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Abstract: In this paper the iterative algorithm proposed by
[Kozlov and Maz’ya (1990)] for the backward heat conduc-
tion problem is extended in order to solve the Cauchy steady
state heat conduction problem and the accuracy, convergence
and stability of the numerical algorithm are investigated. The
numerical results which are obtained confirm that this new it-
erative BEM procedure is accurate, convergent and stable with
respect to increasing the number of boundary elements and
decreasing the amount of noise which is added into the input
data.
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1 Introduction

At present there are various approaches to solving the Cauchy
problem for elliptical equations and these can be divided into
three major groups. The first group comprises methods based
on bringing the problem into the class of well-posedness in
the Tikhonov’s sense, e.g. [Lavrent’ev, Romanov and Vasil’ev
(1969)], whilst the second group consists of those methods
that use universal regularization algorithms which can be ob-
tained with the aid of the Tikhonov parametric functionals or
related versions, e.g. [Tikhonov and Arsenin (1977)]. Finally,
the most recently developed group includes iterative direct so-
lution methods, e.g. [Bakushinsky and Goncharsky (1994)].
This latter group has some advantages, which include the sim-
plicity of the computational schemes, the similarity of the
schemes for problems with linear and nonlinear operators, the
high accuracy and stability of the solutions, etc. The itera-
tive methods also allow any restriction upon the solution that
may be essential for the problem, for example the requirements
that the solution be non-negative, monotonic, etc., to be easily
taken directly into account into the iterative algorithm scheme.
However, one of the possible disadvantages of using iterative
algorithms is that large numbers of iterations may be required
in order to achieve convergence but then relaxation algorithms
may be adopted to improve the rate of convergence.
In this study an iterative boundary element method is devel-
oped for the solution of the Cauchy problem for the steady
state heat conduction. The algorithm is a new extension of the
iterative procedure proposed by [Kozlov and Maz’ya (1990)]
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for the backward heat conduction problem and consists of ob-
taining successive solutions of well-posed mixed boundary
value problems of the original equation. The intermediate
well-posed problems are discretised using a classic BEM since
it is nowadays well-known that the BEM performs better than
other domain discretisation methods, such as finite differences
or finite elements, for solving linear partial differential equa-
tions. The iterative algorithm proposed is of a general charac-
ter and therefore it may be applied to various other ill-posed
problems. The numerical results obtained show that the itera-
tive BEM produces a convergent, stable and consistent numer-
ical solution with respect to increasing the number of boundary
elements and decreasing the amount of noise added into data.

2 Mathematical formulation

Consider an isotropic medium in an open bounded domain Ω
� R2 and assume that Ω is bounded by a surface Γ which may
consist of several segments, each being sufficiently smooth in
the sense of Liapunov. We also assume that the boundary con-
sists of four distinct parts, ∂Ω = Γ = Γ0

S
Γ1
S

Γ2
S

Γ3. In
this study we refer to steady heat conduction applications in
isotropic media and we assume that heat generation is absent.
Hence the function T , which denotes the temperature distribu-
tion in Ω, satisfies the Laplace equation

∇2T (x) = 0; x 2 Ω (1)

but similar algorithms may be developed for the steady state
heat conduction equation in an anisotropic medium or other
elliptic equations.
In the direct problem formulation, if the temperature and/or
the heat flux on the boundary Γ is given then the temperature
distribution in the domain can be calculated provided that the
temperature is specified at least at one point. However, many
experimental impediments may arise in measuring or enforc-
ing a complete boundary specification over the whole bound-
ary Γ. For example, the temperature or the heat flux measure-
ment may be seriously affected by the presence of a sensor and
hence there is a loss of accuracy in the measurement, or, more
simply, a part of the surface of the body may be unsuitable for
attaching a sensor. Instead some other boundary information
may be given elsewhere. For example we can assume that the
boundary Γ0 is underspecified, i.e. both the temperature T jΓ0

and the heat flux ∂T
∂ν jΓ0 are unknown and have to be retrieved.

We also can assume that the heat flux is prescribed on Γ1
S

Γ3
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while the boundary Γ2 is overspecified by prescribing both the
temperature and the heat flux. Thus the Cauchy problem to be
solved becomes

∇2T = 0 in Ω (2)
∂T
∂ν

= q on Γ1

[
Γ2

[
Γ3 (3)

T = f on Γ2 (4)

where f and q are given functions of the angular polar coordi-
nate θ.
This problem, termed the Cauchy Problem, is much more dif-
ficult to solve both analytically and numerically than is the
direct problem since the solution does not satisfy the general
conditions of well-posedness. Although the problem may have
a unique solution, it is well known, see for example [Hadamard
(1923)], that this solution is unstable with respect to small per-
turbations in the data on Γ2. Thus the problem is ill-posed
and we cannot use a direct approach, e.g. the Gaussian elim-
ination method, to solve the system of linear equations which
arise from discretising the partial differential equation Eq. 1 or
Eq. 2 and the boundary conditions Eq. 3�Eq. 4 since such an
approach would produce a highly unstable numerical solution.
Instead we use an iterative algorithm, which we describe in
the next section, in order to accurately retrieve the temperature
and the heat flux on the unspecified boundary Γ0.
In order to illustrate the iterative method we consider an
isotropic medium in a circular plane domain of radius R,
Ω = f(x;y)jx2 + y2 < Rg with its boundary divided into four
parts as follows:

Γ0 = fz 2 Ωjα� θ(z)< 2πg (5)

Γ1 = fz 2 Ωj0� θ(z)< α�πg (6)

Γ2 = fz 2 Ωjα�π� θ(z)< πg (7)

Γ3 = fz 2 Ωjπ� θ(z)< αg (8)

where θ(z) is the angular polar coordinate of the point z and
α 2 (π;2π) is a given angle.
It should be noted that the boundary Γ has been divided into
four distinct parts given by Eq. 5-Eq. 8 such that the under-
specified part of the boundary Γ0 and the overspecified part
Γ2 are symmetric with respect to the origin O(0;0). This con-
dition is necessary in order to formulate a marching condi-
tion similar to that proposed in the algorithm of [Kozlov and
Maz’ya (1990)] for the backward heat conduction problem.
For various other formulations of the Cauchy problem, which
do not satisfy this condition, a different iterative algorithm
must be applied, see for example [Mera, Elliott, Ingham and
Lesnic (1999)].

3 Description of the algorithm

The highly ill-posed Cauchy problem Eq. 2-Eq. 4 may be re-
duced to a sequence of well-posed problems as follows:

Step 1
Specify an initial guess u0 for the temperature on the under-
specified part of the boundary T jΓ0 .

Step 2
If uk has been constructed, solve the mixed well-posed prob-
lem

∇2T (k) = 0 in Ω (9)

∂T (k)

∂ν
= q on Γ1

[
Γ2

[
Γ3 (10)

T (k) = uk on Γ0 (11)

to determine the k-th approximation T (k) for the temperature
distribution inside the solution domain and evaluate the
temperature on the boundary Γ2, µk = T (k)jΓ2 .

Step 3
Construct uk+1 as given by the equation

uk+1(θ) = uk(θ)� γ [µk(π�θ+α)� f (π�θ+α)] (12)

where γ is a small positive parameter and θ is the angular
polar coordinate.

Step 4
Repeat steps 2 and 3 until a prescribed stopping criterion is
satisfied.

It was proved by [Kozlov and Maz’ya (1990)] that a similar
algorithm produces a convergent and stable solution for the
backward heat conduction problem. It is the purpose of this
study to introduce an iterative BEM numerical implementa-
tion of this modified algorithm and to investigate the numeri-
cal convergence and stability for the Cauchy problem for the
Laplace equation Eq. 2-Eq. 4.
In the boundary conditions formulation given by Eq. 3-Eq. 4 it
can be seen that, by prescribing both the temperature f and the
heat flux q, the boundary Γ2 is overspecified, while the bound-
ary Γ0 is underspecified since both the temperature T jΓ0 and
the heat flux ∂T

∂ν jΓ0 are unknown and have to be determined. On
the remainder of the boundary the heat flux q was prescribed
but various other boundary conditions formulations may be
considered. For example one may assume that the temperature
is specified on one or both of the boundaries Γ1 and Γ3 and the
heat flux is unknown. Moreover, if the temperature is specified
on the boundary Γ1

S
Γ3 then an initial guess for the temper-

ature TjΓ0
which ensures the continuity of the temperature at

the endpoints of Γ0 can be constructed. For the boundary con-
ditions formulation considered by Eq. 3-Eq. 4 such an initial
guess cannot be constructed and an arbitrary guess must be
specified. However, the numerical results for this formulation
are more accurate than those obtained for other formulations,
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even if an initial guess which is far from the exact solution is
specified. For other boundary condition formulations, if the
temperature is specified and the heat flux is unknown on the
boundary Γ1

S
Γ3, then the errors in evaluating the heat flux

may lead to a less accurate numerical solution. For the Cauchy
problem considered by Eq. 2-Eq. 4 the iterative algorithm pro-
posed leads to an accurate solution since it is known that the
imposition of the heat flux on the boundary generally provides
more stable information than the imposition of the tempera-
ture.

4 Numerical results and discussion

The purpose of this section is to introduce an iterative BEM
implementation of the iterative algorithm described in the pre-
vious section and to investigate in more detail the numerical
convergence and accuracy with respect to mesh size discreti-
sation and the number of iterations.
We note that in order to pass from one iteration to the next the
values of the temperature and of the heat flux are required only
on the boundary. Thus, the boundary element method (BEM)
is a very suitable technique for solving the intermediate well-
posed problems Eq. 9-Eq. 11. Furthermore, the temperature
inside the solution domain has to be evaluated only after the
stopping criterion has been satisfied, thus saving a substantial
amount of computational time. The BEM for solving Eq. 9-
Eq. 11 is classical, see [Brebbia, Telles and Wrobel (1984)],
and is based on the fundamental solution of the Laplace equa-
tion and Green’s identities. Therefore the BEM technique is
not described in detail.
In order to illustrate the performance of the numerical method
proposed we have considered a typical bench-mark test exam-
ple, namely the harmonic temperature to be retrieved is given
by

T (x;y) = cos(x)cosh(y)+ sin(x)sinh(y) (13)

Numerous other examples have been investigated and the same
conclusions as those obtained using the test example given by
the Eq. 13 have been drawn. Therefore we only investigate in
detail the numerical results obtained for the test example given
by Eq. 13. In order to illustrate typical numerical results for a
smooth domain we have considered a circle of radius R = 1
and the angle α was taken 3π=2, although various other val-
ues of α may be prescribed. The Cauchy problem given by
Eq. 2-Eq. 4 has been solved iteratively using the BEM to pro-
vide simultaneously the unspecified boundary temperature and
the heat flux. The number of boundary elements used for dis-
cretising the boundary Γ was taken to be N 2 f40;80;160g.
The convergence of the algorithm may be investigated by eval-
uating at every iteration the error

eT = jjTk �TanjjL2(Γ0
) (14)

where Tk is the numerical solution for the temperature on the
boundary Γ0 obtained after k iterations and Tan is the exact

solution of the problem, given by Eq. 13. We note that the error
eT is an estimate of the accuracy in retrieving the temperature
T on the boundary Γ0. In a similar way we may evaluate the
errors in retrieving the heat flux on the boundary Γ0, or the
temperature inside the solution domain, given by

eT 0 = jjT 0
k �T 0

anjjL2(Γ0)
(15)

eΩ = jjTk�TanjjL2(Ω) (16)

where T 0
k and Tan are the numerical solution obtained after k

iterations and the exact solution for the heat flux on the bound-
ary Γ0, respectively. Although not illustrated here it is reported
that the errors eT , eT 0 and eΩ have a similar evolution with re-
spect to increasing the number of iterations or the number of
boundary elements. Therefore we investigate in detail only
the error eT . We note that if the error eT indicates that the
boundary temperature TjΓ0

has been accurately retrieved, then
the heat flux on the boundary Γ0 as well as the temperature
inside the solution domain Ω are also accurately retrieved as
numerical solutions of the mixed well posed problem given by
Eq. 9-Eq. 11.
Fig. 1 shows the error eT obtained using the iterative BEM de-
scribed in the previous section with N = 80 boundary elements
and γ = 0:05, as a function of the number of iterations. Similar
results are obtained for various numbers of boundary elements
and various values of the parameter γ. It can be seen that the
errors eT decreases rapidly over the first few iterations but the
rate of convergence decreases as the number of iterations in-
creases. Moreover, if the number of iterations is very large,
due to the accumulation of the numerical noise, the error eT

may start to slowly increase. Thus the iterative process has to
be stopped at a point where the error eT , obtained by compar-
ing the numerical solution with the analytical solution, stops
decreasing. Various stopping criteria may be used to locate
the point where the error eT stops decreasing but further work
should be performed in order to develop an optimal stopping
criterion. It should be noted that if the effect of the numerical
noise is reduced by using the numerical solution of the direct
problem as data on the boundary Γ2, then the process is con-
vergent with respect to increasing the number of iterations and
the error eT keeps decreasing even for large numbers of itera-
tions. In this case we may use a simple Cauchy type stopping
criterion based on evaluating the difference between two con-
secutive approximations for the temperature on the boundary
Γ0 given by

ek = jjTk+1�TkjjL2(Γ0)
(17)

Indeed, if the error ek is small enough then the numerical so-
lution does not improve from one iteration to the next and thus
the iterative process may be stopped.

The numerical solution for the Cauchy problem considered ob-
tained by stopping the iterative process at the iteration where
the error eT attains its minimum value is presented in Fig. 2
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Figure 1 : The error eT obtained with N = 80 boundary ele-
ments and γ = 0:05 , as a function of the number of iterations,
for the Cauchy problem given by Eq. 2-Eq. 4.

for various numbers of boundary elements and γ = 0:05. Also
shown in this figure, for comparison, are the analytical solu-
tion given by Eq. 13 and the constant initial guess u0 � 1.

We note that the numerical solution for the temperature
on the underspecified part of the boundary Γ0 is a good
approximation to the analytical solution given by Eq. 13.
Thus we may conclude that the iterative BEM algorithm is
convergent with respect to increasing the number of boundary
elements used to discretise the boundary of the domain. It can
be seen that for large numbers of boundary elements there is
a good agreement between the numerical and the analytical
solutions, even if the initial guess is a long way from the exact
solution.
For the formulation considered in this section it is not possible
to construct an initial guess that ensures the continuity of
the temperature at the endpoints of the boundary Γ0 and
therefore a constant initial guess u0 � 1 was specified. If any
minimum and/or maximum estimates for the temperature on
the boundary Γ0 are available, the initial guess should satisfy
these estimates. The rate of convergence may be substantially
increased by prescribing an initial guess which is not to far
from the exact values of the temperature. Therefore, for the
test example considered an guess u0 � 1 was prescribed since
this value is close to the mid point of the interval [0:4;1:5]
which contains all the values of the temperature on the
boundary Γ0.
However, if no estimates are available for the temperature on
the boundary Γ0, an arbitrary initial guess may be prescribed,
even if the number of iterations necessary to obtain an
accurate solution is substantially increased. Various values
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Figure 2 : The numerical solution for the temperature on the
boundary Γ0 obtained using the iterative BEM with γ = 0:05
for various numbers of boundary elements, namely, N = 40
(�), N = 80, (+) and N = 160 (Æ), the analytical solution (�)
and the initial guess (- - -).

were specified for the initial guess and for all the examples
considered the numerical results were found to be in good
agreement with the analytical solution of the problem. Fig. 3
shows the numerical solution obtained using the described
iterative BEM with N = 80 boundary elements and γ = 0:05
for various constant initial guesses. It can be seen that the
results are accurate even if the guess is far from the exact
solution.

In order to increase the rate of convergence of the iterative
procedure one may apply a classical relaxation procedure if at
the end of each iteration the approximation to the temperature
uk+1 is modified as follows:

uk+1 = αuk+1+(1�α)uk (18)

where α is a relaxation factor. If this relaxation condition is
introduced in the marching scheme of the iterative algorithm
we obtain a new marching condition given by

uk+1 = uk�αγ(µk � f ) (19)

Thus, various relaxation procedures may be obtained by sim-
ply altering the value of the parameter γ. We may conclude that
the parameter γ acts as a relaxation parameter. The numerical
results presented in this section were obtained for γ = 0:05
but similar results may be obtained for various values of the
relaxation parameter γ. Fig. 4 shows the numerical solution
obtained for the temperature on the boundary Γ0 with N = 80
boundary elements and the initial guess u0 � 1:0 for various
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Figure 3 : The numerical solution for the temperature on the
boundary Γ0 obtained using the iterative BEM with N = 40
boundary elements for various initial guesses, namely u0 � 0
(Æ), u0 � 2 (+) and u0 � 3 (4), in comparison with the analyt-
ical solution (�).

values of the parameter γ, in comparison with the analytical
solution given by Eq. 13. Similar results are obtained for any
relaxation parameter γ 2 [0;1:4].

5 Stability of the algorithm

Next, the stability of the iterative BEM proposed is investi-
gated by perturbing the initial data T jΓ2 as follows:

T̃ jΓ2 = T jΓ2 + ε; (20)

ε = G05DDF(0;σ); σ =
s

100
max jT jΓ2j (21)

where ε is a Gaussian random variable with mean zero and
standard deviation σ, generated by the NAG routine G05DDF
and s is the percentage of additive noise included in the input
data T jΓ2 in order to simulate the inherent measurement errors.
If a smooth solution is desired then it is useful to smooth the
noisy data before using it as input data for the iterative algo-
rithm. Fig. 5 presents the numerical solutions for the temper-
ature on the boundary Γ0 for various amounts of noise which
is added into the given temperature on the boundary Γ2, see
Eq. 20.

It can be seen that as s decreases, the numerical solution bet-
ter approximates the exact solution, whilst remaining stable.
Numerous other examples have been investigated and it was
found that the method described produces a stable solution
with respect to decreasing the amount of noise.

0.7 0.75 0.8 0.85 0.9 0.95 1.0

 / 2 

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
em

pe
ra

tu
re

Figure 4 : The numerical solution for the temperature on
the boundary Γ0 obtained using the iterative BEM with N =
80 boundary elements for various values of the parameter γ,
namely, γ = 0:05 (- - -), γ = 0:5 (+), γ = 1:0 (Æ) and γ = 1:4 (�)
in comparison with the analytical solution (�).

6 Conclusions

In this paper an iterative BEM has been employed in order to
reduce the Cauchy problem associated with the steady-state
heat conduction to a sequence of well-posed problems.
The numerical convergence of the proposed algorithm was in-
vestigated for various numbers of boundary elements and vari-
ous initial guesses. The numerical results obtained were found
to be in good agreement with the exact solution. The stabil-
ity of the numerical solution was also investigated and it was
found that the numerical solution is stable with respect to small
perturbations in the input data. Overall, from the numerical re-
sults obtained it can be concluded that the iterative BEM pro-
duces a convergent, stable and consistent numerical solution
with respect to increasing the number of boundary elements
and decreasing the amount of noise for the Cauchy steady state
heat conduction problem.
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