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Abstract: We investigate the quantum mechanical proper-
ties and single-electron charging effects in vertical semicon-
ductor quantum dots by solving the Schrödinger and Poisson
(SP) equations, self-consistently. We use the finite element
method (FEM), specifically the Bubnov-Galerkin technique to
discretize the SP equations. Owing to the cylindrical symme-
try of the structure, the mesh is generated from hexahedral vol-
ume elements. The fine details of the electron spectrum and
wavefunctions in the quantum dot are obtained as a function
of macroscopic parameters such as the gate voltage, device ge-
ometry and doping level. The simulations provide comprehen-
sive data for the analysis of the experimental data of Tarucha,
Austing, Honda, van der Hage, and Kouwenhoven (1996).

keyword: quantum dot, finite element, single-electron
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1 Introduction

During the last ten years, single electronics has undergone
considerable development, driven by the discovery of novel
physical effects with potential applications as ultrasmall mem-
ories [Imamura, Sugiyama, Nakata, Muto, and Yokoyama
(1995); Wasshuber, Kosina, and Selberherr (1998); Likharev
(1995); Korotkov (1996)], ultradense digital logic circuits
[Meir (1995); Tucker (1992); Korotkov (1996); Likharev
(1995)], high efficiency lasers [Fafard, Hinzer, Raymond,
Dion, Feng, and Charbonneau (1996)], metrology [Kouwen-
hoven, Marcus, Mceuen, Tarucha, Westervelt, and Wingreen
(1997); Likharev (1995)] and optical detectors [Jimenez, Fon-
seca, Brady, Leburton, Wohlert, and Cheng (1997); Likharev
(1995)]. The most prominent of these effects are single
electron charging and Coulomb blockade in tunnel junctions
whose size is of the order of the de Broglie wave length
(� 50nm).

Although the latter phenomena were already observed in thin
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metallic films as early as 1950 [Gorter (1951)], single elec-
tronics gained popularity only in the mid eighties with the de-
velopement of the so-called ‘orthodox theory’ by Averin and
Likharev (1986). This theory was successfull in explaining
single electron effects in metal tunnel junctions where quan-
tum effects such as the discreteness of energy levels do not
play an important role. However, in recent experiments on
semiconductor quantum dots (QD), features such as single
electron orbital motion, three-dimensional energy quantization
and shell structures typical to real atoms have been observed
[Ashoori, Störmer, Weiner, Pfeiffer, Baldwin, and West (1993,
1994); Tarucha, Austing, and Honda (1995); Tarucha, Aust-
ing, Honda, van der Hage, and Kouwenhoven (1996); Tarucha,
Austing, and Honda (1997); Kouwenhoven, Oosterkamp, Da-
noesastro, Eto, Austing, Honda, and Tarucha (1997); Schmidt,
Haug, von Klitzing, Förster, and Lüth (1997)]. For these rea-
sons, QDs are often called artificial atoms [Kastner (1993);
Lee, Rao, Martin, and Leburton (1998); Leburton and Na-
garaja (1997); Jefferson and Häusler (1997); Ashoori, Störmer,
Weiner, Pfeiffer, Baldwin, and West (1993)].

The first experiments on single electron charging and Coulomb
blockade in semiconductor QDs were made with planar struc-
tures by patterning several metal gates above the surface of
a two-dimensional electron gas (2DEG) which isolates elec-
trostatically a small region of the 2DEG and forms a QD
[Meirav, Kastner, and Wind (1990); Kouwemhoven, Johnson,
van der Vaart, and Harmans (1991); Wang and Chou (1993)].
However, the tunneling barriers which confine the electrons
in the planar QD have a variable shape which is strongly in-
fluenced by the gate voltage [Meirav and Foxman (1995)].
In vertical quantum dots (VQD), the zero-dimensional region
is sandwiched vertically between a double resonant tunnel-
ing barrier made of heterostructure layers, and lateral confine-
ment is achieved by deep mesa etching. This pillar structure
is covered by a metal gate which forms an adjustable Schot-
tky barrier to control the number of electrons in the QD. In
addition to the single electron charging effect, Tarucha and
coworkers observed that shell filling in vertical QD is governed
by Hund’s rule, just as in atoms [Tarucha, Austing, Honda,
van der Hage, and Kouwenhoven (1996); Tarucha, Austing,
and Honda (1997)].

In this paper, we investigate the electronic properties of VQDs
which involves the self-consistent numerical solution of Pois-
son and Schrödinger equations. In recent years, attempts have
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Figure 1 : Schematic diagram of a vertical quantum dot tun-
nelling heterostructure showing the different semiconductor
layers

been made to simulate QD numerically [Macucci, Hess, and
Iafrate (1993, 1995); Stopa (1996); Lee, Rao, Martin, and
Leburton (1998); Jovanovic and Leburton (1994); Leburton
and Nagaraja (1997); Nagaraja, Matagne, Thean, Leburton,
Kim, and Martin (1997)], but were of limited validity be-
cause simulations were either restricted to two dimensions
in order to decrease the computations [Macucci, Hess, and
Iafrate (1993, 1995)], or assumed a parabolic background po-
tential [Macucci, Hess, and Iafrate (1993, 1995); Lee, Rao,
Martin, and Leburton (1998)], or even neglected spin ef-
fects [Jovanovic and Leburton (1994); Leburton and Nagaraja
(1997); Nagaraja, Matagne, Thean, Leburton, Kim, and Martin
(1997)]. Therefore, there is a need for a comprehensive model
which incorporates all the detailed features of the experiment
[Tarucha, Austing, Honda, van der Hage, and Kouwenhoven
(1996)]. For this purpose, we have developed a realistic model
which accounts for the influence of parameters such as the
doping, the dimension of the gate or the pinning of the con-
duction band at the interfaces on the electronic structure of the
QD, and directly relates the variation of the microscopic prop-
erties of the nanostructure to the macroscopic variations of the
applied bias.

We use the finite element method (FEM) to discretize Poisson
and Schrödinger equations because this method has the ability
to treat complex geometries and a strong mathematical back-
ground.

2 Vertical tunneling structures.

Fig. 1 shows a schematic diagram of a vertical QD similar
to the device investigated by Tarucha, Austing, and Honda
(1995); Tarucha, Austing, Honda, van der Hage, and Kouwen-
hoven (1996); Tarucha, Austing, and Honda (1997); Aust-
ing, Honda, and Tarucha (1996a,b); Kouwenhoven, Marcus,
Mceuen, Tarucha, Westervelt, and Wingreen (1997). The

structure consists of an undoped 12nm In0:05Ga0:95As well and
undoped Al0:22Ga0:78As barriers of thickness 9nm and 7:5nm.
This difference in the barrier thickness is required to facili-
tate accumulation of electrons in the dot. The inclusion of in-
dium in the well lowers the bottom of the conduction band and
circumvents the drawbacks of delta doped AlGaAs barriers of
earlier devices [Tarucha, Austing, and Honda (1995)]. The
lead on the side of the thinner (thicker) tunnel barrier is made
of n+GaAs and is referred to as the source (drain). The dop-
ing is gradualy reduced from the source (drain) to the double
barrier heterostructure (DBH). The DBH is etched to form a
circular mesa with a geometrical diameter of the top contact of
0:5µm. A circular Schottky gate surrounding the mesa controls
the number of electrons in the dot. Experimental mesurements
were made with samples cooled in a dilution refrigerator and
the electron temperature was estimated to be about 0:2K. The
current flowing through the dot is measured in response to a
small dc voltage (150µV) applied between the source and the
drain. The number of electrons in the dot was determined by
tracking the current peaks of the I�VGATE characteristics.

3 Model

Since the voltages applied between source and drain are ex-
tremely small (the curent probed is a few pA [Tarucha, Aust-
ing, Honda, van der Hage, and Kouwenhoven (1996)]), and
since the gate voltage produces no current, the system is con-
sidered to be close to equilibrium. Moreover, since the dot is
well isolated from the surrouding 3D bulk, we define two re-
gions with almost non overlap : a dot region in which quantum
effects are predominant and a bulk region in which quantum
effects are negligible.

3.1 Bulk region

In regions where quantum effects are neglegible, the electron
density is computed by Thomas-Fermi’s approximation :

n = Nc
2p
π

F1=2(ηc) (1)

where Nc is the effective density of states in the conduction
band, ηc =�φ+∆Ec=UT , and F1=2 is the Fermi integral [An-
tia (1993)] which reduces to the Boltzmann factor for non de-
generate semiconductors.

3.2 Dot region

The charge density in the QD is obtained by consider-
ing the quantum mechanical nature of the charge carriers
within the density functional theory to describe many-body
effects [Jones and Gunnarsson (1989)]. Inclusion of many-
body effects under the density functional formalism into the
Schrödinger equation leads to what is called the Kohn-Sham
equation. In order to take into account the spin dependence on
the electron-electron interaction, two Kohn-Sham equations ,
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Table 1 : Conduction band offsets (GaAs is the reference ma-
terial)

heterointerface conduction band offset
GaAs=Al0:22Ga0:78As 0:181 eV
GaAs=In0:05Ga0:95As �0:05 eV

one for spin up and one for spin down, are solved simultane-
ously :

H"(r)ψ"
m(r) = ε"mψ"

m(r) H#(r)ψ#
m(r) = ε#mψ#

m(r) (2)

where εm and ψm are the corresponding eigenenergies and
eigen states of the hamiltonians H" and H# :

H"(#)(r) = �h̄2

2
∇
�

1
m�(r)

∇
�
�qφ(r)+∆Ec +µ"(#)

xc (n) (3)

where m�(r) is the position dependent effective mass. φ(r) =
φext + φion + φH is the electrostatic potential which consists
of three contributions : φext potential due to external ap-
plied bias, φion potential resulting from ionized donors and
φH Hartree potential accounting for the repulsive electron-
electron interactions. ∆Ec is the conduction band offset be-
tween different materials (Tab. 3.2) and µ"(#)

xc is the exchange
and correlation potential energy for spin up(") and down (#)
which is computed within the Local Spin Density Approx-
imation (LSDA) according to Perdew and Wang’s formula-
tion [Wang and Chou (1993)]. The LSDA approach to the
study of electronic structure of quantum dots has been well
tested by many authors [Jovanovic and Leburton (1994); Fon-
seca, Jimenez, Leburton, and Martin (1997); Macucci, Hess,
and Iafrate (1993); Stopa (1996)]. It successfully explains the
quasi two-dimensional shell structures and spin configurations
of quantum dots [Tarucha, Austing, Honda, van der Hage, and
Kouwenhoven (1996); Tarucha, Austing, and Honda (1997)].
Moreover, applications of the LSDA to few electron atoms has
shown accuracy of the order of 1% in the calculations of the
atoms ionisation energy [Jones and Gunnarsson (1989)].

The electron density in the QD reads

n(r) = n"(r)+n#(r) =
N"

∑
i=1

���ψ"
m(r)

���2 +
N#

∑
i=1

���ψ#
m(r)

���2 (4)

where N"+N# = N is the number of electrons in the dot.

The electrostic potential φ(r) is computed by solving Poisson
equation :

∇(ε(r)∇φ(r)) =�ρ(r) (5)

where ε(r) is the position dependant permittivity and ρ(r) is
the total charge density which is given by

ρ(r) = q(p(r)�n(r)+N+
D (r)�N�

A (r)) (6)

where p(r), n(r), N+
D (r), N�

A (r) are the hole, electron, ion-
ized donnors and ionized acceptors densities respectively, at
the position r.

3.3 Boundary conditions

Boundary conditions for the electrostatic potential φ are cho-
sen by imposing Dirichlet conditions at the source, drain and
lateral surfaces of the device. At the source and drain, flat band
condition is assumed and φ is set up such that the net charge is
zero in these regions. Along lateral surfaces, the Schottky bar-
riers heights φs are strongly influenced by surface chemistry,
so we use the experimental data of Grant, Waldrop, Kowal-
czyk, and Kraut (1981) and Best (1979). On the gated sur-
faces, the Schottky barriers are modified by φs�VG, where VG

is the gate bias.

Boundary conditions for the Khon-Sham’s equation are im-
posed by assuming vanishing wave functions on any lateral
surface of the device. Since the quantum dot is much smaller
than the physical dimensions of the device, the wave functions
vanish actually far away from those boundaries. In the di-
rection perpendicular to the hetero-interfaces, we allow wave
functions to leak into the source and drain regions. However,
this leakage is not taken into account for the computation of
the charge in the source and drain regions where it is com-
puted entirely using the Thomas-Fermi approximation in that
region. This is a good approximation since it doesn’t affect the
charge within the dot, and is too small compared to the bulk
charge in the source and drain regions.

3.4 Single electron charging

Because the quantum dot is weakly coupled to the source and
drain, electrons are completely localized in the dot At equi-
librium, and for a given bias, the integer number of electrons
N minimizes the total energy ET of the system. In order to
determine N we use the Slater formula [Slatter (1972)]:

ET (N +1)�ET (N) =
Z 1

0
εLUO(n)dn� εLUO(1=2) (7)

where ET (N) is the total energy for N electrons in the dot and
εLUO is the lowest unoccupied orbital eigenvalue. Hence, upon
populating εLUO with 0:5 electron, a stable configuration of
N electrons is achieved in the dot if ET (N + 1) > ET (N), i.e.
if the integral of Eq.7 is positive, otherwise there are N + 1
electrons. It must be noted that the approximation made in
Eq. 7 is valid only if εLUO varies linearly with N . Calcula-
tions of Fonseca, Jimenez, Leburton, and Martin (1997) have
established the validity of the approximation in self-assembled
InAs=GaAs quantum dots.

4 Mesh generation

Fig. 2 shows the mesh generated for the cylindrical DBH. As
mentioned before, the volume of the device is divided into hex-
ahedra, some of which, however, may degenerate into prisms.
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Figure 2 : Hexahedral elemental mesh for a cylindrical DBH

Along the vertical direction, the mesh is refined gradually from
the source and drain to the heterointerfaces. In the horizontal
plane, a irregular square mesh is first generated. Again, it is
refined gradually from the perimeter to the center. If as

i j =
(xs

i ;y
s
j) is a point on this square mesh, the corresponding point

ac
i j = (xc

i ;y
c
j) in the circular mesh of radius R is computed by

the transformation :

xc
i = r Ξ cos(θ) sign(x)+ xs

i (1�Ξ) (8)

yc
j = r Ξ sin(θ) sign(y)+ ys

j (1�Ξ) (9)

where r = max(jxs
i j; jys

jj)
θ = j jjπ

4jij (jxsj � jysj)
2j jj�jij

4j jj (jxsj � jysj)
Ξ = max(jij;j jj)

Rn
(r � R)

n�max(jij;j jj)
n�Rn�1 (r > R)

i; j 2 [�n::n]

and (Rn +1)

is the number of grid points spanned by R. Because of this
transformation, when r = R, Ξ = 1 and Eq. 9 are coordinates
of points lying on the circumference of radius R. When r �
R, Ξ � 0, the first term of the sum in the right hand side of
Eq. 9 almost vanishes and ac

i j � as
i j When r = n, Ξ = 0 and

Eq. 9 are coordinates of points lying on the perimeter of the
buried region. Thus, as seen in Fig. 2, the mesh is almost
square in the inner part of the device and becomes circular
gradually away from the center to fits exactly the surface of the
cylinder and becomes square again in order to fit the surface
of the parallelipipedic lower part of the device.

5 Finite element formulation

In the present work, Poisson and Kohn-Sham equations are
discretized by the FEM, more precisely by the Bubnov-
Galerkin method [Zienkiewicz and Taylor (1994)]. The elec-

trostatic potential and the wave functions are approximated by
piecewise trilinear polynomials on isoparametric hexahedral
elements.

5.1 Reference finite element

We define our reference finite element by the triplet (K ;P ;S )
[Brenner and Scott (1994)] where

� the element domain K is the cube whose vertices are
α1(-1,-1,-1), α2(1,-1,-1), α3(-1, 1,-1), α4(1, 1,-1),
α5(-1,-1, 1), α6(1,-1, 1), α7(-1, 1, 1), α8(1, 1, 1) (lo-
cal coordinates)

� P is the restriction on K of trilinear polynomials. :
P =

�
∑ j c j p j(ξ)q j(η)r j(ζ) : p j; q j; r j linear polynomi-

als g
� the nodal variables S = fα1;α2;α3;α4;α5;α6;α7;α8g

It can easily be shown that fN1;N2;N3;N4;N5;N6;N7;N8g de-
fined by

Ni(ξ;η;ζ) =
1
8
(1�ξ)(1�η)(1�ζ) i = 1 : : :8 (10)

is a basis for P . Now, any hexahedral element (Ke;Pe;Se)
whose vertices are fa1;a2;a3;a4;a5;a6;a7;a8g where ai =
(xi;yi; zi) (global coordinates) can be related to the reference
element via the isoparametric transformation :

a = NTC (11)

where a = (x;y; z) is any coordinate in Ke, N is the column
vector of basis functions and C is a 8�3 matrix whose ith row
is the vertex (xi;yi; zi).

5.2 Poisson equation

In the finite element method we have to discretize the weak
form of Poisson equation :
Z

Ω
ε(r) ∇φ(r):∇W(r) dr =
Z

Ω
ρ(φ)W (r) dr+

Z
Σ0

ε(r) ∇φ(r)W(r) dr (12)

that we obtain by multiplying Eq. 5 by W 2 H1 (Sobolev
space), integrating over the volume Ω of the structure and ap-
plying Green’s formula. Σ denotes the surface of the device
with Σ = Σ0[Σ1 where, as discussed before, φ(r) = φ0(r) on
Σ0 (Dirichlet boundary condition) and ∇φ(r) = 0 on Σ1 (Neu-
mann boundary condition).

Discretization of Eq. 12 is performed choosing W = Ni 2 P �
H1 and, in each element, replacing φ by its interpolant :

φ̃ =
8

∑
i=1

Niφi (13)
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After some algebra, Eq. 12 can be cast into a matrix form:

Qφ = ρ+Q0φ0 (14)

where

Q =
m

∑
e=1

Q
e

; ρ =
m

∑
e=1

ρe ; Q0 =
m

∑
e=1

Q
e
0

Qe
i j =

Z 1

�1

Z 1

�1

Z 1

�1
ε ∇Ni(r(ξ;η;ζ))∇Nj(r(ξ;η;ζ))

�jJjdξ dη dζ; (15)

ρe
i =

Z 1

�1

Z 1

�1

Z 1

�1
ρ(φ̃)Ni(r(ξ;η;ζ)) jJjdξdηdζ; (16)

Q
e
i j = Qe

i j if Qe
i j does exist, and 0 otherwise (the same defi-

nition applies for ρe
i ). Q is a n� n matrix and φ is a n row

vector of unknown nodal potential. Q0 is a n�n0 matrix and
φ0 is a n0 row vector denoting the Dirichlet boudary condition.
The summation is performed over the m finite elements of the
mesh. In three-dimensional problems, n2 becomes quickly a
very large number. Fortunately, Q is sparse and only the non
zero elements are stored in memory. Actually, each row of Q
contains 27 non zero elements since in hexahedral finite ele-
ments, each node is related to its 26 neighbours.

In order to get Eq. 15 and 16, we have applied the change of
variable described by Eq. 11. Therefore, except the Jacobian
J, Eq. 15 and Eq. 16 are independent of any particular ele-
ment, Ωe, which reduces significantly the programming effort.
It must also be noted that ε is constant in Ωe because an ele-
ment is related to one material.

Since ρ depends on φ, Eq. 14 is a nonlinear equation that is
solved iteratively by the damped Newton-Raphson method :�

J ∆φ(l+1) = �F(l)

φ(l+1) = φ(l)+α ∆φ(l+1) (17)

where

F = Qφ�ρ�Q0φ0

Ji j = ∂Fi
∂φ j

= Qi j� ∂ρi
∂φ j

(18)

and l is the number of the iteration and J , the Jacobian matrix.
The damping factor α is set up by a incomplete line search.
From Eq. 15, it is obvious that Q is symmetric and positive
definite. In order to maintain the symetry of J , we only con-

sider the diagonal part of
�

∂ρi
∂φ j

�
. Since J is a sparse matrix, we

use the conjugate gradient method to solve Eq. 17 and iterate
until max

i
j∆φij< tol (we have fixed tol = 10�6eV ).

5.3 Kohn-Sham equation

The weak form of Kohn-Sham equation reads :
Z

Ω

h̄2

2m�
(∇ψm(r)):∇W (r) dr =

Z
Ω
(εm�U(r))W (r) ψm dr

(19)

where U(r) = Ec(r)+ µxc(n). Since the boundary conditions
are ψ = 0 on Σ0 and ∇ψ = 0 on Σ1, there is no surface term in
Eq. 19. Applying the same procedure as in Poisson equation,
we get, after discretization :

Heψe
m = Aeψe

m +Beψe
m = εmMψe

m (20)

where

Ae
i j =

Z 1

�1

Z 1

�1

Z 1

�1

h̄2

2m�
∇Ni(r(ξ;η;ζ))∇Nj(r(ξ;η;ζ))

�jJj dξ dη dζ (21)

Be
i j =

Z 1

�1

Z 1

�1

Z 1

�1
U(r(ξ;η;ζ))Ni(r(ξ;η;ζ)) Nj(r(ξ;η;ζ)) (22)

�jJjdξ dη dζ (23)

Me
i j =

Z 1

�1

Z 1

�1

Z 1

�1
Ni(r(ξ;η;ζ)) Nj(r(ξ;η;ζ)) (24)

�jJjdξ dη dζ (25)

Assembling the parts, we get

Hψm = εmMψm (26)

Whereas A is positive definite, H may not be so since it de-
pends on U which can take any value. In order to keep the
symetry and definite positiveness of the problem, we solve the
following equation instead of Eq. 20:

H ψm = λmMψm (27)

where H = H�UminM is symetric definite positive and λm =
εm�Umin.

To find the lowest S occupied eigenstates, we must solve the
general eigenvalue problem

H Ψ = MΨΛ (28)

where Ψ is n0�S, M an orthogonal matrix whose mth column
holds ψm and n0, the unknown number of the dot region (n0 �
n). This system is solved by a subspace iteration method based
on a Rayleigh-Ritz analysis whose algorithm is a variation of
the one described in [Bathe (1996)].

The solution involves :

(a) Choosing a set S of linearly independent vectors as an ini-
tial guess for the basis of the subspace : ψ1, : : :, ψS

(b) Performing a Rayleigh quotient iteration,
�

H � ΨT
1 K Ψ1

ΨT
1 MΨ1

M
�

Ψ = MΨ

(c) Finding the projections of H and M onto the subspace,
i.e.,

HS = ΨT
�

H � ΨT
1 K Ψ1

ΨT
1 MΨ1

M
�

Ψ ; MS = ΨT
MΨ
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Figure 3 : Conduction band profile in the xz plane (growth
direction) at y = 0 for 20 electrons in the dot (VG = �0:61V ).
The inset shows a cross section at x = 0

(d) Using the QR method, finding the S eigenvalues and
eigenvectors of this reduced system,

HSΨS = MSΨSΛS

(e) Building an improved basis using linear combinations of
the eigenvectors of the subspace

Ψ = ΨΨS

(f) repeating steps (b) through (e) until max
i
jλ(k+1)

i �λ(k)i j

λ(k)i

j< tol;

where k is the iteration number.

Step (b) insures cubic convergence to ψ1 and the convergence
rate to ψi (i = 2; : : : ;S) is λi=λS [Bathe (1996)]. Since S� n0,
the number of operations required for step (c) (o(S3)) can
be neglected and the total number of operations is o(132n0)
[Bathe (1996)]. It can be proved [Bathe (1996)] that step (d)
improves the solution and eventually, ΛS converges to the S
lowest eigenvalues of H . Although not the fastest possible,
this method is very robust and avoids propagation of round
off errors occuring in all the Gram-Schmidt based methods.
Moreover, the algorithm finds all the eigenvalues in the sub-
space without exhibiting any unstable behaviour in the case of
degeneracies.

6 Results

Fig. 3 shows the variation of the conduction band edge
EC(r) = ∆EC � qφ+ µxc including many-body effects in the
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Figure 4 : Conduction band profile in the xy plane for 0 elec-
tron in the dot (VG =�1:7V ) at y = 0 and z = 1180Å

xz-plane at y = 0, i.e. in the dot, for N = 20 electrons
(VG = �0:61V). The source and drain regions have been ex-
cluded from the figure since there are no significant potential
variations in these regions. The inset shows a cross-section at
x = 0. The central InGaAs dot region (1030Å� z� 1315Å) is
defined by the 180meV AlGaAs double barrier. The lower en-
ergy gap of InGaAs (1:448eV ) compared to the energy gap of
GaAs (1:519eV) results in the bottom of the well being 50meV
lower than the source and drain regions. Therefore, electrons
are confined in the 120Å wide InGaAs region.

Fig. 4 shows the variation of the conduction band edge in the
xy plane at z = 1180Å, i.e., in the well, for N = 0. It confirms
the parabolic shape of the conduction band in this region, as
well as the cylindrical symmetry of the structure.

Fig. 5 shows the variation of the conduction band edge EC(r)
along the x direction, perpendicular to the growth direction,
at y = 0 and z = 1180Å, i.e. in the quantum dot, for N vary-
ing from 0 to 20, i.e. �1:7V < VG < �0:61V . It is seen that
when the dot is empty, the conduction band profile is almost
parabolic, but as the gate voltage is varied, thus increasing the
number of electrons in the dot, the bottom of the conduction
band flattens, due to increasing Coulomb repulsion (Hartree
potential) between charge carriers. The inset shows that the
minimum of the conduction band edge EC(r) in the dot is not
a monotonic function of the number of electrons N , but os-
cillates as a combined influence of the attractive ion potential
φION and µxc, and the repulsion between electrons φH .

Fig. 6 shows the electron concentration, n(rrr) in the xz plane at
y = 0, for N = 20. The effect of the different types of confine-
ments is evident in the figure : Along the z-direction, the elec-
trons in the dot are squeezed into a thin layer whereas in the
x-direction, the concentration profile is more spread out and
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Figure 5 : Conduction band profile in the x direction ( perpen-
dicular to the growth direction) at y = 0 and z = 1180Å, i.e.,
in the quantum well for N equals (a) 0 (VG = �1:7V ), (b) 2
(VG =�1:56V), (c) 6 (VG =�1:2V ), (d) 12 (VG =�0:9V ) and
20 (VG = �0:609V) electrons. The inset is a zoom of the box
drawn in the general view.

exhibits four lobes, which results from the contributions of the
occupied excited states The only lobe along the z-direction in-
dicates that only the ground z-state , i.e., nz = 0, is occupied,
if we label the states as (nx;ny;nz) where nx, ny and nz are the
number of nodes in the x, y and z directions respectively.

As mentioned in the introduction, the spectrum of QD exhibits
a shell structure if the potential is characterized by a high level
of symmetry, which is the case for this cylindrical structure.
Fig. 7 shows the evolution of the eigenvalues as a function of
the gate voltage. Because of the parabolic shape of the confin-
ing potential in the x and y directions when the dot is empty
(VG � �1:7V), the eigenvalues achieve a 2D cylindrical har-
monic oscillator spectrum.

By analogy with atomic physics, we use s; p;d; f ; : : : for the
four lower states with degeneracy 2;4;6;8, including the spin.
The general trends of the energy spectrum is to move to lower

energies as the gate voltage is increased since the overall po-
tential energy of the system decreases. A new electron enter-
ing the dot induces an upward shift of the whole spectrum due
to an sudden increase of the total electrostatic energy in the
dot due to electron repulsion. This transition occurs when a
particular eigenlevel crosses the Fermi level (zero on the verti-
cal scale) and fulfills the condition ET (N +1) < ET (N). This
behaviour is different from the results of Nagaraja, Matagne,
Thean, Leburton, Kim, and Martin (1997) whose model didn’t
account for individual spin states. In that case, the eigenvalue
was tangential to the Fermi level during the charging of the
whole orbital. The intervals ∆VG between two jumps of the
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Figure 6 : Electron concentration in the xz plane (growth di-
rection) at y = 0 for 16 electrons in the dot.
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energy spectrum represents the increment of VG, and hence
the energy eVG, required to add an electron to the dot. Unlike
in “orthodox” Coulomb blockade experiments [Averin and
Likharev (1986)], ∆VG takes very unequal values, irregularly
distributed over the range of VG, because of the influence of the
quantization and quantum many-body effects during the charg-
ing of the dot. Hence, after a shell is completely filled, i.e., for
N = 2;6;12 and 20, ∆VG is usually large because, in addition
to the energy required to overcome the electrostatic repulsion
of the electrons already present in the dot, an energy contri-
bution is needed to lower the next orbital below the Fermi
level for admitting the next electron. However, it is seen that
∆V 2

G = 133meV > ∆V 6
G = 111meV > ∆V 12

G = 84meV : : : where
∆V N

G is ∆VG for N electrons. This is due to the many-body po-
tential energies φH and µxc (equ. 3), which reduce the depth
of the overall confining potential (see Fig. 5), and thereby the
eigenlevel spacing, when N increases. From atomic physics
it is known that the most energetically favorable orbital filling
sequence in a particular shell is predicted by Hund’s rule. For
instance, the charging of the p state follows the spin sequence
2p"

x;2p"
y;2p#

x;2p#
y because the weak overlap between the 2px

and 2py orbital and the attractive exchange interaction between

same spin states favors the 2p"
y over the 2p#

x state which has a

strong overlap with the previously filled 2p"
x state, and thereby

a bigger repulsive Hartree energy. This explains that the next
voltage increments are ∆V 3

G(55meV)< ∆V 4
G(66meV ), after the

large gate voltage increment ∆V 2
G required for populating the

2p"
x state because of the orbital change. By similar arguments,

one can explain the various sizes of the gate voltage incre-
ments.

With electrons in the dot, the states of a particular shell are
no longer degenerate : for instance, at VG = �1:6V , the d or-
bital splits and this situation persists, and even emphasizes, at
higher VG. At VG =�1:434V , the p orbital splits into four dis-
tinct states while at VG = �1:372V , the p states of same spin
merge back together. The orbital degeneracies are lifted for
three reasons : first, as it was shown on Fig. 5, the conduction
band edge is no longer parabolic due to the influence of the
many-body effects, which induces a permanent lifting of de-
generacies as occurs for d and f states. Secondly, Hund’s rule
breaks the symmetry of the shells, lifting temporarly their de-
generacy. Hence, after populating the 2p"

x state, the symmetry
in the p" subshell is broken and results in the two p" levels
being clearly separated. After populating the 2p"

y state with
the fourth electron, the symmetry in the p" subshell is restored
and the p" (p#) levels merge back together although the spin
degeneracy remains lifted because thirdly, whenever µ"

xc dif-
fers from µ#

xc, the spin degeneracy is lifted. This effects occurs
whenever a shell is partially filled because of Hund’s rule and
the fact that µxc is a function of the spatial distribution of the
electron density. As an exception to this rule the spin degener-
acy of the s state remains unaltered for VG <�1:434V because
there is no exchange between the s electrons. The lifting of the
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Figure 8 : Electron density profile for (a)2, (b)6, (c)12 and
(d)20 electrons in the dot

d and f degeneracies can be explained by the combination of
the three effects mentioned above.

Fig. 8 shows the evolution of the electron density n(rrr) in the xy
plane as N increases from 2 to 20. Each subplot corresponds to
a filled 2D shell. Each density profile can be understood from
figure 9 which shows the contour plots of the eigenfunctions
where the electron density is equal to the summation of the
square of the wave functions over the occupied states. Hence,
for two electrons in the dot, i.e., one electron of each spin on
the s state (Fig. 8a), the electron density has one lobe and a
maximum at the center, which is in agreement with the wave-
function of Fig. 9a. When the p orbital is filled, i.e. N = 6,
the maximum has moved on a ring around the center (Fig. 8b)
since the two p states have a node at the center and two max-
ima 250Å away from it (Fig. 9b & c). When the d orbital is
completely filled, i.e. N = 12, the maximum of n(rrr) moves
back to the center, but the crown is still present, although fur-
ther away from the center (Fig. 8c). This is consistent with
Fig. 9d, e and f ; Fig. 9f shows a maximum at the center while
Fig. 9d and e have their maximum 280Å away from it. At last,
when the f orbital is filled, i.e. N = 20, the maximum of the
electron density moves back again at the periphery since all
the f wave functions (Fig. 9 g,h,i,j,k,l) have their maximum at
the periphery.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 9 : s(a), p(b,c), d(d,e,f), f (g,h,i,j) and g(k,l) eigenvector contour plots. (nz has been omitted and is
assumed to be 0)

7 Conclusion

Our FEM simulation has successfully reproduced the atomic-
like properties of vertical quantum dots. In particular, it has
showed the importance of the shell structure and Hund’s rules
in the charging of the dot. Aside from the good agreement with
the experimental data, our model has also been able to provide
a comprehensive picture of the detailed evolution of the elec-
tronic spectrum as a function of confinement and many-body
effects in the dot. This approach has demonstrated the flexi-
bility of the FEM to handle complicated semiconductor struc-
tures with basic quantum mechanical effects.
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