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Abstract: In the process modeling via Resin Transfer Mold-
ing (RTM) for thick composite sections, multi-layer preforms
with varying thermophysical characteristics across the differ-
ent layers, or for geometrically complex mold geometries with
varying thicknesses, the assumption of a thin shell-like geom-
etry is no longer valid. The flow in the through thickness di-
rection is no longer negligible and current practices of treat-
ing the continuously moving flow front as two-dimensional
and the temperature and cure as three-dimensional are not
representative of the underlying physics. In view of these
considerations, in the present study, the focus is on the non-
isothermal process modeling of composites employing full
three-dimensional modeling/analysis developments via effec-
tive computational techniques. The specific applications are
for thick composite geometries where the thickness is compa-
rable to the other dimensions of the part. For the first time,
an implicit pure finite element front tracking technique is em-
ployed for the transient flow/thermal/cure coupled behavior
of the full three-dimensional modeling of the moving bound-
ary value problem, and, due to the highly advective nature
of the non-isothermal conditions involving thermal and poly-
merization reactions, special considerations and stabilization
techniques are proposed. Validations and comparisons with
available experimental results are particularly emphasized and
demonstrated.

keyword: resin transfer molding, non-isothermal simula-
tion, finite element method, process modeling of composites

1 Introduction

In today’s industries, advanced composites made of fiber-
reinforced polymer resin are increasingly being used due to
their excellent weight-to-performance ratios, cheap toolings,
short mold manufacturing and tryout times, design flexibil-
ity, noncorrosive nature, and ability to manufacture consoli-
dated parts of complex geometric shapes. Presently, among the
various polymeric matrix composite manufacturing techniques
employed in industry, the process of resin transfer molding
(RTM) is being recognized as one of the more attractive man-
ufacturing processes due to its high performance in structural
integrity issues and low energy consumption requirements.
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Technically, the RTM manufacturing process involves the in-
jection of resin into a mold cavity filled with porous fiber mat.
A dry porous fiber preform is first cut into specific shapes,
stacked and placed inside a mold cavity in desired orienta-
tions. The mold is then closed and a reactive polymer resin
initially at a low viscosity is injected under pressure through
one or more injection ports. During this process, the liquid
resin flows through the fiber preform, impregnating or wetting
the fiber tows. After the resin has completely impregnated the
fiber preform in the mold cavity, the mold is heated and the
part is cured with the liquid resin undergoing polymerization
reactions to become a structural solid. Once curing completes,
the consolidated net-shape part is removed from the mold. The
overall success of the RTM manufacturing process thus de-
pends on the complete impregnation of the fiber mat by the
polymer resin, prevention of polymer gellation during filling,
and subsequent avoidance of dry spots. Since a cold resin is
injected into a hot mold, the associated physics encompasses a
moving boundary value problem in conjunction with the multi-
disciplinary study of flow/thermal and cure kinetics inside the
mold cavity. Although experimental validations are indispens-
able, routine manufacture of large complex structural geome-
tries can only be enhanced via computational simulations, thus
eliminating costly trial runs and helping designers in the set-up
of the manufacturing process.

In general, the study of the RTM process modeling in litera-
ture can be divided into two categories: isothermal and non-
isothermal RTM processes. The study of isothermal RTM
process modeling centers around the use of Darcy’s law to
describe the flow of resin through the fiber preforms and the
tracking of the flow fronts as the resin enters the cavity during
filling. Research issues pertinent to the process modeling area
include: characterization of fiber mat permeabilities, conduc-
tivity, structural constitution, kinetics models, and computa-
tional efforts to enhance and/or shed light on the various mech-
anism and physics associated with RTM. While various com-
putational techniques have been used to accomplish the task
of flow front tracking, over the years, the two most popular
techniques have been:

1. Lagrangian front tracking technique where a numerical
mesh continuously enlarges and deforms in conformity
over the fluid domain as the fluid fills the mold cavity;

2. Eulerian front tracking technique where a fixed mesh is
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formed over entire mold cavity and the fluid is allowed to
impregnate the fixed mesh.

In the Lagrangian technique, new meshes have to be contin-
uously generated at every time step and considerable effort is
needed in this approach to generate acceptable meshes. While
this method can provide accurate representation of the front
surface and the interface, it becomes quite cumbersome when
complex geometries and diverging/merging flow fronts are in-
volved. An example of this moving mesh technique is the
boundary-fitted coordinate system. In the Eulerian technique,
only one mesh is required to be generated at the beginning of
the analysis to define the mold geometry. This single-mesh-
generation approach reduces the amount of computer usage
considerably but has the disadvantage of not giving the ex-
act location of the flow front at any instant in time. The rea-
son behind this technical difficulty is that in the fixed mesh
technique, the flow front is typically located by interpolat-
ing a nodal parameter among the nodes of the fixed mesh.
As a consequence, the accuracy of the flow front calculation
suffers with the coarseness of the mesh and the employed
interpolation scheme. Currently, the so-called Control Vol-
ume/Finite Element (CV-FE) explicit formulation is one of the
more traditional methods used to track the flow front in the
fixed mesh category; although more recent efforts by Ngo,
Mohan, Chung, and Tamma (1997); Mohan, Shires, Tamma,
and Ngo (1998); Mohan, Ngo, and Tamma (1999a,b); Mo-
han, Ngo, Tamma, and Shires (1999) have shown significant
enhancements via a viable alternative formulation termed the
Pure FE implicit methodology which accurately accounts for
the transient nature of the problem, ensures mass conservation,
and avoids the notion of having to associate control volumes
in a finite element mesh and computation of flow rates.

In the study of non-isothermal RTM process, the additional
focus is on the heat transfer equation and the curing kinetics,
as well as the viscosity models, of the resin. Current review
of published literature [Bruschke and Advani (1994); Liu and
Advani (1995); Chan and Hwang (1992, 1993); Lin, Lee, and
Liou (1991); Lee, Young, and Lin (1994); Young (1994, 1995);
Trochu, Gauvin, and Zhang (1992); Trochu, Gauvin, and Gao
(1993); Trochu, Boudreault, Gao, and Gauvin (1995); Gao,
Trochu, and Gauvin (1995)] indicates that in the RTM process,
the heat transport equation can in general be based on either a
two-phase model or a local equilibrium model. The two-phase
model involves the separate calculations of the resin and the
fiber energy balance, with the heat exchange between the resin
and the fiber preform being taken into account via the intro-
duction of an interfacial heat exchange. In most cases, the heat
transfer coefficient required in the definition of the interfacial
heat exchange cannot be determined theoretically; experimen-
tal procedures must be used to determine the coefficient h for
each fiber/resin combination based on the assumption that the
heat transfer coefficient h is flow rate dependent. If the RTM
process can be assumed to be in local thermal equilibrium (i.e.,

the temperature is the same at a local position for both the resin
fluid and the fiber preform), then the separate energy balance
equations can be combined into one equation and the effective
material properties can be determined using appropriate aver-
aging techniques. This assumption is adequate when the heat
transfer coefficient between the fiber and the resin is large, or
when the resin flow is very slow [Lee, Young, and Lin (1994)].
At the present time, there is no universal agreement on what
models to use for the chemorheology and curing of the resins.
Most models are empirical and different resins may be best
described by different models.

Although not often covered in the modeling of the RTM
processes by most researchers, thermal dispersion is a phe-
nomenon that might be considered when applying porous me-
dia theory to the area of fiber-reinforced composites manufac-
turing by liquid composite molding processes. Dessenberger
and Tucker (1995) described from their study that under cer-
tain conditions, thermal dispersion can be important in RTM
mold filling. They explained that physically, dispersion occurs
because the microscopic fluid velocities and temperatures are
different from the average values, and demonstrated that nu-
merical predictions based on a local volume-averaged energy
equation only agreed well with experimental data when ther-
mal dispersion was included in the model. They also showed
that it was possible to match temperatures at different loca-
tions under various operating conditions with a single disper-
sion model. However, Dessenberger and Tucker (1995) noted
that the dispersion model developed in their study had some
difficulty matching the experimental temperatures in the lower
Peclet number regimes and that further studies would be nec-
essary to work out the details of dispersion modeling in these
regimes.

In the present study, new computational developments are de-
scribed for the first time which effectively account for the
representative physics and thereby permit an accurate three-
dimensional modeling/analysis approach for process model-
ing of composites manufactured by RTM. The emphasis is
on the non-isothermal process modeling of RTM composites
employing full three-dimensional modeling/analysis computa-
tional developments in conjunction with a viable moving front
technique. This is the first time such computations have been
performed with the implicit Pure FE front tracking technique
for three-dimensional flow/thermal/cure simulations. Valida-
tions with available experimental results are subsequently per-
formed to demonstrate the overall effectiveness of the pro-
posed efforts. The overall computational developments are ex-
cerpts of a general-purpose in-house research code titled “OC-
TOPUS” (On Composites Technology Of Polymeric Useful
Structures) which inherits a vast finite element library, filling
techniques, time integrators, stabilizing features and constitu-
tive models for applications to practical large scale composite
geometries. In the next section, the theory of local volume av-
eraging and the volume-averaged balance equations for mass,
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Figure 1 : Schematic of an averaging volume V and its surface
S.

momentum, energy and chemical reaction are first discussed,
albeit briefly, to allow for a better understanding of the consti-
tutive modeling equations. Theoretical developments are then
described and followed by simulations and validations.

2 Volume-Averaged Equations

Due to the differences in the length scales that exist in the
RTM process, namely, (i) the region within the woven fiber
preform at the length scale of the tow diameters and (ii) the
region within the yarns at the length scale of the individual
fibril diameters, it is often not practical, if not impossible, to
model the intricate geometric details of the RTM process such
as flow, temperature and cure at the microscopic level. There-
fore, when dealing with a porous medium, a common practice
is to introduce the idea of local volume averaging and the use
of average quantities in the field equations [Kaviany (1995);
Tucker and Dessenberger (1994)].

In the RTM process, the domain typically contains two phases:
the resin and the woven fiber mat. These two phases are termed
fluid and solid, respectively, and are denoted by the subscripts
“f” and “s”. Fig. 1 shows the representative volume V and the
associated enclosing surface S of an arbitrary point x. Since
detailed derivations of the volume-averaged mass, momen-
tum, energy and chemical reaction equations are clearly be-
yond the scope of the present paper, the current developments
will only highlight the mass, momentum, energy and chem-
ical reaction equations in their final volume-averaged forms.
Interested readers are referred to the work of Kaviany (1995);
Tucker and Dessenberger (1994) for further details.

2.1 Local Volume Averaging of Continuity Equation

For an incompressible fluid, following the standard proce-
dures, the volume-averaged continuity equation is given as

∇ � 
u f
�
= 0 (1)

2.2 Local Volume Averaging of Momentum Equation

With the assumption of incompressibility, the volume average
of the momentum equation is derived as
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where ρ f is the fluid density, µ is the fluid viscosity and K is
the permeability of the porous medium and Pf is the modified
pressure defined as

Pf = p f +ρ f gh (3)

2.2.1 The Brinkman Equation

With regards to the volume-averaged momentum equation,
Equation (2), if the fluid is assumed Newtonian with a con-
stant viscosity and if the inertia term is negligible as can be
done for porous media flow, then one arrives at

�∇


Pf
�
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�� µ
K



u f
�
= 0 (4)

which is similar to the momentum balance first proposed and
used by Brinkman (1947).

2.2.2 Darcy’s Law

In addition, in many porous media flow problems, the length
scale over which the average velocity
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�

changes is much
larger than the local pore scale [Tucker and Dessenberger
(1994)]. When such is the case, an order-of-magnitude analy-
sis reveals that the divergence of the volume-averaged viscous
stress is much smaller than the Darcy resistance term. Hence,
the momentum balance equation Equation (4) reduces to
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which is the classical Darcy’s law [Darcy (1856)]. To account
for the anisotropy of the material properties encountered in
porous media flows in general, and in the RTM process in par-
ticular, the isotropic K in Darcy’s law is often replaced by a
tensorial K to give
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2.3 Local Volume Averaging of Energy Equation

In dealing with the heat transport phenomenon in the RTM
process, two options exist for setting up the energy equation:
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either (i) a two-phase model where the fluid and solid tem-
peratures are treated separately, or (ii) the local thermal equi-
librium model where the fluid and solid temperatures are as-
sumed to be the same at a local position. While both mod-
els have been used to model the RTM process [Bruschke and
Advani (1994); Liu and Advani (1995); Chan and Hwang
(1992, 1993); Lin, Lee, and Liou (1991); Lee, Young, and
Lin (1994); Young (1994, 1995); Trochu, Gauvin, and Zhang
(1992); Trochu, Gauvin, and Gao (1993); Trochu, Boudreault,
Gao, and Gauvin (1995); Gao, Trochu, and Gauvin (1995)],
the local thermal equilibrium model is generally preferred over
the two-phase model due to its simplicity and is less intensive
computationally.

The volume-averaged energy equation for the thermal equilib-
rium model is

(φ f ρ f cp f +φsρscps)
∂ hT i

∂t
+ρ f cp f



u f
� �∇ hT i

= ∇ � (ke +kD) �∇ hT i+φ f


Ġ f
� f

(8)

where ρ f and ρs are the fluid and solid density, cp f and cps

are the fluid and solid specific heat, φ f is the porosity of the
porous medium, T is the local thermal equilibrium tempera-
ture and Ġ f is the rate of energy dissipation per unit volume
in the fluid phase. Superscript “f” is used here to denote the
fluid intrinsic phase average of the variable and φs is the solid
volume fraction of the porous medium defined by

φs = 1�φ f (9)

In Equation (8), ke is the effective conductivity tensor defined
as

ke = (φ f k f +φsks) I+
k f � ks

V

Z
S f s

n f sbdS (10)

where k f and ks are the fluid and solid thermal conductivity,
I is the identity matrix, S f s is the fluid-solid interface, and b
is the vector function that transforms the gradient of the aver-
age temperature into the local variation of the deviation from
the average temperature [Tucker and Dessenberger (1994)].
kD in Equation (8) is the thermal dispersion conductivity ten-
sor whose values are determined through either experimental
means or computational measures if an explicit unit cell could
be readily identified. Specifically, from the local volume aver-
aging techniques, the thermal dispersion conductivity tensor is
derived to be

kD =�φ f ρ f cp f


û f b

� f (11)

where û f is the deviation of the local velocity from the average
value and is given by

u f =


u f
�
+ û f (12)

If a unit cell could be defined, then in principle the Navier-
Stokes equation could be used to solve for the velocity field
in the entire cell using periodic boundary conditions and the
pointwise velocity deviation, û f , could in theory be calculated.

2.4 Local Volume Averaging of Species Mass Balance
Equation

For the curing reaction of the resin, the volume average of the
governing species mass balance equation takes the form:
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where DD is the thermal dispersion tensor given by

DD = � 1
Vf

Z
Vf

û f bdV =
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� f
(14)

and Rα is the rate of chemical reaction. In the remainder of this
paper, the volume-averaged constitutive equations are written
without the h i brackets and φ is used in place of the porous
medium porosity φ f .

3 Non-Isothermal 3-D Formulations

For thick composite sections, multi-layer preforms with vary-
ing characteristics across the different layers, the assump-
tion of a thin shell-like geometry is no longer valid. The
flow in the through thickness direction is no longer negligible
and the 2-D flow/3-D thermal formulations [Ngo and Tamma
(1999, 2000)] are not representative of the underlying physics.
To address these shortcomings, formulations with full three-
dimensional physics must be developed to model and account
for the three-dimensional nature of the flow field, as well as
those of the thermal and curing fields. In the present devel-
opments, the focus is on the theoretical developments and val-
idations of the non-isothermal three-dimensional pure finite-
element based methodology. As such, emphasis is placed
on: (i) the theoretical developments, (ii) the computational
methodology for flow/thermal/cure coupling, and (iii) the val-
idations of the formulations with available experiments. The
finite element developments for pressure, temperature and cure
are first described. These are then followed a detailed compu-
tational methodology for coupling the flow/thermal/cure tran-
sient moving boundary value problem.

3.1 Pressure Solution

In the process modeling of thick composite sections under-
going the RTM process the flow is three-dimensional. The
governing equation for the fill factor Ψ and pressure P in
the present Pure FE methodology [Ngo, Mohan, Chung, and
Tamma (1997); Mohan, Shires, Tamma, and Ngo (1998); Mo-
han, Ngo, and Tamma (1999a,b); Mohan, Ngo, Tamma, and
Shires (1999)] is

∂Ψ
∂t
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�

K
µ

∇P

�
(15)
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with the following boundary and initial conditions:

At mold surface: ∂P
∂n = 0 on Γ1

At resin front: P = 0 on Γ2

At mold inlet: P = P0 (prescribed pressure)
or q = q0 (prescribed flow rate),
and Ψ = 1

Initially: Ψ(t = 0) = 0

Invoking the traditional weighted residual formulation yields

Z
Ω

WT ∂Ψ
∂t

dΩ =
Z

Ω
WT

�
∇ � K

µ
∇P

�
dΩ (16)

where W are the weighting functions. If W are taken to be the
same as shape functions N and approximating

Ψ = NiΨi

P = NiPi (17)

Equation (16) becomes
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For an incompressible porous medium, a three-dimensional
version of Darcy’s law can be used to describe the pres-
sure/flow rate relationship in a medium with anisotropic per-
meability as
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3.2 Temperature Solution

In addition to the three-dimensional nature of the flow field,
the heat transfer must also be treated in three dimensions be-
cause the heat convection in the planar direction and the heat
conduction in the gapwise direction are both important. The
heat transfer equation based on the thermal equilibrium model
is given by

ρcp
∂T
∂t

+ρ f cp f (u �∇T ) = ∇ �k∇T +φĠ (20)

where φ is the porosity of the porous medium and subscripts
“f” and “s” denote the fluid or resin and the solid or fiber, re-
spectively. The material properties ρ and cp are the average
density and specific heat whose values are weighted according
to:

ρcp = φρ f cp f +(1�φ)ρscps (21)

and k is the effective thermal conductivity defined as

k = ke +kD (22)

where ke is the effective stagnant thermal conductivity given
by

ke = [φkr +(1�φ)k f ] I (23)

and kD is the thermal dispersion conductivity. The initial and
boundary conditions for the thermal equilibrium energy equa-
tion are:

At mold wall: T = Tw

At mold inlet: T = Tf 0 during filling
At resin front: k ∂T

∂n = (1�φ)ρ f cp f u �n(Ts0 �T )
Initially: T (t = 0) = Tw

Invoking the traditional weighted residual formulation and ap-
proximating the temperature field T by

T = NiTi (24)

where N are the finite-element shape functions, Eq.(20) be-
comes
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Z
Ω
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where the first term on the right hand side of Equation (25)
is obtained using integration by parts. In Equation (25), Wi

are the Streamline Upwind Petrov-Galerkin (SUPG) weight-
ing functions employed in the present non-isothermal 3-D
formulations for stability considerations of the temperature
field. These Petrov Galerkin weighting functions are defined
as [Brooks and Hughes (1982)]

Wi = Ni +λ (u �∇Ni) (26)

where λ is a scalar coefficient.

3.3 Cure Solution

With the assumption of negligible thermal dispersion DD, the
three-dimensional species mass balance equation is

φ
∂α
∂t

+u �∇α = φRα (27)

with the following boundary and initial conditions:
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At mold inlet α = 0 during filling
Initially: α(t = 0) = 0

Invoking the traditional weighted residual method and using
finite element approximations

α = Niαi (28)

the discretized system of equations for the cure solution is�Z
Ω

WiφNjdΩ
�

∂α j

∂t
+

�Z
Ω

Wiu �∇NjdΩ
�

α j

=
Z

Ω
WiφRαdΩ (29)

where Wi are the SUPG weighting functions defined by
[Brooks and Hughes (1982)]

Wi = Ni +λ (u �∇Ni) (30)

and Ni are the standard finite element shape functions.

4 Flow/Thermal/Cure Integrated Methodology

In the modeling of the non-isothermal RTM process, the 3-D
methodology is plagued by the complex coupling of the pres-
sure, temperature and cure solutions. The flow depends on
the heat transfer and the chemical reaction through the vis-
cosity of the resin, and the heat transfer and the chemical re-
action, in turn, depend on the flow through the convection of
the fluid. The total integration of the flow/thermal/cure equa-
tions is therefore deemed very important in order to accurately
model the physics of the RTM process.

At the beginning of the simulation, the fill factors are taken
to be unity at the injection ports and are thus defined. The
viscosity field is assumed known from the initial temperatures
and degrees of cure. Starting with the very first fill time step,
the calculations of the three-dimensional pressure, temperature
and conversion fields are given as follows:

1. At the beginning of each fill time step, assume a viscos-
ity field based on the three-dimensional temperature and
conversion solutions of the previous time step:

µ = µ (Tn;αααn) (31)

where subscript n denotes the previous time increment.

2. Iterate for the pressure P and the fill factor Ψ using proce-
dures for the Pure FE methodology following Ngo, Mo-
han, Chung, and Tamma (1997); Mohan, Shires, Tamma,
and Ngo (1998); Mohan, Ngo, and Tamma (1999a,b);
Mohan, Ngo, Tamma, and Shires (1999).

3. Using the converged pressure field, solve for the velocity
field according Darcy’s law,

u = �K
µ

∇P (32)

where K is the second-order permeability tensor.

4. Begin sub-time stepping of the fill time increment to
solve for the three-dimensional temperature and conver-
sion fields:

a. Initialize temperature and degree of cure by setting

Tm = Tn and αααm =αααn (33)

where subscript n denotes the previous fill time step
and subscript m refers to the previous thermal time
step.

b. Compute the required number of sub-time steps
based on the Courant criterion of unity and the con-
dition set forth by

Nsteps = nint

�
∆t f illing

∆tequivalent

�
(34)

where ∆tequivalent is the smallest of all the thermal
time increments computed at the element level, and
“nint” is the nearest integer operation. The thermal
time step is given by

∆tthermal =
∆t f illing

Nsteps
(35)

c. Compute the rate of reaction Rα using the appropri-
ate kinetics model (e.g., step-wise or two-step ki-
netics model) and the temperature and the degree
of cure evaluated at the previous thermal time step;
thus,

Rα = Rα (Tm;αααm) (36)

The heat generated due to curing is proportional to
the rate of reaction and is given by

Ġ = HR Rα (37)

where HR is the heat of reaction per unit volume for
pure resin.

d. Form the various mass and stiffness matrices, as
well as load vectors, required in the discretized sys-
tems of equations for the temperature solution using
Equation (25).

e. Using the trapezoidal θ-family of integration
schemes, rearrange the above discretized system of
equations into known (i.e., Tm) and unknown (i.e.,
Tm+1) values of temperature. Note that the sub-
script m refers to the previous thermal time step,
while (m+1) denotes the current thermal time step.
The modified system of equations to solve for Tm+1

is

K̂m+1Tm+1 = K̂mTm + F̂m;m+1 (38)
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Figure 2 : Recorded inlet pressure of Experiment #1 during
filling Lin, Lee, and Liou (1993).

f. Apply prescribed boundary conditions to Equation
(38):

� Prescribed inlet temperature: T = Tf 0 at injec-
tion port.

� Prescribed wall temperature: T = Tw at mold
interface.

g. Solve for Tm+1.

h. Form the various mass and stiffness matrices, as
well as load vectors, required in the discretized sys-
tems of equations for the degree of cure using Equa-
tion (29).

i. Rearrange the discretized systems of equations into
known (i.e., αααm) and unknown (i.e., αααm+1) values
of the degree of cure. The modified system of equa-
tions to solve for αααm+1 is

K̂m+1αααm+1 = K̂mαααm + F̂m;m+1 (39)

j. Apply prescribed boundary conditions to Equation
(39):

� Prescribed inlet conversion: α = 0 at injection
port.

k. Solve for αααm+1.

l. Check for subscript (m+1) being equal to the num-
ber of sub-time steps. It (m + 1) is not equal to
Nsteps, set

Tm = Tm+1 and αααm =αααm+1 (40)

and proceed to the next sub-time step by looping
back to Step c. If (m+1) is equal to Nsteps, set

Tn+1 = Tm+1 and αααn+1 =αααm+1 (41)

and exit the sub-time stepping loop. Recall that the
subscript (m+1) refers to the current thermal time
step and (n+1) refers to the current fill time step.

Table 1 : Material properties: Experiment #1

Parameter Value
Polyurethane Resin
Density ρ f (g/cm3) 1.14
Heat capacity cp f (J/g�K) 1.6747
Thermal conductivity k f (J/cm�s�K) 0.0015
Heat of reaction Hr (J/g) 108.1
Fiber
Density ρs (g/cm3) 2.56
Heat capacity cps (J/g�K) 0.67
Thermal conductivity ks (J/cm�s�K) 0.0067
Porosity φ 0.81
Permeability K (cm2) 3.4E�5

5. Check fill status of mold and terminate routine if the mold
is completely filled. If there are still unfilled nodes, set

Tn = Tn+1 and αααn =αααn+1 (42)

and loop back to Step 1 to compute the next fill time step.

5 Experimental Validations

Since there are currently no experimental results described in
literature giving specific details for thick composite sections,
results of thin section mold experiments are employed here
primarily to validate the present 3-D developments. The addi-
tional reason behind the selection of these experiments is that
when the mold is sufficiently thin, the 3-D problem readily
reduces to a 2-D problem and the results obtained from the
3-D formulations should correspond to those given by the 2-
D flow/3-D thermal formulations developed previously by the
present authors [Ngo and Tamma (1999, 2000)]. Naturally, in
the modeling of thin shell-like geometry, the full 3-D develop-
ments are computationally less efficient than the 2-D flow/3-
D thermal formulations because the former solve for the flow
problem in full three dimensions while the latter assume a two-
dimensionally flow field. Comparisons with results obtained
from the 2-D flow/3-D thermal formulations are therefore in-
cluded here for validation purposes only.

5.1 Experiment #1 [Lin, Lee, and Liou (1993)]

The experiment performed by Lin, Lee, and Liou (1993) in-
volves the injection of mixed urethane resin into the circular
cavity preplaced with OCF M8610 random fiber mat. The
mold cavity has an inner radius of 0.635 cm, an outer radius
of 20 cm and a gap thickness of 1.27 cm. According to Lin,
Lee, and Liou (1993), the mold walls were kept at a constant
temperature of 120ÆC and the mixed urethane resin was main-
tained at 41ÆC prior to injection. Since the filling was carried
out using a low pressure sealant gun, the inlet condition was
neither a constant pressure nor a constant flow rate. Fig. 2
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Figure 3 : Finite element mesh used
in Experiment #1.
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Figure 4 : Comparison of predicted temperature to experimental data
for Experiment #1 (results plotted as reference location 1).

gives the inlet pressure recorded by Lin et al. during filling
and Tab. 1 lists the remaining fiber and resin material proper-
ties.

To describe the kinetics behavior of the mixed urethane resin,
the following model is used:

Rα = Aexp

�
� E

RT

�
(1�α)n (43)

where A, E and n are the kinetics constants whose values are
3.75E+5 s�1, 51941 J/mole and 1.46, respectively, and R is the
ideal gas law constant. Lin, Lee, and Liou (1993) describe the
viscous behavior of the mixed urethane as

µ = Aµ exp

�
Eµ

RT

��
αg

αg �α

� f (α;T )

(44)

where Aµ = 1.8E-5 Pa�s, Eµ = 26214 J/mole, and αg = 0.71.
The function f (α;T ) in the above Equation (44) is

f (α;T) = f
�
α0
�
= �0:96+6:48α0�3:20

�
α0
�2 (45)

where

α0 = α� 2:13 (T �Tre f )

374:5+(T �Tre f )
(46)

and Tre f = 55oC = 328 K.

To discretize the circular mold used in the experiment, a fi-
nite element consisting of 1296 nodes and 1840 wedge ele-
ments is used, Fig. 3. As seen in Fig. 4 through Fig. 6, the
results predicted by the present 3-D formulations are in agree-
ment with the trends displayed by the experimental results of
Lin, Lee, and Liou (1993). In addition, plots of the current
solutions against those obtained by the 2-D flow/3-D thermal
formulations [Ngo and Tamma (1999, 2000)] show excellent
agreement among the various models, Fig. 7. Therefore, the
validity of the 3-D formulations is readily proven.

5.2 Experiment #2 [Chiu, Chen, and Lee (1997)]

In the first of the two sets of non-reactive fluid experiments
performed by Chiu, Chen, and Lee (1997), the unidirectional
flow measurement device is a rectangular aluminum mold with
mold cavity of dimensions 21 cm � 7.63 cm � 0.8 cm. Several
thermocouples were used to measure temperature in the cav-
ity during filling and curing, and of importance to the present
validation are the temperature results of the thermocouples po-
sitioned 0.25L, 0.5L and 0.75L away from the inlet and mid-
way through the cavity thickness. It should be noted that for
the non-reactive system, the liquid was pumped and the tem-
perature reading was collected continuously until several min-
utes after the mold was filled. For the reactive system, the
resin flow stopped when the flow front of the resin reached the
outlet. However, the temperature data was collected contin-
uously until the temperature returned to the wall temperature
after curing [Chiu, Chen, and Lee (1997)].

In the non-reactive non-isothermal mold filling experiment,
the fluid used was Palatino oil. The preform used was four
layers of a continuous random fiber glass mat (CertainTeed
U750), whose properties, along with those of the Palatino oil,
are given in Tab. 2. As stated by Chiu, Chen, and Lee (1997), a
constant mold wall temperature was obtained by a temperature
controller and the fluid was pumped to the mold at a constant
flow rate by an Instron machine. Therefore, in the validation of
the non-reactive experiment using Palatino oil, the prescribed
mold wall temperature is kept at 63ÆC and the oil temperature
is maintained at 34.5ÆC. The viscosity model of the Palatino
oil as described by Chiu, Chen, and Lee (1997) is

µ = 0:001� exp

�
4485:2

T
�11:3

�
(47)

where µ is in unit of Pa�s.
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Figure 5 : Comparison of predicted temperature to experimen-
tal data for Experiment #1 (results plotted at reference location
2).
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Figure 6 : Comparison of predicted temperature to experimen-
tal data for Experiment #1 (results plotted at reference location
3).

To simulate the continuous pumping of the Palatino oil into
the mold after the mold was filled (i.e., the Palatino oil was
allowed to exit the mold at the other end during filling), a 5 cm
run-off area is added to the original length of the discretized
mold, bringing to total length to 26 cm. The addition of the
run-off area does not affect the temperature results of the val-
idation process in any way because the problem is highly ad-
vective and any information downstream of the flow does not
play a part in the heat transfer and curing solutions.

Fig. 8 shows the finite element mesh consisting of 1458 nodes
and 2080 wedge elements used by the present 3-D methodol-
ogy. Because of the symmetric nature in the boundary con-
ditions of the experiment (e.g., same prescribed temperature
on upper and lower mold walls), only half of the mold along
the thickness direction is discretized. As in Fig. 9, the 3-D
non-isothermal results follow the general behaviors of the ex-
perimental data well. The slight discrepancies between the
experimental data and the predicted results can be attributed
to experimental errors, lags in thermocouple response, and/or
inaccurate viscosity and kinetics parameters inadvertently em-

Table 2 : Material properties: Experiment #2

Parameter Value
Palatino oil
Density ρ f (g/cm3) 0.98
Heat capacity cp f (J/g�K) 1.88
Thermal conductivity k f (J/cm�s�K) 0.00136
Fiber
Density ρs (g/cm3) 2.53
Heat capacity cps (J/g�K) 0.68
Thermal conductivity ks (J/cm�s�K) 0.00417
Porosity φ 0.91
Permeability K (darcy) 4836.1

ployed in the present developments. Nevertheless, the virtually
indistinguishable nature between the 2-D flow/3-D thermal re-
sults and the 3-D non-isothermal results simply confirm the
validity of the present developments, Fig. 10.
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Figure 7 : Comparison of predicted temperatures between various formulations for Experiment #1.
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Figure 8 : Finite element mesh used in Experiment #2.

5.3 Experiment #3 [Chiu, Chen, and Lee (1997)]

In the second set of non-reactive fluid experiments performed
by Chiu, Chen, and Lee (1997), the experiment utilized the
same mold conditions and material properties as in Experi-
ment #2. The main differences between Experiment #3 and
Experiment #2 are: (i) that the Palatino oil was injected at a
higher flow rate and was maintained at 24ÆC during filling, and
(ii) the mold walls were kept constant at 55ÆC. The faster flow
rate necessitates the inclusion of the phenomenon known as
thermal dispersion in the process modeling, and in this study
the thermal dispersion conductivity models proposed by Chiu,
Chen, and Lee (1997); Wakao and Kaguei (1982) are em-
ployed. These are

kD = k f �4:2
h
1� exp

�
�0:2

p
Pe
�i

ln(1+Pe) (48)

where Pe is the material Peclet number (not to be confused
with the mesh Peclet number) defined by

Pe =
ρ f cp f

k f
jujd f (49)

for the model proposed by Chiu, Chen, and Lee (1997), and

kD = k f �0:5Pe (50)

for the model developed by Wakao and Kaguei (1982).

Physically, dispersion occurs because the microscopic fluid ve-
locities and temperatures are different form the average values.
On the microscopic scale, the fluid moves up and down as it
goes around the solid particles, Fig. 11. If the fluid experiences
a temperature gradient at the same time it will then convect
heat locally, and if these temperature gradients are different
from the gradient of the average temperature then there will be
a net heat flux [Dessenberger and Tucker (1995)].

Fig. 12 shows that in the absence of thermal dispersion, the
predicted temperatures could follow the experiment data in
trend only. To get these two set of results to be in excel-
lent agreement with each other, as seen in Fig. 13, the phe-
nomenon of thermal dispersion had to be taken into account
via the introduction of an effective thermal dispersion conduc-
tivity. Therefore, for manufacturing conditions such as high
flow rates, thermal dispersion is a phenomenon that might be
considered important. Furthermore, when the modeled geom-
etry is sufficiently thin, the results obtained from a full 3-D
non-isothermal methodology readily reduce to those generated
by the 2-D flow/3-D thermal methodology [Ngo and Tamma
(1999, 2000)], as demonstrated in Fig. 14.

5.4 Experiment #4 [Chiu, Chen, and Lee (1997)]

In the reactive fluid experiment selected as a validation in this
study, a fast step growth polymerization is used. According to
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Figure 9 : Comparison of predicted temperature to experimental data for Experiment #2.
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Figure 10 : Comparison of predicted temperatures between various formulations for Experiment #2.

Chiu, Chen, and Lee (1997), the mold was injected with
SPECTRIM MM364-A, an isocyanate based on methelyne
diphenyl disocyanate and provided by Dow Chemical Com-
pany. An adiabatic reactor method was used to determine the
cure kinetics of the resin [Chiu, Chen, and Lee (1997); Toth
(1995)] and from this method, polyisocyanurate was found to
form by a rapid polymerization of isocyanates in the presence
of a catalyst. The trimerization or the forming of a polymer
from three molecules of a monomer in turn leads to fast gela-
tion and rapid cure. Under the conditions and assumptions
listed in Toth (1995), the reaction rate equation can be ex-
pressed as:

Rα =
KA1 exp

h
�EA1

R

�
1
T � 1

Tre f

�i
C2

I CC

KA42 exp
h
�EA42

R

�
1
T � 1

Tre f

�i
CI +1

(51) Figure 11 : Local fluid velocity at microscale level.
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Figure 12 : Comparison of predicted temperature to experimental data for Experiment #3 without kD.
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Figure 13 : Comparison of predicted temperature to experimental data for Experiment #3 with kD. (a) Chiu, Chen, and Lee
(1997) kD model (ref 1); (b) Wakao and Kaguei (1982) kD model (ref 1); (c) Chiu, Chen, and Lee (1997) kD model (ref 2); (d)
Wakao and Kaguei (1982) kD model (ref 2); (e) Chiu, Chen, and Lee (1997) kD model (ref 3); (f) Wakao and Kaguei (1982) kD

model (ref 3).
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Figure 14 : Comparison of predicted temperatures among various formulations for Experiment #3 with kD. (a) Chiu, Chen,
and Lee (1997) kD model (ref 1); (b) Wakao and Kaguei (1982) kD model (ref 1); (c) Chiu, Chen, and Lee (1997) kD model (ref
2); (d) Wakao and Kaguei (1982) kD model (ref 2); (e) Chiu, Chen, and Lee (1997) kD model (ref 3); (f) Wakao and Kaguei
(1982) kD model (ref 3);

where CI is the isocyanate concentration, CT is the polyiso-
cyanurate concentration and CC is the catalyst concentration.
Tab. 3 gives the values of CI and CC as well as the kinetic pa-
rameters KA1, EA1, KA42, EA42 and Tre f used in the reaction rate
equation.

An aluminum mold of dimensions 21 cm � 7.63 cm � 0.8 cm
is used in the reactive fluid experiment. During injection, the
mold walls are kept at 74.3ÆC and the polyisocyanurate system
is maintained at 28.2ÆC. The material properties of the fiber
mat and the polyisocyanurate system are listed in Tab. 4. The
mesh used in this validation is shown in Fig. 15 and consists of
1188 nodes and 1680 wedge elements. As in the non-reactive
experiments, the use of the same boundary condition on the
upper and low mold walls means that only half of the mold
cavity needs to be discretized in the simulations.

As seen in Fig. 16, the predicted results obtained from the 3-D
non-isothermal formulations are in good agreement with the
experiment results. Since the mold is relatively thin by defi-
nition, it comes as no surprise that the 3-D non-isothermal re-
sults follow the 2-D flow/3-D thermal results extremely well.
In fact, these two sets of results are virtually indistinguishable
from each other (Fig. 17), further proving that for thin shell-
like geometries, the flow in the through thickness direction can
be neglected.

6 Concluding Remarks

In the process modeling of thick composite sections, multi-
layer preforms with varying characteristics across the differ-
ent layers, or geometrically complex mold geometries with
regions of impermeable inserts via RTM, the assumption of
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Table 3 : Model parameters of resin kinetics function: Exper-
iment #4

Parameter Value
CI 0.006 023 39
CC 0.005 623 33

KA1 (cm6/g�mol�s) 180 + 200 x
L

EA1 (J/mol) 8.52E+4
KA42 (cm3/mol) 71.4

EA42 (J/mol) 0.0097
Tre f (K) 298

X

Y
Z
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Z

Figure 15 : Finite element mesh used in Experiment #4.

a thin shell-like geometry is no longer valid. The flow in the
through thickness direction is no longer negligible and the cur-
rent practice of treating the flow as two-dimensional and the
temperature and cure as three-dimensional are not represen-
tative of the underlying physics. In regards to these short-
comings, for the first time, a full three-dimensional integrated
methodology is developed in conjunction with an implicit pure
Finite Element technique to model and account for the three-
dimensional nature of the flow, thermal and curing fields.

All of the results obtained from the present 3-D developments
are, in general, in good agreement with the available experi-
mental results. The explicit assumption made in the develop-
ments is when the modeled geometry is sufficiently thin, the
3-D problem reduces to a 2-D flow problem with a 3-D tem-
perature and curing fields. Thus, it came as no surprise that
in all case studies, the 3-D non-isothermal results are virtu-
ally indistinguishable from the 2-D flow/3-D thermal results
obtained previously by the authors [Ngo and Tamma (1999,
2000)]. For thick composites geometries, however, such will
not be the case and the full 3-D non-isothermal methodology

Table 4 : Material properties: Experiment #4

Parameter Value
Polyisocynurate System
Density ρ f (g/cm3) 1.21
Heat capacity cp f (J/g�K) 1.88
Thermal conductivity k f (J/cm�s�K) 0.002
Heat of reaction Hr (J/g) 1.88E+5
Fiber
Density ρs (g/cm3) 2.53
Heat capacity cps (J/g�K) 0.68
Thermal conductivity ks (J/cm�s�K) 0.00417
Porosity φ 0.85
Permeability K (darcy) 4836.1

is expected to yield more accurate results. Future examples
will be carried out to demonstrate the ability of the present de-
velopments to model the various related physical phenomena
in thick composite sections, multi-layer preforms with vary-
ing characteristics across the different layers, and specifically,
geometrically complex mold geometries with regions of em-
bedded impermeable inserts (cited to be of use in structural
armor) and the like.

Finally, as it was shown in Experiment #3, under certain situ-
ations, the phenomenon of thermal dispersion must be consid-
ered when applying porous media theory to fiber-reinforced
manufacturing processes. Unfortunately, there are currently
no practical methods for determining the thermal dispersion
function. Most techniques employed in the determination of
the elusive kD still rely on the process of fitting the numerical
results to the experimental data, which can be quite tedious
and material dependent.
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Figure 16 : Comparison of predicted temperature to experimental data for Experiment #4.
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Figure 17 : Comparison of predicted temperatures between various formulations for Experiment #4.
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