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Abstract: Due to the very general nature of the Meshless
Local Petrov-Galerkin (MLPG) method, it is very easy and
natural to introduce the upwinding concept (even in multi-
dimensional cases) in the MLPG method, in order to deal with
convection-dominated flows. In this paper, several upwinding
schemes are proposed, and applied to solve steady convection-
diffusion problems, in one and two dimensions. Even for very
high Peclet number flows, the MLPG method, with upwind-
ing, gives very good results. It shows that the MLPG method is
very promising to solve the convection-dominated flow prob-
lems, and fluid mechanics problems.

keyword: MLPG, MLS, convection-dominated flow, up-
winding.

1 Introduction

Although the finite element method (FEM) and the closely
related finite volume method (FVM) are well-established nu-
merical techniques for computer modeling in engineering and
sciences, they are not without shortcomings. First of all,
their reliance on a mesh leads to complications for certain
classes of problems. The generation of good quality meshes
presents significant difficulties in the analysis of engineering
systems (especially in 3D). These difficulties can be over-
come by the so-called meshless methods, which have at-
tracted considerable interest over the past decade. A num-
ber of meshless methods have been developed by different au-
thors, such as Smooth Particle Hydrodynamics (SPH) [Lucy
(1977)], Diffuse Element Method (DEM) [Naroles, Touzot,
and Villon (1992)], Element Free Galerkin method (EFG) [Be-
lytcshko, Lu, and Gu (1994)], Reproducing Kernel Particle
Method (RKPM) [Liu, Jun, and Zhang (1995)], hp-clouds
method [Duarte and Oden (1996)], Finite Point Method (FPM)
[Oñate, Idelsohn, Zienkiewicz, and Taylor (1996)], Partition
of Unity Method (PUM) [Babus̃ka and Melenk (1997)], Local
Boundary Integral Equation method (LBIE) [Zhu, Zhang, and
Atluri (1998a,b)], Meshless Local Petrov-Galerkin method
(MLPG) [Atluri and Zhu (1998a,b); Atluri (1999); Atluri and
Zhu (2000)]. Most of these methods, in reality, are not re-
ally meshless method, since they use a background mesh for
the numerical integration of the weak form. To be a truly
meshless method, both interpolation and integration should be
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performed without a mesh. The finite point method (FPM)
[Oñate, Idelsohn, Zienkiewicz, and Taylor (1996)] is a truly
meshless method. A non-element interpolation scheme -
weighted least squares (WLS) is used and there is no integra-
tion required. However, this method is based on point colloca-
tion, and is very sensitive to the choice of collocation points.
As discussed in Atluri and Zhu (1998a,b), and in Zhu, Zhang,
and Atluri (1998a,b), MLPG and LBIE are truly meshless
methods, because, a traditional non-overlapping, continguous
mesh is not required, either for interpolation purpose or for
integration purpose. As pointed out in Atluri, Kim, and Cho
(1999b), the LBIE approach can be treated simply as a special
case of the MLPG scheme. The MLPG method is based on a
weak form computed over a local sub-domain, which can be
any simple geometry like a sphere, cube or ellipsoid in 3D. The
trial and test function spaces can be different or the same. It
offers a lot of flexibility to deal with different boundary value
problems. A wide range of problems has been solved by Atluri
and his coauthors. The objective of this paper is to extend the
MLPG method to solve steady convection-diffusion problems.

In fluid mechanics, the existence of the convection term makes
the problem non-self-ajoint. A special treatment is needed to
stabilize the numerical approximation for these kinds of prob-
lems. Schemes related to upwinding are the most general tech-
niques to stabilize Finite Difference Method (FDM), FEM and
FVM. The same concept is needed in the meshless methods, so
as to obtain a good accuracy for convection-dominated flows.

Only very few works were reported by using the so-called
meshless methods, to solve convection-dominated flows. In
Oñate, Idelsohn, Zienkiewicz, and Taylor (1996), the FPM
method was applied, with upwinding for the first derivative
or with characteristic approximation. However, there is a sig-
nificant drawback of the FPM as discussed above, and, in
multidimensional cases, it is not easy to define the critical
distance, which is important to stabilize the method and ob-
tain good accuracy. In Liu, Jun, Sihling, Chen, and Hao
(1997), the RKPM method, combined with the Streamline
Upwind/Petrov-Galerkin (SUPG) form of variational formu-
lation, was used. As pointed out before, the RKPM method is
not a truly meshless method, since a background mesh is used
to integrate the weak form. In fact, a truly meshless method,
such as the MLPG method, is much easier and more flexible
for introducing the upwinding concept, with a very clear phys-
ical meaning. This will be illustrated in this paper, and numeri-
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cal examples for the steady convection-diffusion problems will
be used for verification purposes.

2 Local Weak Form

Let Ω be a bounded region in Rnsd , where nsd is the num-
ber of space dimensions, and assume that Ω has a piecewise
smooth boundary Γ. Then, the governing equation for steady
convection-diffusion problems in Ω can be written as:

v j
∂φ
∂x j

=
∂

∂x j
(K

∂φ
∂x j

)+ f (1)

where, v j is the flow velocity, K is the diffusivity coefficient, f
is a source term, and repeated indices are to be summed. The
boundary conditions are assumed to be:

� Essential Boundary Conditions:

φ = φ̄ on Γφ (2)

� Natural Boundary Conditions:

K
∂φ
∂x j

n j = t̄ on Γt (3)

where, φ̄ and t̄ are given, n j is the outward unit normal vector
to Γ, Γφ and Γt are subsets of Γ satisfying Γφ \Γt = /0 (the
empty set) and Γφ[Γt = Γ.

Different from other meshless methods, the MLPG method is
based on a local weak form over a local sub-domain Ωs, which
is located entirely inside the global domain Ω. It is noted that
the local sub-domain can be of an arbitrary shape containing
the node position x in question.

To satisfy Eq. (1) in a local sub-domain Ωs with a piecewise
smooth boundary Γs, Eq. (1) is weighted by a test function
w and integrated over the local sub-domain such that the local
weighted residual equation can be written as:

Z
Ωs

[v j
∂φ
∂x j

� ∂
∂x j

(K
∂φ
∂x j

)� f ]w dΩ = 0 (4)

for all w. By using the integration by parts, Eq. (4) is recast
into a local weak form as:
Z

Ωs

[v j
∂φ
∂x j

+K
∂φ
∂x j

∂w
∂x j

� f w]dΩ�
Z

Γs

K
∂φ
∂x j

n jw dΓ = 0 (5)

for all continuous trial functions φ and continuous test func-
tions w. In general, the boundary Γs of the local sub-domain
Ωs may intersect with the boundary of the global domain Ω.
Therefore,

Γs = ΓsI [Γsφ[Γst (6)

where, ΓsI is the part of Γs which is inside the global domain,
Γsφ = Γs\Γφ, and Γst = Γs\Γt .

The local weak form provides a very clear concept for a local
non-element integration, which does not need any background
integration cells which are continguous over the entire domain.
Also the MLPG method leads to a natural way to construct the
global stiffness matrix through the integration over a local sub-
domain. To solve this local weak form, some kind of meshless
interpolation schemes is needed. This will be discussed in the
next section.

3 The MLS approximation scheme

In order to preserve the local character of the numerical im-
plementation, a meshless method uses a local interpolation or
approximation to represent the trial/test functions with the val-
ues (or the fictitious values) of the unknown variable at some
randomly located nodes. There are a lot of local interpola-
tion schemes, such as MLS, PUM, RKPM, hp-clouds, Shepard
function, etc., available to achieve this aim.

The Moving Least Square (MLS) method is generally consid-
ered as one of the schemes to interpolate data with a reasonable
accuracy. Therefore, the MLS scheme is chosen in this paper.

Consider the approximation of a function u(x) in a domain
Ω with a number of scattered nodes fxig, i = 1;2; : : : ;n, the
moving least-square approximant uh(x) of u(x), 8x 2 Ω, can
be defined by

uh(x) = pT (x)a(x) 8x 2 Ω (7)

where, pT (x) = [p1(x); p2(x); : : : ; pm(x)] is a complete mono-
mial basis of order m, which, for example, can be chosen as
linear:

pT (x) = [1;x;y]; m = 3; (8)

or quadratic:

pT (x) = [1;x;y;x2;xy;y2]; m = 6 (9)

for 2D problems, and a(x) is a vector containing coefficients
a j(x), j = 1;2; : : : ;m which are functions of the space coordi-
nates x, and determined by minimizing a weighted discrete L2

norm, defined as:

J(x) =
n

∑
i=1

wi(x)[pT (xi)a(x)� ûi]
2

= [P� a(x)� û]T � W�[P� a(x)� û] (10)

where wi(x) is the weight function associated with the node
i, with wi(x) > 0 for all x in the support of wi(x), xi denotes
the value of x at node i, n is the number of nodes in Ω for
which the weight functions wi(x) > 0, the matrices P and W
are defined as

P =

2
664

pT (x1)
pT (x2)
� � �

pT (xn)

3
775

n�m

(11)
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W =

2
4 w1(x) � � � 0

� � � � � � � � �
0 � � � wn(x)

3
5 (12)

and

ûT = [û1; û2; : : : ; ûn] (13)

where, ûi; i = 1;2; : : : ;n are the fictitious nodal values and not
the nodal values of the unknown trial function uh(x) in general.

The stationarity of J in Eq. (10) with respect to a(x) leads to
the following relation between a(x) and û:

A(x)a(x) = B(x)û (14)

where the matrices A(x) and B(x) are defined by

A(x) = PT WP =
n

∑
i=1

wi(x)p(xi)pT (xi) (15)

B(x) = PT W = [w1(x)p(x1);w2(x)p(x2); : : : ;

wn(x)p(xn)] (16)

Solving this for a(x) and substituting it into Eq. (7), we get the
MLS approximation as

uh(x) = ΦT (x) � û =
n

∑
i=1

φi(x)ûi 8x 2 Ω (17)

where, the nodal shape function corresponding to nodal point
xi is given by

ΦT (x) = pT (x)A�1(x)B(x) (18)

It should be noted that the MLS approximation is well defined
only when the matrix A in Eq. (14) is non-singular. It can be
seen that this is the case if and only if the rank of P equals m.
A necessary condition for a well-defined MLS approximation
is that at least m weight functions are non-zero (i.e. n� m) for
each sample point x 2 Ω and that the nodes in Ω will not be
arranged in a special pattern such as on a straight line.

The partial derivatives of φi(x) can be obtained as

φi;k =
m

∑
j=1

[p j;k(A
�1B) ji+ p j(A�1B

;k +A�1
;k B) ji] (19)

in which A�1
;k is given by

A�1
;k = �A�1A

;kA�1 (20)

and the index following a comma indicates a spatial derivative.

It is known that the smoothness of the shape functions φi(x)
is determined by that of the basis functions and of the weight
functions. Let Ck(Ω) be the space of k-th continuously dif-
ferentiable functions. If wi(x) 2 Ck(Ω); i = 1;2; : : : ;n and

p j(x) 2 Cl(Ω); j = 1;2; : : : ;m, then φi(x) 2 Cr(Ω) with r =
min(k; l). A number of choices are available for the basis func-
tions and the weight functions. In this paper, the linear basis
is chosen and a spline weight function as in Atluri and Zhu
(1998a) is used:

wi(x) =
�

1�6( di
ri
)2 +8( di

ri
)3�3( di

ri
)4 0 � di � ri

0 di � ri
(21)

where di = jx�xij is the distance from node xi to point x, and
ri is the size of the support for the weight function wi. It can
be easily seen that the spline weight function is C1 continuous
over the entire domain.

From the above discussion, it shows that the MLS shape func-
tions don’t have the Kronecker delta property. This causes the
difficulty to impose the essential boundary conditions. Several
methods have been proposed, e.g., see Belytcshko, Krongauz,
Organ, Fleming, and Krysl (1996) and Zhu and Atluri (1998).

In this paper, the penalty method used in Zhu and Atluri (1998)
and the method recently proposed by Atluri, Kim, and Cho
(1999b) are used to deal with the essential boundary condi-
tions.

4 Upwinding Schemes

4.1 Overview

It is well known that convection-dominated flows are some of
the most difficult problems to solve numerically. The pres-
ence of the convection term causes serious numerical difficul-
ties, appearing in the form of “wiggles” (oscillatory solutions),
when the convection term is dominant. This problem could be
solved somewhat heuristicaly, by using upwinding. A number
of upwinding schemes has been developed, for FDM, FEM
and FVM. In the one dimensional cases, optimal upwinding
schemes may be designed so as to result in exact nodal solu-
tions. However, in the multidimesional cases, generalizations
of traditional upwinding schemes were unsuccessful due to the
crosswind diffusion problem (see Fig.1-Fig.2).

It was apparent that the upwind effect, arrived at by whatever
means, was needed only in the direction of flow. However, It
is not easy to design such methods for multidimensional cases.
Hughes and Brooks (1979) introduced the ‘Streamline Up-
wind (SU) method’, where the artificial diffusion operator is
constructed to act only in the flow direction, a priori eliminat-
ing the possibility of any crosswind diffusion. A similar idea
was described in Kelly, Nakazawa, Zienkiewicz, and Hein-
rich (1980) as ‘anisotropic balancing dissipation’. As shown
in Hughes and Brooks (1979), one could obtain much better
solutions for the crosswind problem by using the streamline
upwind method, but several deficiencies remained. The up-
winded convection term was not consistent with the centrally
weighted source and transient terms, resulting in excessively
diffuse solutions when these terms were present (see Fig.3-
Fig.4).
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Figure 1 : Illustration of the crosswind diffusion problem with
Pe = 100 (from Leonard (1979)): (a) Exact.

Figure 2 : Illustration of the crosswind diffusion problem with
Pe = 100 (from Leonard (1979)): (b) Optimal Upwinding.
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Figure 3 : Pure convection with a source term: (a) Problem
Statement.

(b)
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Figure 4 : Pure convection with a source term: (b) Results for
SU and SUPG.

Clearly, upwind weighting of all terms in the equation was
needed, i.e., some kind of Petrov-Galerkin method is needed
for consistency purposes. Therfore, in order to solve the
crosswind problem and be consistent with all terms, more re-
fined versions of the upwinding concept should be based on
Petrov-Galerkin methods, which utilize upwinding only in the
streamline direction. As known, most popular among such
methods is the Streamline Upwind Petrov-Galerkin method
(SUPG)[Brooks and Hughes (1982)], which consistently in-
troduces an additional stability term in the upwind direction.
This method has better stability and accuracy properties than
the standard Galerkin formulation for convection-dominated
flows. However, some drawbacks still remain. The choice
of the related parameters is still not so straightfoward (another
definition of the related parameters can be seen in Franca, Frey,

and Hughes (1992)). In addition, for non-regular solutions,
spurious oscillations remain in the neighborhoods containing
sharp layers. In order to prevent those ‘wiggles’, many meth-
ods have been proposed by adding some kind of discontinuity-
capturing perturbation term (see e.g. Hughes, Mallet, and
Mizukami (1986), Almeida and Silva (1997) and references
therein).

For meshless methods, the same kind of consideration should
be taken to deal with convection-dominated flows. As pointed
out in the introduction, the very general nature of truly mesh-
less methods, such as the MLPG method, makes it easier to
introduce the upwind concept more clearly and effectively. In
this paper, two upwinding schemes for the MLPG method are
proposed in the following.

4.2 MLPG Upwinding Scheme I

The MLPG method is based on the Petrov-Galerkin weighted-
residual procedures. Different spaces for the test and trial
functions can be used, as shown in Fig.5.
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Figure 5 : The MLPG method without Upwinding.

Figure 6 : MLPG Upwinding Scheme I (US-I).

Therefore one of the very natural ways to construct upwinding
schemes is to choose different trial and test functions. This
can be done by a lot of ways. For example, in order to apply
upwinding in the streamline direction, we can skew the test
function opposite to the streamline direction as shown in Fig.6.
For convenience, we denote this as Upwinding Scheme I (US-
I).

As an illustration, we choose a skewed weight function as the
test function. The skewed weight function is given as follows:
using the same form of weight function as in Eq. (21), we shift
the position of the maximum of wi(x) from xi to xi � γrisi, as
shown in Fig.7,

where, si is the unit vector of the streamline direction at xi, ri

is the size of the support for the test functions at xi, and γ is
given by

γ =
1
2

coth(
Pe
2
)� 1

Pe
(22)

Figure 7 : MLPG Upwinding Scheme I (US-I): Specification.

Figure 8 : MLPG Upwinding Scheme II (US-II).

in which Pe is a local Peclet number defined as:

Pe =
uri

K
(23)

The size of the support for the trial functions also equal to ri at
xi, and the local sub-domain at xi is coincided with the support
for the test functions at xi.

4.3 MLPG Upwinding Scheme II

In fact, because the MLPG method is based on a local weak
form over a local sub-domain, there is another very conve-
nient way to design upwinding schemes. We can use the
Bubnov-Galerkin procedure to discretize the local weak form,
as done in Atluri, Kim, and Cho (1999b), and shift the local
sub-domain opposite to the streamline direction, as shown in
Fig.8. We denote this as Upwinding Scheme II (US-II).

Here, the same spaces for the trial and test functions are used,
that is, the same support and the same interpolation scheme
(MLS) for the trial functions and the test functions are em-
ployed. In this case, the local sub-domain at xi is no longer
coincident with the support for the test functions at xi, but the
size is the same. (It should be noted that in the usual MLPG
method, we usually choose the test functions such that the in-
tegration term along the boundary ΓsI equals to zero, but, in
general, this is not true for the MLPG method with US-II.
Therefore, in the local weak form, the integration term along
the boundary ΓsI should be retained.)

In particular, the shifting distance of the local sub-domain can
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Figure 9 : MLPG Upwinding Scheme II (US-II): Specifica-
tion.

be specified as γri, where, ri is the size of the support for the
test functions, which is equal to the size of the local domain,
at xi, and γ is given by

γ = coth(
Pe
2
)� 2

Pe
(24)

in which Pe is a local Peclet number, defined as:

Pe =
2uri

K
(25)

The direction of the shifting is opposite to the streamline di-
rection si at xi, as shown in Fig.9.

5 Numerical examples

To assess the effectiveness of the methods described herein,
a series of numerical calculations is performed. For con-
venience, we note the MLPG method without upwinding as
MLPG, the MLPG method with US-I as MLPG1 and the
MLPG method with US-II as MLPG2. Here, the MLPG
method without upwinding is based on the Galerkin procedure
to approximate the local weak form and the local sub-domain
coincides with the support of the test functions. Examples for
1D and 2D problems are given in the following.

5.1 One-dimensional problems

For 1D problems, Eq. (1) can be written as:

u
dφ
dx

�K
d2φ
dx2 � f = 0 (26)

First, reconsider the problem as shown in Fig.3. Here, K =

0, u = 1 and f =

8<
:

1� 1
4 x; (0 < x � 6)

1
4 x�2; (6 < x � 8)
0; (8 < x � 15)

The results for

MLPG1 and MLPG2 are shown in Fig.10. It shows that both
MLPG1 and MLPG2 give very good solutions.

Then we consider another problem, with the domain 0� x� 1.
Two different cases are considered:

(c)

x

φ

0 5 10 15
0

1

2
EXACT
MLPG1
MLPG2

Figure 10 : Pure convection with a source term: (c) Results
for MLPG1 and MLPG2.

� Case 1:

K = 1; f = 0;
φ = 0 at x = 0;
φ = 1 at x = 1:

(27)

� Case 2:

K = 1; f = 100;
φ = 0 at x = 0;
φ = 0 at x = 1:

(28)

u may have different values, leading to different Peclet num-
bers Pe, which is defined as:

Pe =
uL
K

(29)

For the above cases, L = 1 and K = 1, thus, Pe = u.

11 points and the value of 2:3 times nodal distance (2:3∆x) for
radius of support are used to solve these problems. Penalty
method is chosen to deal with essential boundary conditions
due to its simplicity. Results for the value of φ are shown in
Fig.11-Fig.12.

These results show that both MLPG1 and MLPG2 produce
very good solutions when Peclet number is very high, how-
ever, the MLPG method without upwinding gives oscillation-
ary solutions when Peclet number becomes large. For low
Peclet number, all methods get good results. It also shows
that, in general, MLPG2 gives better solutions than MLPG1.
It can be said that the choice for the test function in MLPG1
is not the best one and more care should be taken. So, for 2D
problems tested in the following, we will only use the MLPG2,
i.e., Upwinding Scheme II.
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Figure 11 : Case 1 for 1D problems.
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Figure 12 : Case 2 for 1D problems.
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Figure 13 : Convection skew to the mesh-I: problem state-
ment.

5.2 Two-dimensional problems

For 2D problems, Eq. (1) can be written as:

u
∂φ
∂x

+ v
∂φ
∂y
�K

∂2φ
∂x2 �K

∂2φ
∂y2 � f = 0 (30)

In this section, several cases are considered in a unit square do-
main given by 0 � x;y � 1. These problems have been widly
studied in literature, e.g., see Hughes, Mallet, and Mizukami
(1986) and Almeida and Silva (1997), as tests for the accu-
racy of various numerical schemes. The first two cases are
used to assess the performance of the MLPG and MLPG2
methods for different Peclet numbers. The last three cases in-
volve very high Peclet numbers, and are used to assess solu-
tions which are essentially of pure convection flows. For the
purpose of comparison, the standard Galerkin finite element
method (GFEM) and the streamline-upwind Petrov-Galerkin
method (SUPG) have been included in the results. Linear fi-
nite elements are used for GFEM and SUPG. The parameters
for SUPG are chosen as those in Brooks and Hughes (1982).
Except for the last case, a regular mesh (SUPG) or node distri-
bution (MLPG) with 11�11 nodes is used. Unless specified,
the value of 2:1 times nodal distance h (2:1h) for radius of
support is used.

5.2.1 Convection skew to the mesh-I

In this case, the source term is assumed to be zero. The flow is
unidirectional and constant with velocity components:

u = cos(π=4); v = sin(π=4): (31)

See Fig.13 for the problem statement.
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Figure 14 : Convection skew to the mesh-I: Pe = 1.



MLPG for Convection-Diffusion Problems 53

X

Y

PHI
1.82906
1.70712
1.58519
1.46325
1.34131
1.21937
1.09744
0.9755
0.853562
0.731625
0.609687
0.48775
0.365812
0.243875
0.121937

GFEM

X

Y

PHI
0.9375
0.875
0.8125
0.75
0.6875
0.625
0.5625
0.5
0.4375
0.375
0.3125
0.25
0.1875
0.125
0.0625

SUPG

X

Y

PHI
1.05464
0.984276
0.913915
0.843553
0.773191
0.702829
0.632468
0.562106
0.491744
0.421382
0.351021
0.280659
0.210297
0.139935
0.0695736

MLPG (No Upwinding)

X

Y

PHI
0.935189
0.870777
0.806366
0.741955
0.677544
0.613132
0.548721
0.48431
0.419899
0.355487
0.291076
0.226665
0.162254
0.0978425
0.0334312

MLPG2

Figure 15 : Convection skew to the mesh-I: Pe = 100.

X

Y

PHI
2951.09
2738.19
2525.28
2312.38
2099.47
1886.56
1673.66
1460.75
1247.84
1034.94
822.031
609.125
396.219
183.313

-29.5938

GFEM

X

Y

PHI
1.00125
0.9345
0.86775
0.801
0.73425
0.6675
0.60075
0.534
0.46725
0.4005
0.33375
0.267
0.20025
0.1335
0.06675

SUPG

X

Y

PHI
2.73206
2.54313
2.35419
2.16525
1.97631
1.78738
1.59844
1.4095
1.22056
1.03163
0.842688
0.65375
0.464813
0.275875
0.0869375

MLPG (No Upwinding)

X

Y

PHI
1.09204
1.01608
0.940124
0.864165
0.788206
0.712247
0.636289
0.56033
0.484371
0.408412
0.332454
0.256495
0.180536
0.104577
0.0286188

MLPG2

Figure 16 : Convection skew to the mesh-I: Pe = 106.
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Figure 17 : Convection with a source term-I: Pe = 1.
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Figure 18 : Convection with a source term-I: Pe = 100.
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Figure 19 : Convection with a source term-I: Pe = 106.
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Figure 20 : Convection with a source term-II: Pe = 106.
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Figure 21 : Convection with a source term-II (Pe = 108): (a)
results from Almeida and Silva (1997); (b) results for MLPG2.

K is varied in order to get different Peclet number Pe. Here,
Pe is given by

Pe =
jjujjL

K
(32)

where, jjujj=
p

u2 + v2. In this case, jjujj= 1 and L = 1, so
Pe = 1=K. It has smooth boundary conditions, so the penalty
method is used for simplicity. Contours for φ are shown in
Fig.14-Fig.16.

As in 1D problems, all methods give good results for low
Peclet number. But, for high Peclet numbers, MLPG2 and
SUPG are much superior to MLPG and GFEM. It also shows
that MLPG2 is somewhat better than the currently most popu-
lar method, the SUPG.

Figure 22 : Convection skew to the mesh-II: problem state-
ment.

5.2.2 Convection with a source term-I

The problem is given by

u = 1; v = 0; f = 1;
φ = 0 along the boundary.

(33)

K is also varied so as to get different Peclet number Pe, which
is equal to 1=K. Again, the penalty method is used to deal
with the boundary conditions. Contours for φ are shown in
Fig.17-Fig.19.

As before, all methods give good results for low Peclet num-
ber. But, for high Peclet numbers, MLPG2 and SUPG are
much superior to MLPG and GFEM. Furthermore, it shows
that MLPG2 gives better solutions than the SUPG, when
Peclet number is very high.

5.2.3 Convection with a source term-II

The problem is given by

u = 1; v = 0; f =

�
1; (0 < x � 1

2 )
�1; ( 1

2 < x < 1)
;

φ = 0 along the boundary.
(34)

The diffusivity K is 10�6 or Peclet number Pe is 106. Again,
the penalty method is used to deal with the boundary condi-
tions. Contours for φ are shown in Fig.20.

It shows that MLPG2 and SUPG are better than GFEM and
MLPG, and MLPG2 is superior to SUPG. Actually, the so-
lutions of MLPG2 are comparable (even better) to the results
produced by Almeida and Silva (1997) (see Fig.21).

However, Almeida and Silva (1997) introduced a very compli-
cated modification for SUPG of Hughes and his co-workers,
to achieve better results.
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Figure 23 : Convection skew to the mesh-II: Pe = 106 and θ = π
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Figure 24 : Convection skew to the mesh-II: Pe = 106 and θ = π
4 .
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Figure 25 : Convection skew to the mesh-II: Pe = 106 and θ = 3π
8 .
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Figure 26 : Convection in a rotating flow field: K = 10�6 (Continued).
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Figure 27 : Convection in a rotating flow field: K = 10�6.

5.2.4 Convection skew to the mesh-II

Now we consider another case, which involves discontinuous
boundary conditions and causes not only the sharp boundary
layer but also an internal sharp layer. In this case, the source
term is assumed to zero. The flow is unidirectional and con-
stant with velocity components:

u = cosθ; v = sinθ: (35)

where, θ is the angle between the flow direction and the posi-
tive x direction. See Fig.22 for the problem statement.

Due to the discontinuous boundary conditions, it is difficult
to impose the essential boundary conditions by using penalty
method. (Actually it results in oscillation at boundary.) So we
use the method developed by Atluri, Kim, and Cho (1999b).
Just as before, for low Peclet numbers, all methods give good
results. Therefore, only the plots of φ with K = 10�6 or Pe =
106 and different flow directions are shown in Fig.23-Fig.25.

Here, the results for GFEM and MLPG are not shown due to
their very large oscillations. Two different sizes of radius of
support (1:2h and 2:1h) have been used for MLPG2. Gen-
erally, MLPG2 and SUPG gives much better solutions than
GFEM and MLPG. Due to the internal discontinuity, it ap-
pears that a smaller size of support gives better solutions for

MLPG2. This can be explained as following: as pointed out
in Atluri, Cho, and Kim (1999a), larger size of support gives
better accuracy for smooth solutions because it includes more
points and works like higher order schemes, but when the
solution is discontinuous, it is well known that higher order
schemes produce more oscillatory results. Again,it seems that
the MLPG2 with small size of support gives somewhat better
solutions than SUPG at the internal discontinuity, but at the
boundary, MLPG2 gives somewhat worse results than SUPG.
This may be caused by the method of imposing boundary con-
ditions, which is a very strong constraint.

5.2.5 Convection in a rotating flow field

In this case, the flow velocity components are given by

u =�y+0:5; v = x�0:5 (36)

and there is no source term f = 0. Along the external boundary
φ = 0 and along the internal boundary (AB),

φ = cos(2π(y� 1
4
)) along x = 0:5;0� y � 0:5 (37)

See Fig.28 for the problem statement. The diffusivity is chosen
as K = 10�6 and a uniform mesh or node distribution with 21�
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Figure 28 : Convection in a rotating flow field: problem state-
ment.

21 nodes is employed. Due to the internal boundary condition,
the method proposed by Atluri, Kim, and Cho (1999b) is used
to cope with the boundary conditions. The solution for φ is
plotted in Fig.26-Fig.27 for different methods.

It shows that both GFEM and MLPG give oscillationary re-
sults but SUPG and MLPG2 produce nonoscillatory solutions.
Again, the effect of the size of support should be noted. For
MLPG, when the size of support increases, the result becomes
worse due to the oscillation; however, for MLPG2, larger size
of support gives more accurate solutions and smaller size of
support produces more spurious crosswind diffusion effect.

6 Concluding Remarks

The MLPG method has been extended to solve the convection-
diffusion problems. Just as GFEM, MLPG works well for
low Peclet number flows, but is not good for high Peclet num-
ber flow. To deal with convection-dominated flow, two kinds
of natural upwinding schemes have been proposed. The Up-
winding Scheme I (US-I) is very flexible. 1D numerical tests
show it is possible to design a good scheme by using this
idea. Both 1D and 2D examples show, however, that the Up-
winding Scheme II (US-II) is very successful in dealing with
convection-dominated flows.

Compared with SUPG, the computational cost of MLPG2 is
still much higher, because cost-effective integration schemes
are not yet found; but the concept of MLPG2 is very clear
and it is very easy to implement it for multi-dimensional flow
problems. Further, it may be argued that in a large-scale prob-
lem, the additional computational cost (due to the meshless
integration) may be offset by the savings in human-resource
cost (involved in gnerating the mesh) in the truly meshless
MLPG method. Numerical tests also show that, in general,
MLPG2 gives better solutions than SUPG. Furthermore, nu-
merical examples show that the size of support plays a signifi-
cant role in MLPG2. Larger sizes of support result in better ac-
curacy for smooth solutions and smaller sizes of support pro-
duce larger spurious viscous effect, which sometimes is useful

to get nonoscillatory solutions. This property makes MLPG2
very flexible to deal with different problems, such as problems
with discontinuity. It is very easy to change the size of support
so that it is possible that, for smooth part of solutions, high
accuracy can be obtained, but for the discontinuous part, non-
oscillatary solutions can be produced. Further research about
this, and about boundary conditions, is needed.

The MLPG method with upwinding introduced in this paper is
very general. It is very promising for more general fluid me-
chanics problems, such as Navier-Stokes equation, due to its
simplicity and meshlessness. Further results will be published
soon by the authors.
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