domain integral, is approximated by a series of
prescribed tensor functions f q

in and coefficients αq
n (cf. Eq. 17).

The functions f q
in have to be chosen in such a way that a good

convergence of the approximation is guaranteed. Radial ba-
sis functions (RBFs) possess this property (Powell (1992);
Golberg and Chen (1994)) and are therefore often used in
DRM analyses. In dynamic elasticity, the radial basis function
f q
in = δin(1+ r) (or alternatively f q

in = δin(C� r)), for which
closed form particular solutions exist, is often used and yields
good results (Nardini and Brebbia (1982); Dominguez (1993);
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Table 5 : Comparison of BEM and FEM computations (units [u]=10�4 mm, [σ]=1 N/mm2)

steel (isotropic)
u1(10;0;10) σ13(6;6;8) σ11(6;6;8)

method lin. quad. lin. quad. lin. quad.
BEM -7.301 -7.511 -2.312 -2.437 -3.179 -3.212
FEM 5�5�5 -7.148 -7.515 -1.817 -2.675 -3.009 -3.233
FEM 10�10�10 -7.414 -7.524 -2.264 -2.500 -3.152 -3.218

PIC 151 (transversely isotropic)
u1(10;0;10) σ13(6;6;8) σ11(6;6;8)

method lin. quad. lin. quad. lin. quad.
BEM -28.00 -28.83 -2.298 -2.412 -3.199 -3.226
FEM 5�5�5 -26.90 -28.80 -1.828 -2.634 -2.944 -3.278
FEM 10�10�10 -28.29 -28.88 -2.246 -2.471 -3.137 -3.239

spruce (orthotropic)
u1(10;0;10) σ13(6;6;8) σ11(6;6;8)

method lin. quad. lin. quad. lin. quad.
BEM -6841 -7244 -2.126 -2.495 -3.017 -3.032
FEM 5�5�5 -7024 -7218 -1.959 -2.671 -2.932 -3.015
FEM 10�10�10 -7160 -7264 -2.319 -2.535 -2.992 -3.021

graphite-epoxy (monoclinic)
u1(10;0;10) σ13(6;6;8) σ11(6;6;8)

method lin. quad. lin. quad. lin. quad.
BEM -93.06 -97.93 -2.176 -2.425 -2.996 -2.995
FEM 5�5�5 -94.71 -97.87 -1.767 -2.641 -2.813 -3.063
FEM 10�10�10 -96.84 -97.77 -2.220 -2.514 -3.066 -3.088

Table 6 : Results obtained with different approximation functions f q
in (units [u]=1 µm, [t]=1 N/mm2)

fin δim(1+ r) Eqn (41) exact
internal nodes 0 19 0 19 —

u1(100;5;5) 24.993 25.014 24.981 24.997 25.000
u1(x1 = 100) (max. error in %) 0.07 0.06 0.11 0.05 —
t1(0;5;5) -100.086 -100.172 -99.992 -100.059 -100.000
t1(x1 = 0) (max. error in %) 0.20 0.17 0.17 0.11 —

Agnantiaris, Polyzos, and Beskos (1998)).

For anisotropic elasticity, as already mentioned, it is not pos-
sible to obtain a particular solution in closed form. Hence the
approach described in Section 4.3 is used in this paper, where
the particular solution uq

kn is prescribed (cf. Eq. 41), and the
approximation function f q

in is calculated from Eq. 44. It is dif-
ficult, however, to make any statements about the convergence
of this function f q

in. Therefore, in order to assess the accu-
racy of the results obtained with this approach, they are com-
pared with the results obtained by using the 1+ r function, for
which the convergence is known. As a model, a prismatic rod

with Young’s modulus E = 200 000 N/mm2 and Poisson’s ra-
tio ν = 0 is used. It is clamped at one end and subjected to a
constant body force b = 1 N/mm3 in x1-direction as shown in
Fig. 4.

The analytical solution and numerical results are given in
Tab. 6. It can be observed that for this example, the partic-
ular solution proposed in Eq. 41 yields excellent results for the
displacements u1 at the free end and tractions t1 at the clamped
end. These results, which are even slightly better than the re-
sults obtained with the ‘classical’ 1+ r function, support the
choice of Eq. 41 as particular solution.
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10 mm
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O x1

x2

x3

origin O

Figure 4 : Rod discretization with 19 equally spaced internal nodes

Table 7 : Discretizations and methods used in the forced vi-
bration calculations

Method Elements dofs

FEM 350
lin.
quad.

1728
6228

BEM 375
lin.
quad.

1353
3453

6 Dynamic analysis

6.1 Forced vibrations

In forced vibration analysis, harmonic time dependence

ψ(xi; t)= ψ̂(xi) sinωt (45)

with angular frequency ω and amplitude ψ̂ is assumed for
all field quantities ψ. The system of equations Eq. 25 ob-
tained with the proposed Dual Reciprocity Boundary Element
Method then becomes
�
HHH �ω2MMM

�
ǔ̌ǔu = GťGťGť ; (46)

where body forces have been neglected. In Eq. 46, the vectors
ǔ̌ǔu and ť̌ťt now contain the nodal amplitudes of displacements and
tractions; the symbol ˆ(�) has been omitted for clarity. Solution
of the linear system of equations given in Eq. 46 does not pose
any problems, since the time dependence of the field variables
has been eliminated by the time harmonic formulation.

The model of the investigated body is shown in Fig. 5, along
with the discretization. The numerical methods used for the
calculations are given in Tab. 7, where it has to be noted
that 99 internal nodes have been used for both the linear and
quadratic BEM calculations. The vibrations are excited by a
time-harmonic surface traction t1 = �100 N/mm2 for steel,
PIC 151, and graphite-epoxy, and t1 = �1 N/mm2 for spruce.
The angular frequency ω is chosen as 100 kHz for steel, 50
kHz for PIC 151, 20 kHz for spruce, and 50 kHz for graphite-
epoxy. All these frequencies lie around the 7th eigenfrequency
of the respective problem.

The deformations are shown in Fig. 6 for the different ma-
terials, with the contour plot giving the displacement u1. In

x1

x2
x3

t1

50 mm

100 mm

10
0

m
m

O
origin O

Figure 5 : Model used in dynamic analysis; the prescribed
tractions are t1 = t1 sinωt for forced vibrations, and t1 =
t1 H(t) for transient analysis

order to assess the accuracy of the methods, the displace-
ment u1(50;0;x3) and stress σ11(37:5;12:5;x3) are shown in
Figs. 7-10. Excellent agreement between the FEM and BEM
displacement results can be observed for all materials, for
both linear and quadratic element shape functions. The stress
computations of the quadratic FEM and BEM, too, show ex-
cellent agreement. As expected, the linear BEM results are
more accurate than the FEM results, especially for the weakly
anisotropic materials steel and PIC 151. For graphite-epoxy,
the agreement between the FEM and BEM stress results is sat-
isfactory, albeit not as good as in the other calculations.

6.2 Transient analysis

For transient analysis, the model shown in Fig. 5 is used again,
but now instead of the time-harmonic excitation, a Heaviside-
type surface traction with t1 = �0:1 N/mm2 is applied on the
specified face. This load case is usually a very effective test for
the performance of a numerical method, since the Heaviside
function contains the complete spectrum of frequencies.
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a) b)

c) d)

Figure 6 : Forced vibration analysis: deformed shapes for a) steel (ω = 100 kHz), b) PIC 151 (ω = 50 kHz),
c) spruce (ω = 20 kHz), d) graphite-epoxy (ω = 50 kHz)
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Figure 7 : Forced vibration analysis: displacement u1(50;0;x3) and stress σ11(37:5;12:5;x3) for isotropic steel
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Figure 8 : Forced vibration analysis: displacement u1(50;0;x3) and stress σ11(37:5;12:5;x3) for PIC 151
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Figure 9 : Forced vibration analysis: displacement u1(50;0;x3) and stress σ11(37:5;12:5;x3) for spruce
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Figure 10 : Forced vibration analysis: displacement u1(50;0;x3) and stress σ11(37:5;12:5;x3) for graphite-epoxy

It has already been mentioned that the system matrices ob-
tained in the DR-BEM are non-symmetric. This leads to com-
plex eigenvalues, which can cause divergence in the time inte-
gration. However, as already observed by Nardini and Breb-

bia (1985), the complex eigenfrequencies usually appear in
the higher modes, which are not needed in the analysis any-
way since they yield inaccurate results due to the finite dis-
cretization of the continuum. Therefore, in order to obtain re-
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Figure 11 : Time histories of displacement u1(0;0;100;t) for graphite-epoxy, calculated with 99 internal nodes using New-
mark’s algorithm (left) and Houbolt’s algorithm (right)
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Figure 12 : Time histories of displacement u1(0;0;100;t) for graphite-epoxy, calculated with 3 internal nodes using Houbolt’s
algorithm with direct integration (left) and modal superposition using the first 100 nodes (right)

liable and accurate results, the time-integration scheme has to
be chosen in such a way as to eliminate or damp the higher
frequencies.

In Figs. 11 and 12 some factors which influence the divergence
in the time integration are shown. The time step size is chosen
as ∆t = 1 µs, hence the figures contain 500 time steps. Fig. 11
demonstrates the influence of the time stepping scheme when
99 internal nodes are used. In the left graph, the standard New-
mark algorithm with δ = 0:5 and α = 0:25 is applied (New-
mark (1959)), and the results start diverging after few time
steps. On the right, Houbolt’s algorithm is employed (Houbolt
(1950)), and the integration remains stable. This is because
the algorithm provides numerical damping, particularly at the
higher frequencies, which are the complex ones causing prob-
lems in the DR-BEM analysis.

In Fig. 12, the same problem is solved, but this time with
only three internal nodes and hence a less accurate mass ma-
trix. One can see that now the numerical damping introduced

by Houbolt’s algorithm is no longer sufficient and the results
diverge rapidly. The performance can be improved by using
the modal superposition method, employing only the first 100
modes, but the results are still not satisfying.

Thus, from these calculations, the following conclusions can
be drawn:

� increasing the number of internal nodes improves the ap-
proximation of the domain term and yields a more accu-
rate mass matrix;

� employing a time stepping scheme that displays numer-
ical damping helps in suppressing the deleterious modes
resulting from the complex eigenvalues;

� using a modal superposition approach and employing
only the lower frequency modes also improves the accu-
racy of the results, since the complex eigenfrequencies
usually appear in the higher modes.
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Figure 13 : Time histories of displacement u1(0;0;100;t) (left) and stress σ13(62:5;12:5;62:5;t) (right) for PIC 151; compari-
son of FEM (Newmark) and BEM (Newmark, δ = 0:7, α = 0:5, modal superposition using first 100 modes)
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Figure 14 : Time histories of displacement u1(0;0;100; t) (left) and stress σ13(62:5;12:5;62:5;t) (right) for graphite-epoxy;
comparison of FEM (Newmark) and BEM (Newmark, δ = 0:7, α = 0:5, modal superposition using first 100 modes)

Now, the transient results obtained with the present Bound-
ary Element Method are compared to Finite Element calcu-
lations. In order to achieve a stable time-integration, modal
superposition is used in the BEM calculations, employing a
damped Newmark algorithm and making use of the first 100
modes only. The Finite Element results are calculated using
a standard Newmark scheme. The results obtained for the
displacements u1(0;0;100) and stresses σ13(62:5;12:5;62:5)
are shown in Fig. 13 for PIC 151 and in Fig. 14 for graphite-
epoxy. It is observed that for the transversely isotropic mate-
rial, the displacements obtained with linear boundary elements
are slightly better than the FE results, and for the monoclinic
material, the FE results are somewhat more accurate. In case
of the stresses, it is hard to make any statements about the
accuracy due to the oscillations shown in the results, but the
agreement is generally good.

7 Conclusions

A Boundary Element Method for the solution of three-
dimensional problems of anisotropic elastodynamics has been
developed. Because the use of the anisotropic dynamic fun-
damental solution would cause many problems and disadvan-
tages, the present approach uses the static fundamental solu-
tion. The domain integral that appears in the representation
formula is transformed to the boundary by the Dual Reci-
procity Method. The resulting system of differential equa-
tions is similar to the one obtained in Finite Element analysis.
Therefore, the calculation of dynamic problems such as free
vibrations, time- and frequency domain analysis, can be car-
ried out in a comparable manner, which is a great advantage
over BE approaches using frequency- and time-domain funda-
mental solutions.

By means of numerical examples, some general questions
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about the implementation have been investigated. These con-
cern the grid size needed for the interpolation of the funda-
mental solutions, and the validation of the choice of the par-
ticular solution used in the approximation of the domain term.
The method has then been applied to the solution of a three-
dimensional forced vibration problem using various materials
with different degrees of anisotropy. The results show excel-
lent agreement between the new method and Finite Element
computations for the displacements. With regard to the stress
calculation, it was shown that the results obtained by using lin-
ear boundary elements are more accurate than those obtained
with linear finite elements. Also, a transient analysis has been
performed, where the numerical problems resulting from the
non-symmetric matrices were demonstrated. Some proposi-
tions for their solution have been described briefly, and it was
shown that excellent results are obtained when using appropri-
ate solution schemes.

It can therefore be stated that the suggested method presents
an excellent alternative to FEM for the solution of problems of
anisotropic elastodynamics, especially for stress calculations.
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