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Abstract:  This paper describes the application of the mesh-
less Finite Point (FP) method to the solution of the nonlin-
ear semiconductor Poisson equation. The FP method is a
true meshless method which uses a weighted least-squares fit
and point collocation. The nonlinearity of the semiconduc-
tor Poisson equation is treated by Newton-Raphson iteration,
and sparse matrices are employed to store the shape function
and coefficient matrices. Using examples in two- and three-
dimensions (2- and 3-D) for a prototypical n-channel MOS-
FET, the FP method demonstrates promise both as a means of
mesh enhancement and for treating problems where arbitrary
point placement is advantageous, such as for the simulation of
carrier wave packet and dopant cloud effects in the ensemble
Monte Carlo method. The validity of the solutions and the ca-
pability of the method to treat arbitrary boundary conditions is
shown by comparison with finite difference results.
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1 Introduction

The semiconductor Poisson equation which includes forcing
terms for the potential-dependent carrier and ionized dopant
concentrations is commonly used as a model equation in the
field of computational electronics. Traditionally, Finite Differ-
ence (FD) and Finite Element (FE) methods have been used
to solve the semiconductor Poisson equation, but recent de-
velopments in the fields of numerical methods indicate that
meshless methods may be useful [Belytschko, Krongauz, Or-
gan, Fleming, and Krysl (1999)]. In regard to the semicon-
ductor Poisson equation, meshless methods could be used for
mesh enhancement in regions where dopant or carrier concen-
tration gradients are large without the restrictions of FD and
FE methods. Meshless methods could also be combined with
newly emerging point-particle techniques to treat carrier and
dopant interactions in 3-D ensemble Monte Carlo simulations
[Wordelman and Ravaioli (2000)]. Finally, meshless methods
show potential to model carrier wave packet and dopant cloud
effects in the ensemble Monte Carlo method.

In this work, the semiconductor Poisson equation has been
solved with the Finite Point (FP) method [Ofiate, Idel-
sohn, Zienkiewics, and Taylor (1996); Ofiate, Idelsohn,
O. C. Zienkiewics, and Sacco (1996)]. The method uses a
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weighted least-squares fit of the unknown approximate solu-
tion using a set of monomial base interpolating functions. The
least-squares fit is used to generate a set of shape functions on
which the problem at hand is solved. The FP method and the
weighted least-squares approximation are described in Sec. 2
and 3. The non-linearity of the equation is treated in Sec. 4
with Newton-Raphson iteration and a technique is presented to
implement Dirichlet and Neumann boundary conditions in this
scheme. The semiconductor Poisson equation and its FP im-
plementation are described in Sec. 5. The non-symmetric lin-
ear residual step is solved here using a preconditioned Gener-
alized Minimum Residual (GMRES) method and sparse matri-
ces. Finally, FP solutions of the semiconductor Poisson equa-
tion for a prototypical n-channel MOSFET are compared to
FD results in 2- and 3-D in Sec. 6.

2 Finite point method

Meshless methods are a group of techniques useful for solv-
ing partial differential equations on irregular grids. Mesh-
less methods originated from work with FD and FE meth-
ods, but meshless methods can treat an irregular distribution
of points and require no costly mesh generation. In addi-
tion, since meshless methods use a functional basis and al-
low arbitrary placement of points, the solution and its deriva-
tives may be found directly where they are needed and with
greater accuracy than with FD and FE methods where dif-
ferences and interpolation are required. Meshless methods
include the Smooth Particle Hydrodynamics method [Mor-
aghan (1988)], the Diffuse Element method [Nayroles, Touzot,
and Villon (1992)], the Element-Free Galerkin method [Lu,
Belytschko, and Gu (1994)], the Reproducing Kernel Parti-
cle (RKP) method [Liu, Jun, and Zhang (1995)], the Bound-
ary Node method [Mukherjee and Mukherjee (1997)], the
Local Boundary Integral Equations method [Zhu, Zhang,
and Atluri (1998a,b)], the meshless local Petrov-Galerkin
(MLPG) method [Atluri and Zhu (1998)], Cloud-Based meth-
ods [Duarte and Oden (1996)], the Partition of Unity method
[Melenk and Babuska (1996)], and the Finite Point method. In
this work, the Finite Point (FP) method using weighted least-
squares is chosen for its simplicity and high degree of flexibil-
ity [Ofiate, Idelsohn, Zienkiewics, and Taylor (1996); Ofiate,
Idelsohn, O. C. Zienkiewics, and Sacco (1996)].

Assuming a scalar problem, the differential equation to be
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solved can be written

Lu=finQ (1)
with boundary conditions

u=gonl, 2
g—Z =honly 3)

where L is the differential operator, « is the unknown function,
f is the forcing term, Iy is the boundary region where Dirich-
let conditions, g, are imposed and I, is the boundary region
where Neumann conditions, /, are imposed, and » is the unit
outward normal vector.

Approximating the unknown function u as u“, the weighted
residual method may be applied at each point i in the solution
domain as

[ wilLu— flae+ [ Wiu® — gar
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where W;, W, and W; are the weighting functions and may be
defined to yield the FD, FE and the meshless techniques as
special cases.

In order to keep the problem local and arrive at a banded ma-
trix, the approximation, #, may be written in terms of locally
defined shape functions as

= i Nj(x)l,ti! =NTu" (5)
=1

where j indexes the n points in the interpolation domain (or
cloud) of the point i, uﬁ' is the coefficient of the jth shape func-
tion, and N (x) is the jth shape function which satisfies

Nj(x) ;ﬁOifxEQ,'
Nj(x) =0ifx QQ,’

Using point collocation, the validity of interpolation may be
limited to the point i with W; = W; = W; = §; in Eq. 4. The
governing and boundary equations can then be written

(6)
(N

Lu(x;) = f(xi) fori=1,2,...,Ng ®)
u’(x;) = g(x;) fori=1,2,... . Nr, )
W = h(x) fori=1,2,...,Np, (10)

where Ng, Nrg, and NT,, are the number of points in the gov-
erning, Dirichlet and Neumann regions, respectively, and the
total number of points is N, = N + Nrg +Nr,.
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3 Weighted least-squares approximation

In the least-squares approximation, the unknown function u is
approximated as u“ such that the sum of the square error of
the approximation is minimized. In one dimension (1-D), the
approximation function can be written as

u(x) = ) pr(x)oy = pT(x (11)

T

where p are the base interpolating functions and o =
[0, 0, ..., 04T are the coefficients of the approximation on
the base functions. Using quadratic interpolation and a mono-
mial basis, the interpolating functions may be chosen in 1-D
as

plDZ[l,x,XZ]T form:3 (12)
and in 2- and 3-D as

pop = [1,x,,2%, xy,y*]" form=6 (13)
pap = [1,x,3,2,x,32,yz,x%,y*,2]" for m= 10 (14)

The function, u(x), is then sampled at the n points in the cloud
Q; giving
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where n = m for an exact fit and n > m for a least-squares fit.
In the n > m case, the summed square error at each point is

n n
ZM —u(x})) zzu —pj o). (16)
A Gaussian weighting function of the form
—(x[e)* _ g=(amfe)?
e e
yi(x) = 17)
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may be used to weight the square error, where the values x;,
and c are chosen to control the cloud size and Gaussian shape
[Ofiate, Idelsohn, Zienkiewics, and Taylor (1996)]. It should
be noted that in 2- and 3-D, x and x,, above were taken as
the 2- and 3-D radius respectively and no tensor products (as
introduced below) were considered. This choice was made for
simplicity and maximum control over the number of points in
the cloud.

As another possibility to the Gaussian function, a cubic spline
function may be used to perform the weighting [Aluru (1999)].
In 3-D, the cubic spline may be defined as

|x — x;

Z—Z
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(18)
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where dy, d, and d, are the dilations in each dimension and
w(v) is the cubic spline kernel function given by

Z2(1-%) 0<v<
wv)=< —t(v=2) 1<v<2 (19)
0 v>2

Incorporating the chosen weighting function in Eq. 16 yields

= S i — )l — u(x))?

j=1
n
= z qfi(xj—xi)(uif—p}(x)z (20)
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Minimizing the error with respect to a yields
a=C ' = A" 'Bu" (21)
where
B = [yi(x1 —xi) p(x1), Yi(x2 — xi) p(x2),
<3 Wi = xi) p(xn)] 22)
A=Bp'. (23)

Combining the results in Eq. 5, Eq. 11, Eq. 15 and Eq. 21 gives
the shape functions, N, as
N'=p'Cc™'=p"A~'B (24)
where the shape functions are found by solving the matrix sub-
problem AC~! = B over the cloud for C~! at each point i. It
should be noted that all nonzero shape functions at the point

i must be taken from the solution of the i-th subproblem for
proper normalization of the shape functions.

Finally, a matrix equation is obtained

Ku"=b (25)

where the coefficient matrix K € R is constructed by in-
serting LNT, NT, and % for the governing, Dirichlet, and
Neumann regions respectively and the right-hand side vector
b € RN =1 is set to f, g and h at each point i as per Eq. 8-
10. Since the shape functions are locally defined or n << N,
the coefficient matrix K is sparse, but because the distance be-
tween cloud points varies and the cloud size is not necessarily
uniform, symmetry of the coefficient matrix is not achieved.
The solution vector u” € RVP*! are the coefficients of the so-
lution on the shape function basis and Eq. 5 must be applied to
find the approximate solution, u“(x).

It should be noted that the general antisymmetry of the coef-
ficient matrix, K, in the FP method and the coefficient matrix
of other meshless methods does not occur in the FD method

and some FE methods and introduces several limitations cur-
rently. First, the antisymmetry precludes the use of the conju-
gate gradient method commonly employed for FD implemen-
tations of the semiconductor Poisson equation. (The conjugate
gradient method is the basis of the FD solver used for com-
parison in this work [Trellakis, Galick, Pacelli, and Ravaioli
(1997)]). This implementation of the FP method utilizes the it-
erative preconditioned GMRES method [Saad (1994)] to treat
the antisymmetry. Second, the antisymmetry of the coeffi-
cient matrix precludes the solution of real eigenvalue problems
such as the time-independent Schrodinger equation which is
often coupled to the semiconductor Poisson equation for self-
consistent solution. Other issues concerning the coefficient
matrix are those of reordering and bandedness. In this work,
no attempt is made to enforce strict banding and sparse ma-
trices are used for storing and manipulating of the coefficient
matrix. For performance reasons, reordering is used to con-
centrate non-zero coefficients along the diagonal. It should be
further noted that care must be taken to limit the cloud size and
the resulting total error in the least-squares fit. In this work, the
cloud size is limited to 2-3 times the number of base interpo-
lating functions.

4 Newton-Raphson iteration and boundary conditions

Nonlinearity in the governing equation [Eq. 1] may be treated
by Newton-Raphson iteration. If the forcing term is moved to
the left-hand-side, the general differential equation is satisfied
when the function ®(u) = Lu— f(u) is zero. The standard
Newton Raphson step for u is then

o(u) Lu—f R(u)
Au=— =-— =- 26
oW T Ieen Lagm-z %
or
)
L= yau=—%i(w) @7)

where R(u) = Lu— f is the residual. Writing Eq. 27 as a
vector equation and using u = NTu” and Au = NTAu” yields

(L— a—f)NTAuh =—R(u) (28)
Jdu
or
(LNT - g—fNT)Auh = —%R(u). (29)
u

If the general form in Eq. 25 is inserted above, then

(K— g—J;NT)Auh = —R(u) (30)
or

K'Au”" = Ab (31)
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Figure 1 : Diagram of the proto-typical MOSFET treated in
this work.

where K' = K — ¥NT and Ab = —%(u) = —(Ku" —b).

In this approach, the shape function coefficients may be found
initially to satisfy the Dirichlet conditions with Ku, = b and
may be iterated from u’ = u, with u = u+ Au by enforcing
K'Au = 0 at each step, such that the Dirichlet conditions are
maintained. The Neumann conditions, on the other hand, may
be treated identically to the governing equations where Eq. 31
will set the variation of the slope as the negative residual slope
and will, thereby, effectively force the slope to zero with each
step.

5 Semiconductor Poisson equation

The semiconductor Poisson equation may be written as

V(eVo) = —p[o] (32)

= —q(—n[0] + p[0] + Nj[0] — Ny [¢]) (33)
where ¢ is the electrostatic potential, n and p are the electron
and hole concentrations, and N, Z{ and N are the ionized donor
and acceptor concentrations.

In terms of the differential equation in Eq. 1, we see L = VeV,
u=¢ and f = —p. These terms may be substituted into Eq. 31
for the nonlinear case, or, if a ¢-independent charge distribu-
tion is employed, Eq. 25 may be used directly. As discussed in
Sec. 3, sparse matrices were used to store the shape function
and coefficient matrix and the iterative preconditioned GM-
RES method was used to treat the antisymmetric coefficient
matrix in performing the solve.

I I I I
0 50 100 150 200 250 300 350
x (nm)

Figure 2 : The 2-D point distribution is shown where dotted
circles show the FP distribution and connected lines show the
FD mesh. The FP mesh density matches the (25x25) FD mesh
in the bulk of the MOSFET but is doubled in the upper portion
of the device and tripled in the channel region.

6 Numerical results

The procedure outlined above was used to solve for the elec-
trostatic potential profile in a prototypical unipolar n-channel
MOSFET in 2- and 3-D, and results are compared for cor-
responding FD problems (see Fig. 1). In both examples at
T =300 K, the semiconductor Poisson equation was solved
in silicon with a substrate of uniform boron doping at N, =
10"7ecm™3 and source and drain implants of uniform arsenic
doping at N; = 102°cm—3. Dirichlet conditions were imposed
for equilibrium bias conditions of V; = 0.5 Vand Vy = V; =
V;, = 0 V and the built-in bias. Neumann conditions were im-
posed along all unbiased edges to force the electric field to
Zero.

The 2-D example shown in Figs. 2 and 3 demonstrates the util-
ity of the FP method for enhancement of nonuniform rectilin-
ear meshes. The mesh density matches that the FD mesh used
for comparison in the bulk region of the MOSFET, but is dou-
bled or quadrupled in the upper portion and channel regions of
the device respectively (see Fig. 2). Using adaptively deter-
mined constants in the Gaussian weighting function Eq. 17 for
the 2-D case, a cloud size of n =2 12 is maintained. The results
for the conduction band edge are compared with those from
a corresponding FD solve in Fig. 3. Note that the boundary
conditions along the sides and at the contacts are enforced and
good agreement with the FD solution is obtained.

It should be noted that the use of point collocation (see Sec.
2) in the FP method calls for the solution of equation Eq. 32
rather than its commonly-used box integrated form. This re-
laxes the constraint that mesh lines should fall on the mate-
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Figure 3 : The base of the conduction band is shown for the
2-D example where dotted circles show the FP solution and
connected lines show the FD solution.

rial boundaries for highest accuracy, but introduces the cor-
responding constraint that sufficient points must be used near
boundaries to adequately resolve them.

The 3-D example shown in Fig. 4 and 5 demonstrates the util-
ity of the FP method to place points arbitrarily on a nonuni-
form rectilinear background mesh. While rectilinear enhance-
ment (as done in the 2-D example) would be even more useful
in 3-D, this example identifies a more powerful application of
meshless methods, namely that meshless methods allow solu-
tion points to be inserted independently from the background
mesh geometry. This functionality, for instance, could be ap-
plied to model carrier wave packet and dopant cloud effects
within ensemble Monte Carlo simulations. In the 3-D exam-
ple, 80 random points in the channel region are added to a
9 x 20 x 9 background. The cubic spline weighting function
is employed and a cloud size of n = 30 is maintained. The FP
solution is compared with those of a 9 x 20 x 9 FD mesh and
good agreement is achieved.

7 Conclusion

The weighted least-squares FP method is applied to the solu-
tion of the semiconductor Poisson equation. The non-linearity
is treated with Newton-Raphson iteration and a technique
is presented to implement Dirichlet and Neumann boundary
conditions in this scheme. Sparse matrices are employed to
store the shape function and coefficient matrices and the non-
symmetric linear residual step is solved by using the GMRES
method. Comparison of solutions in 2- and 3-D with those
of obtained with the FD method indicates that the FP method
can treat both Dirichlet and Neumann boundaries in nonlin-
ear problems, while it provides the flexibility of solving the
semiconductor Poisson equation on an irregular grid. The
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Figure 4 : The center of the 3-D point distribution is shown
where dotted circles show the FP distribution and connected
lines show the FD mesh plane used for comparison in Fig. 5.
The FP distribution matches the FD mesh but 80 additional
points are randomly placed in the channel region to demon-
strate the flexibility of the method in treating problems where
arbitrary point placement is advantageous.

numerical examples considered here demonstrate that the FP
method shows promise both as a means for enhancement of
nonuniform meshes with fewer constraints than with FD and
FE methods and as a means to treat physical problems where
arbitrary point placement is advantageous, such as the simu-
lation of carrier wave packet and dopant cloud effects in the
ensemble Monte Carlo method. The further application of the
FP method and other meshless methods toward the problems
outlined in this work are currently in progress.
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