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Abstract: The potential flow in a semi-infinite channel with
multiple semi-infinite oblique sub-channels is determined us-
ing the Schwarz-Christoffel transformation and complex po-
tential theory. The standard iterative technique, i.e. the
Newton-Raphson method with the Jacobian matrix approxi-
mated by a finite-difference quotient matrix, was employed
with an alternative integration region to that found elsewhere
in the literature is employed after integrating across the bound-
aries to determine the Schwarz-Christoffel transformation pa-
rameters which solely depend on the dimensions of the re-
gion being considered. Each semi-infinte channel permits in-
tegration at infinity perpendicularly across the channel and
sub-channels, yielding some analytical relationships between
these parameters. The remainder of the parameters requires
the use of numerical integration, which in the present situation
was the Runge-Kutta-Merson method. Once these parameters
were determined the Schwarz-Christoffel transformation was
integrated numerically using a variable-step Adams method
and this completes the mapping from the region being con-
sidered to the upper half of the complex plane. This technique
employed is illustrated by considering a semi-infinite channel
with an inlet and an outlet attached to the top and the side of
the channel, respectively, with both these sub-channels at pre-
scribed oblique angles to the main channel. The whole region
is modelled by a semi-infinite channel with two sub-channels
attached, all of which have uniform flows at infinity.

keyword: Schwarz-Christoffel, boundary integral method,
oblique channels, potential flow.

1 Introduction

In this paper we investigate the 2D potential fluid flow inside a
semi-infinite channel with various inlets and outlets each sup-
plying a uniform flow of fluid. However, without any loss of
generality, the situation investigated in this paper is restricted
to a channel attached to the top of the main channel at an angle
βπ to the normal to the channel and a channel attached to the
end of the main channel at an angle απ to the normal to the
channel, see Fig. 1, on which the various dimensions of the
different channels are clearly indicated.

Physically we are investigating the potential flow in a long
room with two ducts, namely one oblique ventilation duct at-
tached to the ceiling and one oblique extraction duct attached
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to a wall of the room. The opposite wall of the room is as-
sumed to be porous and through which a uniform flow can be
introduced. This combined system corresponds to a room ven-
tilation situation, see Fletcher and Johnson (1992).

Whilst locally sources and sinks produce radial flows, when
they are placed in channels the fluid flow approaches uni-
form flow at large distances from the source and sink. This
leads to the introduction of semi-infinite channels being used
to model finite ducts, with each channel introducing three new
parameters and a global analytical parameter relationship into
the Schwartz-Christoffel transformation. Further, an approx-
imate relationship is found for the local parameters of each
sub-channel.

To model this problem we use 2D potential flow in which the
long room with the porous wall is replaced by a semi-infinite
channel and the two finite ducts are replaced by semi-infinite
sub-channels. To calculate the potential flow inside the chan-
nel with inlet and outlet sub-channels, a region which we de-
note by Gz, we have chosen to map Gz using the Schwarz-
Christoffel transformation onto the region Gζ which corre-
sponds to the upper half of the complex ζ plane. The fluid
flow in the region Gζ is then easily established and from this
the stream function and fluid velocities in Gz can readily be
determined. The x, y, ξ and η axes are taken as the horizontal
and vertical directions in the z plane and ζ planes, respectively.

The Schwarz-Christoffel transformation involves several un-
known parameters which must be determined before the map-
ping can be applied. All the previous works determine these
parameters using various integration methods along the real
axis of the ζ plane, together with some form of iterative pro-
cedure. Two examples of such methods are presented in Grib-
nyak, Logvinenko, Romanenko, Fedorovich and Ennan (1991)
and Chaung, Gui and Hsiung (1993). The most used iterative
procedure is the Newton-Raphson method, with the Jacobian
matrix approximated by a finite-difference quotient matrix, as
applied to branched channels by Hassenpflug (1998). There
are also applications to problems involving 2D free surface
flows over obstacles, with the aim of determining the down-
stream free surface, see Abdelmalek (1994) who considered
a free waterfall at high Froude number based on conditions
far upstream, and a large number of recent applications to 2D
electromagnets, see Minuhin (1993).

This paper mainly relates to an alternative integration ap-
proach from that employed by Hassenpflug (1998) in the it-
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Figure 1 : (a) A schematic diagram of the model of the room
with an inlet and outlet, (b) the boundary of Gz with the lengths
h1, h2, h3, h4, l1, l2, l3 and l4 indicated. The points A, D, I and
F are at infinity in the complex z plane.

erative mathematical technique for determining the parame-
ters involved in the Schwarz-Christoffel transformation. This
method calculates the lengths using integrals in the z plane as
opposed to in the ζ plane, which gives rise to some analyt-
ical relationships between the parameters wherever there are
semi-infinite sub-channels. Hence, we only consider simply
connected unbounded polygonal domains. In order to calcu-
late the potential flow inside such regions we map the entire
flow domain onto the upper half of the complex plane using
the Schwarz-Christoffel transformation and then determine the
fluid flow in the upper half of that complex plane. In compar-
ison to the use of finite-difference and finite element meth-
ods, this procedure saves on cpu time as at this stage no it-
eration procedure is required to determine the fluid flow once
the transformation involving all the parameters has been estab-
lished.

2 Semi-infinite Multi-Channel Domain

The Schwarz-Christoffel theorem states that if ζ1;ζ2; :::;ζn

are n finite points on the real axis in the ζ plane such that
ζ1 < ζ2 < ::: < ζn and θ1;θ2; :::;θn are the interior angles of
a simple closed polygon of n+1 vertices in the z plane, then
the transformation from the ζ plane to the z plane is defined by

dz
dζ

= K(ζ�ζ1)
θ1
π �1(ζ�ζ2)

θ2
π �1:::(ζ�ζn)

θn
π �1 (1)

It should also be noted that the constant K may be complex, but
throughout this paper it is taken to be real since no rotations of
the planes are required. Each quantity ζi is real and is mapped
onto the vertex in Gz, where the interior angle is θi. Without
any loss of generality we can choose the values of two of these
ζi’s.

In order to use the Schwarz-Christoffel theorem, the values of
ζ which are mapped to the corners of Gz are required. Unfortu-
nately, these values of ζ are unknown, so initially they have to
be estimated and then the Schwarz-Christoffel theorem can be
used to map Gz to Gζ. In performing this mapping we create
a region Gz with all the correct angles at the corners but with
dimensions not having the same magnitudes as those shown in
Fig. 1(a), which have the lengths H1, H2, H3, L1, L2 and L3.
So the lengths h1, h2, h3, h4, l1, l2, l3 and l4 are introduced and
are shown in Fig. 1(b). In the numerical procedure described
in this paper an iterative scheme is employed which ensures
that all these lengths converge to the required values, namely,
hi and li tend to Hi and Li, respectively, for i = 1;2 and 3, and
h4 and l4 tend to H1 and to zero, respectively. The lengths h4

and l4 are introduced to define the region shown in Fig. 1(b).

The points A and D at infinity in the z plane are mapped to
�∞ and ∞ in the ζ plane, respectively. We consider the whole
region as shown in Fig. 1, where Gz is an infinite channel with
three discontinuities in the height of the channel, one along the
bottom and two along the top of the channel. The 8 corners in
Gz are H, I, J, B, E, F, G and C, which are mapped to the points
�ξH , �ξI , �ξJ , �ξB, �ξE , 0, 1 and ξC in Gζ, respectively.
The interior angles at B and C are both π

2 , at H, J, E and G they
are ( 3

2 + β)π, ( 3
2 � β)π, ( 3

2 +α)π and ( 3
2 �α)π, respectively,

and at I and F are both zero. Hence, we have

dz
dζ

=
K(ζ�1)

1
2�α(ζ+ξE)

1
2+α(ζ+ξJ)

1
2�β(ζ+ξH)

1
2+β

ζ(ζ+ξI)(ζ+ξB)
1
2 (ζ�ξC)

1
2

(2)

which maps Gz to Gζ.

Before solving the differential equation (2), the parameters ξB ,
ξC , ξE , ξH , ξI , ξJ and K, need to be determined so that the
lengths h1, h2, h3, h4, l1, l2, l3 and l4 achieve their required
values.

3 Integration Techniques

The first-order complex ordinary differential equation (2) has
to be solved so that the mapping from Gz to the Gζ may be
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found. This equation cannot be integrated analytically and
therefore a numerical approach is required. This equation is
of the form

dz
dζ

= fg(ζ) (3)

which if solved numerically maps Gζ to Gz but we require Gz

to be mapped onto Gζ. Simply by inverting Eq. (3) we obtain

dζ
dz

= f (ζ) (4)

where, for convenience, 1= fg(ζ) is replaced by the function
f (ζ), and this new equation ensures that when solving numer-
ically with z chosen then the value of ζ is found. Using this
new formulation, the governing equation (2) can be inverted
into the form of Eq. (4), which implies that we now have the
governing differential equation

dζ
dz

=
ζ(ζ+ξI)(ζ+ξB)

1
2 (ζ�ξC)

1
2

K(ζ�1)
1
2�α(ζ+ξE)

1
2+α(ζ+ξJ)

1
2�β(ζ+ξH)

1
2+β

(5)

By applying the Cauchy-Riemann equations to Eq. (4), with
f = fℜ + i fℑ, the complex differential equation reduces to
these two real ordinary differential equations

fRe =
∂ξ
∂x

=
∂η
∂y

and fIm =
∂η
∂x

= �
∂ξ
∂y

(6)

But these only allow integration in the horizontal and vertical
directions, however, by a rotation of the z plane by defining

z̃ = zeiγ and f̃ = e�iγ f (7)

alters Eq. (4) to

dζ
dz̃

= f̃ (8)

This allows integrations at an arbitrary angle. So that for
changes in the new variable x̃ in Gz̃, ∆z̃ = ∆x̃, Eq. (6) implies
that

f̃ℜ =
dξ
dx̃

and f̃ℑ =
dη
dx̃

(9)

with similar expressions for changes in ỹ.

Hence, by applying the Cauchy-Riemann equations, we sep-
arated the first-order complex differential equation into two
real and imaginary first-order ordinary differential equations,
allowing integration along lines at an arbitrary angle by a ro-
tation of the plane. In order to obtain accurate solutions of the
governing equation, the numerical integration of this pair of
first-order real differential equations was performed with the
aid of the NAG Fortran library.

In the parameter determination process the initial value NAG
routine D02BGF was employed which integrates a system of
first-order differential equations, subject to suitable initial con-
ditions, over an interval using a Runge-Kutta-Merson method
until a specified variable attains a given value. However, to
map region Gz to Gζ then the routine D02CJF was preferred
since this routine integrates a system of first-order differential
equations, with suitable initial conditions, over a given range
using a variable-order, variable-step, Adams method until a
supplied user-specified function of the solution is zero. It then
returns the solution at the points in the range specified by the
user.

3.1 Integral boundary condition

When the boundary conditions are given at singular points,
namely E, G, H and J, the NAG routines require values near
the singular points which are obtained using expansions for ζ
in terms of z near the corners. For example, the function f is
not defined at ζ = 1, but the point G, namely z = ih2, has to be
mapped onto the point ζ = 1. An expansion of ζ near ζ = 1 in
terms of z was considered in the following form

ζ' 1+qZp (10)

where p and q are constants to be determined and Z is the value
of z relative to the point z = ih2 which corresponds to the point
ζ= 1, i.e. Z = z� ih2. On substituting expression (10) into Eq.
(4), rearranging and neglecting all higher-order terms in Z, and
since ξB , ξC , ξE , ξH , ξI , ξJ , K, p and q are all independent of
Z, we obtain

ζ' 1+

�
(Zγ=2K)2(1+ξI)2(1+ξB)(1�ξC)

(1+ξE)1+2α(1+ξJ)1�2β(1+ξH )1+2β

� 1
γ

(11)

where γ = 3� 2α. Similarly, expansions near the points C
and J have also been found but in order to save space these
expressions are not present. The differential equation (5) could
then be integrated numerically using these approximations as
initial boundary conditions.

Before mapping Gz onto Gζ we must first determine the pa-
rameters involved in the transformation. The method we
applied to determine the parameters involves initial guesses
which are used to determine the dimensions of the region Gz.
An iterative procedure is then adopted in which the values of
the parameters are modified until the lengths of the room coin-
cide with their given values to some preset degree of accuracy.
We now define the method undertaken to determine the lengths
of the region.

4 Numerical Determination of the Lengths

Initially we assume that the parameters ξB;ξC;ξE ;ξH ;ξI;ξJ

and K have been assigned approximate values and this cor-
responds to fixing the dimensions of the region Gz. The region
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Gz is determined by finding the lengths h1, h2, h3, h4, l1, l2, l3
and l4 in each case where applicable. As these dimensions are
not initially prescribed then an iterative procedure, as outlined
later in this section, is required to determine these lengths and
their related set of parameters.

To find the distance h1 the following method is adopted. A real
value of ζ, less than �ξH , is chosen which ensures that we are
along the line HA on the boundary of Gz. We numerically
integrate Eq. (4) vertically downwards using the NAG routine
D02BGF, and terminate the integration when the value of η is
less than �δ, where δ is a preassigned small real and positive
constant. With l4 < (l2 + l3), the point in the z plane must have
just crossed the line CD, and thus we have integrated over a
distance h1. The other lengths, apart from l4, are found using
similar methods but using the expansions near the appropriate
corners. The length l4 has to be treated differently since it
represents the distance between two parallel lines for which
there is no horizontal or vertical line that touches both of these
parallel lines, so l4 is found using the following method. From
an expansion near the corner C, an approximation to ζ is found
for z = δ0. Using the NAG routine D02CJF, the value of ζ at
z = la is found, where la is a suitable real positive value. This
moves the point being considered horizontally further to the
right of C. Integrating Eq. (4) vertically upwards a distance
lb, the value of ζ is found, where lb is a suitable real positive
value. Finally, we integrate horizontally from right to left until
the value of η is less than �δ, this distance is called lc, so that
the length l4 is (lc� la). The total path taken by the point being
considered in Gz is represented by the dashed arrowed lines in
Fig. 2.
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Figure 2 : The path taken by the point in Gz to find the length
l4 with h1 > (h2 +h3) or l4 < (l2 + l3).

5 Numerical Determination of the Parameters

The unknown parameters must be determined using an itera-
tive procedure. This method requires initial estimates of the
parameters in the differential equation (4) which in turn in-
duces, as discussed above, a set of lengths which define the re-
gion Gz. By slightly changing the values of parameters one at a
time, for example ξB to ξ̃B, new sets of lengths are found. The
Newton-Raphson method with the Jacobian matrix approxi-
mated by a finite-difference quotient matrix is then used to
modify the values of the parameters. Iteration continues un-
til the lengths converge to some preset degree of accuracy.

In this investigation we evaluate S, which is the average value
of the square root of the sum of the squares of the calculated
lengths from their initial prescribed room values, and when
this value is less than 10�5 we terminate the iteration proce-
dure. It is found that initially it is advisable to vary all of the
parameters by the same small constant amount, e.g. 0.01, but
once the value of S is less than about 10�1 then δξB can be
taken as (ξ̃B � ξB)=2, with similar choices for the other pa-
rameters. In order to illustrate this method we assume typical
dimensions of the room in the form of the lengths H1, H2, H3,
L1, L2 and L3 take the values 3.0m, 1.0m, 0.5m, 4.0m, 1.0m
and 0.25m, respectively, and we choose a small set of values of
α and β, see Tab. 1. There are 7 lengths so the matrix involved

Table 1 : Typical results from the numerical method for vari-
ous values of α and β.

α = 1=4 α = 1=4 α =�1=4 α = �1=4
β = 1=3 β =�1=3 β = 1=3 β = �1=3

ξB 4.6566 4.6574 16.0312 16.0322
ξC 3.1903 3.1905 7.9985 7.9986
ξE 0.3488 0.3488 3.1604 3.1606
ξH 8.2882 8.3994 27.1501 27.4884
ξI 8.0855 7.4397 26.5294 24.5499
ξJ 7.1806 7.2690 23.7586 24.0273
K 0.9549 0.9549 0.9549 0.9549

in the Newton-Raphson iteration scheme is a 7 by 7 matrix.
For the transformation of complicated regions it is useful to
consider a sequence of regions which increase in complexity
by the further addition of another sub-channel. This build up
to the final region can be useful in establishing suitable first
estimates for the unknown parameters of more complicated re-
gions and such details can be found in Trevelyan, Elliott and
Ingham (1999).

6 Some Analytical Relationships

For each semi-infinite channel an analytical global relation-
ship can be derived which relates the width of the channel to
the parameters. These are derived by integrating around semi-
circles and letting the radius tend to zero or infinity in the ζ
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plane. We appeal to Cauchy’s Theorem to deform the semi-
circle to the arc in the ζ plane which has been mapped from
lines perpendicular to the boundaries in Gz

Considering a vertical line which is far right of the top sub-
channel in Gz then this will be mapped to a large arc in Gζ,
Γ0. Since singular points only occur along the real axis of the
ζ plane, and given that the large arc avoids them, Cauchy’s
Theorem means that the integral around this arc is equal to the
integral around the semi-circle which has the same end points.

The boundary of the semi-circular arc, Γ1, of radius r1, is given
by ζ = r1eiθ + lo, where θ 2 [0;π] and lo is the value of ζ at the
centre of the semi-circle. Hence the integral around the arc Γ0

is given by

Z
Γ0

fg(ζ)dζ =
Z

Γ1

fg(ζ)dζ =
Z π

0
fg(r1eiθ + lo)ir1eiθdθ (12)

On letting r1 tend to infinity reduces the integral around the
arc to
Z π

0
Kidθ = iKπ (13)

However, on letting r1 tend to infinity is equivalent to moving
the vertical line an infinite distance to the right. Clearly the
height of the vertical line remains constant since the floor and
ceiling are parallel. Thus,

Z
Γ0

fg(ζ)dζ =
Z a+ih1

a
dz = ih1 (14)

and hence, we have

h1 = Kπ (15)

Similarly, we can consider ζ = r2eiθ and let r2 tend to zero,
resulting in

h3 = sec(απ)
Kπ
ξI

�
ξE ξHξJ

ξBξC

� 1
2

ξE
α
�

ξH

ξJ

�β
(16)

and ζ = r3eiθ
�ξI and on letting r3 tend to zero, we obtain the

result

l3 = sec(βπ)KπP
1
2

where P =
(ξI +1)(ξI �ξE)1+2α(ξI �ξJ)(ξH �ξI)1+2β

ξI
2(ξI +1)2α(ξI +ξC)(ξI �ξB)(ξI �ξJ)2β

(17)

It was found that the numerical results for the various parame-
ters in the section concerning the Numerical Determination of
the Parameters did indeed satisfy the parameter relationships
given by Eqs. (15), (16) and (17). If the analytical relation-
ships between the parameters are used within the numerical

method then there are only 4 unknown independent parame-
ters.

If we had considered a sequence of regions of increasing
complexity, say by initially denying the existence of the sub-
channel at an angle of βπ to the normal to the channel, then
we would have obtained different analytical relationships be-
tween the parameters. However, the relevant parameters for
the sub-channel at an angle of απ to the normal to the channel
would satisfy a similar expression to Eq. (16), which when
compared to the full situation gives the approximate relation-
ship that ξI

2
' ξJ

1�2βξH
1+2β , with an error of about 0:1% in

ξI .

7 Results

Using the NAG routine D02CJF we integrate over a mesh in
the z plane, rotating the planes for the two oblique channels,
to map the region Gz into the ζ plane and short distances, typi-
cally 0.5m, down the two narrow channels are included. Phys-
ically we have investigated the potential flow in a long channel
with two ducts, one attached to the top and one attached to an
end. The sub-channel attached to the top of the main channel
entrains fluid into the main channel whilst the sub-channel at-
tached to the end of the main channel extracts it from there.
The opposite end of the main channel is assumed to introduce
uniform flow into the channel in order to satisfy the continuity
equation.

To model this problem we use a 2D potential flow in which
the long room is replaced by a semi-infinite channel and the
two finite ducts are replaced by semi-infinite sub-channels.
This simplified region is mapped to the region Gζ where sinks
and sources are used to model the uniform inlets and outlets.
The strength of the sink modelling the extraction is λ and the
strength of the source modelling the entrainment is µ.

Conformal mappings are such that sources and sinks on the
boundary of Gz map onto the sources and sinks of the same
strengths on the boundary of Gζ. In order to solve in Gζ, the
upper half of the ζ plane, it is necessary to solve in the whole
of the ζ plane, with image sources and sinks of the appropri-
ate strengths introduced at their complex conjugate points in
the lower half plane in order to maintain the real ζ axis as a
boundary, namely to have no flux of fluid across it.

In the region Gζ a source of strength µ is placed at ζ =�ξI ,
together with a sink of strength λ placed at the origin, and
therefore the complex potential W in Gζ is given by

W(ζ) =
µ
π

ln(ζ+ξI)�
λ
π

lnζ (18)

To illustrate the results obtained we fix λ = 1:0 and µ being
2.0, 1.0, 0.5 and -0.5 and show the streamline patterns, see
Fig. 3, for various values of α and β.
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8 Conclusions

In this paper we have presented an alternative method for cal-
culating the parameters involved in the Schwarz-Christoffel
transformation. As in all previous methods, in order to gener-
alise this method to extremely complicated regions with a very
large number of parameters requires additional numerical cal-
culations. However, due to the lengths being found using inte-
gration in the z plane, rather than in the ζ plane, some analyt-
ical relationships between the parameters are available. This
allows the number of parameters involved to be reduced by one
for each semi-infinite channel. Alternatively, these equations
could be used purely to assist with the initial guess. If a se-
quence of regions of increasing complexity is considered, with
semi-infinite channels added one at a time, then in addition to
having some global analytical relationships, by comparing the
regions in sequence, a good local approximate relationship can
be obtained for each semi-infinite channel.
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Figure 3 : The streamlines for the potential fluid flow with
λ = 1:0 with µ being 2.0, 1.0, 0.5 and -0.5 for various values
of α and β, with the streamlines equally spaced with intervals
of 0.1.


