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Abstract: This work presents a boundary element formula-
tion for two-dimensional acoustic wave propagation in shallow
water. It is assumed that the velocity of sound in water is con-
stant, the free surface is horizontal, and the seabed is irregular.
The boundary conditions of the problem are that the sea bot-
tom is rigid and the free surface pressure is atmospheric.

For regions of constant depth, fundamental solutions in the
form of infinite series can be employed in order to avoid the
discretisation of both the free surface and bottom boundaries.
When the seabed topography is irregular, it is necessary to di-
vide the fluid region using the subregions technique. In this
case, only irregular bottom boundaries and interfaces between
regions of different depth need to be discretised.

Numerical simulations of several problems are included, rang-
ing from smooth to abrupt variations of the seabed. The re-
sults are verified by comparison with a more standard BEM
formulation in which the complete seabed is discretised and
truncated at a large distance.

keyword: Boundary element method, subregions, underwa-
ter acoustics, shallow water, waveguides

1 Introduction

Due to the advent of high-speed computers and the recent de-
velopments of numerical physics, sound propagation in the
ocean can be studied and quantitatively described in greater
detail with the more exact wave theory.

Increasing concern for coastal areas has, in recent years, fo-
cussed studies of ocean acoustic wave propagation on shal-
low water environments. The most common numerical tech-
niques used to model underwater acoustic wave propagation
are ray methods, normal mode methods, and parabolic equa-
tion methods [Jensen, Kuperman, Porter and Schmidt (1994)].
Ray methods are most commonly used in deep water and
are restricted to high frequencies; normal mode methods are
best suited for low frequencies but experience difficulties with
domains that are both range and depth dependent; parabolic
equation methods neglect backscattering effects which are
likely to be important in very shallow water and near the shore
[Grilli, Pedersen and Stepanishen (1998)].
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The present paper proposes a novel boundary element formu-
lation for the numerical modelling of shallow water acoustic
propagation, in the frequency domain, over irregular bottom
topography. The model assumes a two-dimensional geometry,
representative of coastal regions, which have little variation in
the long shore direction. A recent application of the boundary
element method (BEM) using a hybrid model which combines
a standard BEM in an inner region with varying bathimetry
and an eigenfunction expansion in the outer region of con-
stant depth was presented by Grilli, Pedersen and Stepanishen
(1998). An important earlier work on acoustic scattering in the
open ocean was presented by Dawson and Fawcett (1990), in
which the waveguide surfaces were taken to be flat except for
a compact area of deformation where the acoustic scattering
takes place.

The BEM model presented here makes use of two modi-
fied Green’s functions, one of which satisfies the free sur-
face boundary condition while the other directly satisfies the
boundary conditions on the free surface and the horizontal part
of the bottom boundary. Alternatively, a Green’s function in
the form of eigenfunction expansions is employed to improve
the convergence characteristics of the latter. Therefore, only
bottom irregularities and interfaces need to be discretised.

Results of the propagation and scattering of underwater acous-
tic waves in a region containing a vertical step-up, in a region
of constant depth containing a bottom deformation in the form
of a cosine bell, and in a region representative of the seabed
close to shore, are included to assess the accuracy of the nu-
merical solutions.

2 Governing Equations of the Problem

Consider the problem of acoustic wave propagation in a re-
gion Ω of infinite extent, shown in Fig. 1. Assuming that this
medium in the absence of perturbations is quiescent, the veloc-
ity of sound is constant and the source of acoustic disturbance
is time-harmonic, the problem is governed by the Helmholtz
equation [Kinsler, Frey, Coppens and Sanders (1982)]:

∇2u+ k2u =�
Nes

∑
α=1

Bαδ (Eα;S) in Ω (1)

where u is the velocity potential, Bα is the magnitude of the
acoustic source Eα located at (xEα ;yEα), S is the source point
located at (xS;yS), Nes is the number of acoustic sources,
δ (Eα;S) is the Dirac delta generalised function and k = w=c
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is the wave number, in which w is the frequency and c is the
velocity of sound in water.
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Figure 1 : General ocean section for 2D acoustic propagation
problems in shallow water

The problem is subject to the following boundary conditions:

a) Atmospheric pressure at the free surface

u (X) = 0 on ΓF (2)

b) Zero penetration velocity at the (rigid) seabed

∂u
∂n

(X) = 0 on ΓB (3)

c) Sommerfeld radiation condition at infinity

∂u
∂n

(X) = iku (X) (4)

in which ΓF is the free surface, ΓB is the irregular bottom, and
n is the outward normal vector. According to Green’s second
identity, Eq. (1) can be transformed into the following bound-
ary integral equation [Chen and Zhou (1992); Lacerda (1997)]

C (S)u (S) =
Z

Γ
G (S;X)

∂u
∂n

(X)dΓ(X)�

Z
Γ

∂G (S;X)

∂n(X)
u (X)dΓ(X)+

Nes

∑
α=1

BαG (Eα;S) (5)

where Γ is equal to ΓF [ΓB, X is the field point located at (x;y)
and G(S;X) is the free-space Green’s function. The functions
u(X) and ∂u=∂n(X) represent the velocity potential and its nor-
mal derivative. The coefficient C(S) depends on the boundary
geometry at the source point S. It is noted that the Green’s
function implicitly satisfies the Sommerfeld condition, there-
fore no discretisation of the boundary at infinity is necessary.

3 Numerical Analysis

3.1 Boundary element method

General propagation problems with irregular seabed topogra-
phy can be dealt with by the subregions technique [Santiago,

Telles and Valentim (1999)]. In this case the domain Ω is di-
vided into several regions, as depicted in Fig. 2. Two types of
subregions can be seen in the figure, for which different fun-
damental solutions are employed. In the first (Ω2 and Ω4) the
region has irregular bottom while in the other (Ω1 and Ω3) it
has a constant depth.

� 1

�B2

�B4

�F

�CD3

�I23

x

�4� 3

� 2

0
u

0

�
�

n

u

bottom

free surface

�CD1

�I34

�I12

Figure 2 : Regions dividing a typical shallow water section

Instead of using the fundamental solution of the Helmholtz
equation for the free-space, Green’s functions which directly
satisfy the boundary conditions either on ΓF or on ΓF , ΓCD1

and ΓCD3 are adopted. Therefore, only the irregular parts of
the bottom boundaries (ΓB2 and ΓB4) and interfaces (ΓI12, ΓI23

and ΓI34) need to be discretised.

Introducing the appropriate boundary conditions into Eq. (5)
yields the following integral equation for a region Ωχ with ir-
regular bottom:

C (S)u (S) =�
Z

ΓBχ

∂G f (S;X)

∂n (X)
u (X)dΓ (X)+

Z
ΓI

�
G f (S;X)

∂u
∂n

(X)�
∂G f (S;X)

∂n (X)
u (X)

�
dΓ (X)+

Nesχ

∑
α=1

BαG f (Eα;S) (6)

and for a region Ωχ with constant depth:

C (S)u (S) =
Z

ΓI

�
GD (S;X)

∂u
∂n

(X)�

∂GD (S;X)

∂n (X)
u (X)

�
dΓ (X)+

Nesχ

∑
α=1

BαGD (Eα;S) (7)

where Nesχ is the number of acoustic sources in the region
Ωχ, ΓBχ is the specific irregular bottom and ΓI is the union of
all interfaces, taking into account the direction of integration,
belonging to region Ωχ.

In order to solve Eq. (6) and (7) numerically, the external
boundary and interfaces are discretised into a number of el-
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ements whose geometries are modelled through shape func-
tions and geometrical nodal points. Over these elements, the
velocity potential and its normal derivative are interpolated as
functions of the element nodal points. Constant elements with
linear geometry have been used in this work.

Applying the collocation method to Eq. (6) and (7) gives, in
terms of an intrinsic coordinate η, for a region Ωχ with irreg-
ular bottom:

C (Sp)u (Sp) = �
Nebχ

∑
q=1

uq
Lq

2

Z +1

�1

∂G f (Sp;Xq)

∂n (Xq)
dη+

Neiχ

∑
q=1

Lq

2

�
vq

Z +1

�1
G f (Sp;Xq)dη�uq

Z +1

�1

∂G f (Sp;Xq)

∂n (Xq)
dη
�

+
Nesχ

∑
α=1

BαG f (Eα;Sp) (8)

and for a region Ωχ with constant depth:

C (Sp)u (Sp) =
Neiχ

∑
q=1

Lq

2

�
vq

Z +1

�1
GD (Sp;Xq)dη�

uq

Z +1

�1

∂GD (Sp;Xq)

∂n
dη
�
+

Nesχ

∑
α=1

BαGD (Eα;Sp) (9)

where p ranges from 1 to N fχ, with N fχ the total number
of functional nodes, Nebχ, Neiχ are the number of external
boundary elements and the number of elements of all inter-
faces in the region Ωχ,respectively; Sp are collocation points
and Lq is the length of element Γq. Finally, uq and vq are the
velocity potential and its normal derivative, respectively, at the
point Xq which is the mid-point of element Γq.

In the above equations, the first modified Green’s function
G f (Sp;Xq) identically satisfies the boundary condition on the
free surface ΓF while the second function GD(Sp;Xq) identi-
cally satisfies the boundary condition on the free surface ΓF

and seabed ΓB.

Eq. (8) and (9) are computed for each specific region sep-
arately, and are then coupled by imposing continuity of ve-
locity potential and its normal derivative over the interfaces.
Hence, applying these equations to all functional nodal points
and considering that all boundary conditions are implicitly sat-
isfied leads to

Ay = b (10)

where the system matrix A contains the influence coefficients,
vector b contains the contribution of the acoustic sources, and
vector y contains the unknown values of velocity potentials u
at the irregular bottom boundaries, and velocity potentials u
and their normal derivatives v at the interfaces.

3.2 Fundamental solutions

The fundamental solutions mentioned in the previous section
can be developed by two different means. The first is the
method of images using either a single source point reflec-
tion or multiple source point reflections, while the second
uses eigenfunctions (normal modes) of the depth-separated
Helmholtz equation [Jensen, Kuperman, Porter and Schmidt
(1994)].

3.2.1 Irregular bottom

For the first subregion type (see Fig. 2) the modified Green’s
function G f (S;X), obtained by means of the method of images
with a single source, is employed in the following form:

G f (S;X) =
i
4

h
H(1)

0 (kr)�H(1)
0

�
kr(1F)

�i
(11)

∂G f (S;X)

∂n(X)
= �

ik
4

�
H
(1)
1 (kr)

∂r
∂n
�

H(1)
1

�
kr(1F)

� ∂r(1F)

∂n

#
(12)

where H
(1)
0 ( ) and H

(1)
1 ( ) are Hankel functions of the first

kind of order 0 and 1, respectively, r and r(1F) are the distances
from the field point X to the source point S and its reflection
with respect to the free surface, respectively. These distances
can be written as:

r = jX�Sj=
q

(x� xS)
2 +(y� yS)

2

X = (x;y) S = (xS;yS) (13)

r(1F) =
���X�S(1F)

���=
r

(x� xS)
2 +

�
y� y(1F)

S

�2

S(1F) =
�

xS ;y
(1F)
S

�
(14)

in which

y(1F)
S = 2yF � yS (15)

where yF is the y-coordinate of the free surface.

3.2.2 Constant depth

For the second subregion type, the function GD(S;X) is used
in the form of two infinite series, the modified Greens’
function GF (S;X) or GB(S;X) and the Greens’ function
Gm(S;X).

The first series, obtained through the method of images with
multiple source point reflections, is given by [Jensen, Ku-
perman, Porter and Schmidt (1994); Santiago and Wrobel
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(1999a)]:

GF(S;X) =
i
4

h
H
(1)
0 (kr)�H

(1)
0

�
kr(1F)

�i
+

i
4

∞

∑
m=1

(�1)m+1
2

∑
j=1

(�1) j+1
h
H
(1)
0

�
kr
(2 jF)
m

�
�

H(1)
0

�
kr((2 j+1)F)

m

�i
(16)

GB(S;X) =
i
4

h
H(1)

0 (kr)+H(1)
0

�
kr(1B)

�i
+

i
4

∞

∑
m=1

(�1)m
5

∑
j=2

H
(1)
0

�
kr
( jB)
m

�
(17)

with normal derivative:

∂GF(S;X)

∂n
= �

ik
4

"
H(1)

1 (kr)
∂r
∂n
�H(1)

1

�
kr(1F)

� ∂r(1F)

∂n

#

�
ik
4

∞

∑
m=1

(�1)m+1
2

∑
j=1

(�1) j+1

"
H
(1)
1

�
kr
(2 jF)
m

� ∂r
(2 jF)
m

∂n
�

H(1)
1

�
kr((2 j+1)F)

m

� ∂r((2 j+1)F)
m

∂n

#
(18)

∂GB(S;X)

∂n
=�

ik
4

"
H(1)

1 (kr)
∂r
∂n

+H(1)
1

�
kr(1B)

� ∂r(1B)

∂n

#

�
ik
4

∞

∑
m=1

(�1)m
5

∑
j=2

H(1)
1

�
kr( jB)

m

� ∂r( jB)
m

∂n
(19)

where the superindices (1F), (2 jF), ((2 j + 1)F), (1B) and
( jB) identify the reflected source points.

The above expressions (16) and (17) represent the same infi-
nite series of Hankel functions and their images, and only dif-
fer in the way the series are truncated. The modified Green’s
function GF(S;X) exactly satisfies the boundary condition on
the free surface, but its normal derivative produces a very
small non-zero value at the bottom boundary. Alternatively,
the modified Green’s function GB(S;X) produces a very small
residual at the free surface but its normal derivative exactly
satisfies the boundary condition at the bottom.

The distances from the field point X to the reflections of
source point S (see Fig. 3) with respect to free surface(F)

and bottom(B) are denoted as r(1F), r(2 jF)
m and r((2 j+1)F)

m for
GF(S;X) and r(1B) and r(2 jB)

m for GB(S;X) [Santiago and Wro-

bel (1999b)]. The distances r
(2 jF)
m and r

((2 j+1)F)
m can be written

as:

r
(JF)
m =

���X�S(JF)
���=

r
(x� xS)

2 +
�

y� y
(JF)
Sm

�2

S(JF) =
�

xS;y
(JF)
Sm

�
(20)
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Figure 3 : Distance from field point X to source point S and
its reflections with respect to free surface and bottom

in which J ranges from 2 to 5, and

y(2F)
Sm

=�2 (m�1)yF +2myB� yS (21)

y
(3F)
Sm

= 2m (�yF + yB)+ yS (22)

y(4F)
Sm

= 2m (yF � yB)+ yS (23)

y
(5F)
Sm

= 2 (m+1)yF �2myB� yS (24)

where yB is the y-coordinate of the bottom. Eq. (14), (15)
and (20) to (24) are also used for GB(S;X), with the indices F
replaced by B, and vice-versa.

The second series, in terms of normal modes, may be ex-
pressed as [Jensen, Kuperman, Porter and Schmidt (1994);
Pedersen (1996)]:

Gm =
i
H

∞

∑
m=1

sin [kym (yF � yS)] sin [kym (yF � y)]�

eikxmjx�xSj

kxm
(25)

Its derivatives with respect to x and y are:

∂Gm

∂x
=�

jx� xS j

H (x� xS)

∞

∑
m=1

sin [kym (yF � yS)]�

sin [kym (yF � y)]eikxmjx�xSj (26)

∂Gm

∂y
=�

i
H

∞

∑
m=1

kym

kxm
sin [kym (yF � yS)]�

cos [kym (yF � y)]eikxmjx�xSj (27)

where H is the depth. The parameters kxm and kym are horizon-
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tal and vertical wavenumbers, respectively:

kym =

�
m�

1
2

�
π
H

(28)

kxm =
q

k2� k2
ym (29)

3.2.3 Remarks

A recent paper by Linton (1998) acknowledges that standard
representations of the Green’s function in terms of infinite
sums of images, such as in (16) and (17), usually contain series
which converge very slowly, and so are unsuitable for numer-
ical work. The calculation of the Green’s function Gm given
by (25) can be done much more efficiently due to the expo-
nential term in the series. It is clear that when kxm becomes an
imaginary number, i.e. when kym is greater than k, the power
of the exponential in (25) becomes real and negative, and the
series will decrease very rapidly for jx� xSj> 0:Nevertheless,
when coordinate x of the source and field points is the same,
i.e. x�xS = 0; the exponential term of the function Gm is equal
to one and convergence also becomes very slow. Another dis-
advantage of the Green’s function Gm is that the singularity as
y! yS is not explicit.

The influence coefficients of elements on the interfaces of re-
gions of constant depth and containing acoustic sources are
calculated, for regular integration (Sp 6= Xq), as:

Hpq =
Lq

2

Z +1

�1

∂Gm (Sp;Xq)

∂n (Xq)
dη (30)

Gpq =
Lq

2

Z +1

�1
Gm (Sp;Xq)dη (31)

and for singular integration (Sp = Xp) as:

Hpp =
Lp

2

Z +1

�1

∂GB (Sp;Xp)

∂n (Xp)
dη+

1
2

(32)

Gpp =
Lp

2

Z +1

�1
GF (Sp;Xp)dη (33)

bp =
Nes

∑
α=1

BαGm (Eα;Sp) (34)

For regions with irregular bottom, the influence coefficients
and contribution of the acoustic sources are obtained as

Hpq =
Lq

2

Z +1

�1

∂G f

∂n
(Sp;Xq)dη+

1
2

δpq (35)

Gpq =
Lq

2

Z +1

�1
G f (Sp;Xq)dη (36)

bp =
Nes

∑
α=1

BαG f (Eα;Sp) (37)

where δpq is the Kronecker delta.

The integrals in Eq. (32) and (33) are computed numerically
using Gaussian quadrature for either the complete series or
term by term. In the first case, the number of Gauss points
must be the same for terms with small and large r, increasing
the computer time. A term by term integration with differ-
ent numbers of Gauss points has been used. In addition, the
asymptotic form of the Hankel function is employed to inte-
grate terms with source point reflection far from the bottom
and free surface.

4 Applications

All the examples analysed here simulate the propagation of
acoustic waves in shallow water due to an acoustic source of
unit magnitude, with the sound velocity c taken to be 1500m=s.

4.1 Region containing a vertical step-up

The first example, shown in Fig. 4, deals with a region con-
taining a vertical step-up located at 20m from the origin. The
deeper and shallower ends are equal to 1:0m and 0:5m, respec-
tively. The frequency f is taken to be 1000Hz and the acoustic
source is located at xE = 0:0m and yE = 0:5m.

y

20.0m

0.5m

free surface

bottom

1.0m

acoustic source

x

0.5m

Figure 4 : Geometry for vertical step-up on the seabed (h =
1.0m)

The boundary element discretisations are depicted in Fig. 5.
In type (a), only Γ12 and the step-up Γ1 are discretised, each
with 96 constant elements of graded length, concentrated close
to point 2 (vv192). In type (b), the interface Γ12 was moved to
a vertical line 5:0m from the step and the external boundary
Γ1 was extended along the bottom of the shallower depth. The
interface and vertical line of the boundary are discretised as in
type (a), while the horizontal line is discretised with 192 con-
stant elements of graded length, concentrated close to points 2
and 3 (vh384).

In order to assess the accuracy of the results, a comparison
was made with a solution obtained using an alternative BEM
formulation in which the bottom boundary is fully discretised
with 8088 graded elements, but the free surface is eliminated
using a single image source. The infinite bottom boundary
was truncated at the distances �780:5m and +820:5m. It was
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Figure 5 : Discretisation of the problem using graded ele-
ments, (a) only along the vertical line (vv), (b) along vertical
and horizontal lines (vh)

found by trial and error that increasing these truncation dis-
tances produced very little difference in the solution.

Fig. 6 presents the velocity potential at internal and nodal
points along the vertical line x = 20m, for different types of
discretisation. Fig. 7 shows the velocity potential either on the
interface or at internal points along the vertical line x = 25m.
It can be seen that the results depict a good agreement for all
discretisations, confirming that the use of subregions is appro-
priate for this type of problem.
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Figure 6 : Velocity potential at points along the vertical line
x = 20:0m

4.2 Smooth deformations on the seabed

In the next two examples, the frequency f was varied from
15Hz to 150Hz in increments of 2:5Hz to observe the be-
haviour of the velocity potential along the bottom and at se-
lected horizontal and vertical lines, for a range of frequencies.

The deformed bottom surface is described by the following
sinusoidal function f (x):

f (x) =
ad

2
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1+ cos
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Figure 7 : Velocity potential at points along the vertical line
x = 25:0m

jx� x0j< wd=2 (38)

where ad and wd are the height and total width of the defor-
mation, and x0 is the algebraic value of the distance from the
y-axis to the peak of the deformation.

4.2.1 A simple cosine bell on the bottom

The application is a coastal area with a simple cosine bell de-
formation at the bottom, shown in Fig. 8. The acoustic source
is located at the position (0.0m, 150.0m), directly over the cen-
ter of the peak. The height ad and width wd of the deformation
are taken to be 50:0m and 100:0m, respectively. Only the de-
formation was discretised, using more than 20 elements per
wavelength for all frequencies.
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Figure 8 : Geometry of a coastal area with a simple cosine
bell

The amplitude of the velocity potential along the cosine bell
deformation is presented in Fig. 9, for five selected frequen-
cies. The resulting velocity potential field is seen to be sym-
metric about the peak, as would be expected for this centered
source, and to become more complex as the frequency in-
creases. It can be noticed that small perturbations in the results
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appear, at the ends of the cosine bell, for the highest frequen-
cies of f = 100Hz and f = 150Hz.
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Figure 9 : Amplitude of the velocity potential along the cosine
bell deformation

Fig. 10 depicts the variation of the velocity potential along the
vertical line x = 0:0m, for the range of frequencies. It can be
seen that the number of propagating modes increases as the
frequency increases.

Figure 10 : Amplitude of the velocity potential along the ver-
tical line x = 0:0m, for a range of frequencies from 15Hz to
150Hz

The variation of the velocity potential along the horizontal line
y= 150:0m is presented in Fig. 11. The presence of the source
located at x = 0:0m can clearly be observed in the figure.

4.2.2 Idealised seabed close to shore

An idealised region close to shore, containing two sloping sur-
faces and a cosine bell deformation on the seabed, as depicted
in Fig. 12, was analysed in order to observe the behaviour
of the velocity potential with depth and range. The deeper and
shallower regions are equal to 100:0m and 50:0m, respectively.
The acoustic source is located at (�200:0m;75:0m). Two sub-
regions were employed to simulate this problem, with an in-
terface at x = 0:0m. The height and width of the slopes and

Figure 11 : Amplitude of the velocity potential along the hor-
izontal line y = 150:0m, for a range of frequencies from 15Hz
to 150Hz

deformation are presented in Tab. 1. Notice that the sloping
surfaces are half cosine bells, and their width in Tab. 1 are half
the value of wd in Eq (38).

Table 1: Height and width of slopes and deformation

height (m) width (m)
left slope 50 200

deformation 10 100
right slope 100 400
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Figure 12 : Geometry for region containing two slopes and a
deformation on the seabed close to shore

Fig. 13 and 14 present the amplitude of the velocity potential
along two vertical lines at x = �50:0m and x = 300:0m: Fig.
13 shows that, for the frequency of 15Hz, only one propagating
mode can be seen in the shallower region of depth H = 50:0m
while two propagating modes can clearly be seen in Fig. 14
for the deeper region of depth H = 90:0m. The number of
propagating modes substantially increases with frequency for
both the shallower and deeeper regions.

5 Conclusions

In this paper, we have presented a boundary element formula-
tion for underwater acoustic wave propagation and scattering
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Figure 13 : Amplitude of the velocity potential along the ver-
tical line x =�50:0m, for a range of frequencies from 15Hz to
150Hz

Figure 14 : Amplitude of the velocity potential along the ver-
tical line x = 300:0m, for a range of frequencies from 15Hz to
150Hz

by localised irregularities. Since the Green’s functions adopted
identically satisfy the boundary conditions at the free surface
and horizontal seabeds, it is possible to use the subregions
technique developed and validated here to simulate complex
problems with bottom irregularities. By doing so, the bound-
ary element discretisation is restricted to the localised irregu-
larities and interfaces between regions of different depth.

Although the series (25) in terms of normal modes dramati-
cally improves the speed of convergence, it is still necessary
to improve the convergence of the infinite series when the
source and field points are located along the same vertical line.
Numerous techniques exist for accelerating slowly-convergent
series, such as Euler’s transformation for alternating se-
ries [Abramowitz and Stegun (1965)], Shanks transformation
[Shanks (1955)], Wynn’s algorithm [Wynn (1966)], Kummer’s
transformation [Linton (1998)] and Ewald’s method [Linton
(1998)], among others. The implementation and comparison
of the efficiency of some of these techniques is presently un-
der way.
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